1
|
Wang Y, Liu X, Wang Y, Qi H, Liu X, Kong X, Zhang Q, Dou J, Wang J, Chen H. Optimization of the Contrast Agent Injection Protocol for Carotid Artery Dynamic Contrast-Enhanced Magnetic Resonance Imaging. J Magn Reson Imaging 2022; 56:1372-1381. [PMID: 35324034 DOI: 10.1002/jmri.28175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The injection protocol used in previous carotid artery dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies varied. PURPOSE To investigate the effect of contrast injection protocol and optimize this protocol for carotid artery DCE-MRI. STUDY TYPE Prospective. SUBJECTS Digital phantom and seven patients with carotid atherosclerosis. FIELD STRENGTH/SEQUENCE 3 T, spoiled gradient recalled echo sequence. ASSESSMENT Different injection doses (0.01-0.3 mmol/kg) and effective injection rates (0.01-1 mmol/sec) were tested using a digital carotid plaque phantom considering the contrast pharmacokinetics, DCE-MRI imaging, contrast variation and flow-related imaging artifacts, random time delay between the contrast injection and image acquisition, and pharmacokinetic analysis process. For each injection protocol, combining the root mean square relative error (RMSRE) of the measured K trans and v P maps within the adventitial vasa vasorum from 10 tested time delays by the root mean square produced RMSREoverall-vv which was used to measure the overall accuracy of the pharmacokinetic parameters. In vivo validation was performed on seven patients with carotid atherosclerosis by imaging them twice using the traditional commonly used protocol and the recommended protocol found by simulation. STATISTICAL TEST Student's t-test, chi-square test, and paired t-test, P < 0.05 was considered statistically significant. RESULTS A low region of RMSREoverall-vv with the combination of medium injection dose and low effective injection rate was found. The protocol with injection dose of 0.07 mmol/kg and effective injection rate of 0.06 mmol/sec achieved the minimal RMSREoverall-vv (4.29%), thus was recommended, which showed more accurate arterial input function. Coinciding with the simulation results, this recommended protocol in in vivo experiments produced significantly fewer image artifacts, lower K trans and v P (P all <0.05) than traditional protocol which overestimated these parameters in simulation. DATA CONCLUSION The contrast injection protocol influenced the accuracy of the pharmacokinetics parameter estimation in carotid artery DCE-MRI. The injection protocol with injection dose of 0.07 mmol/kg and effective injection rate of 0.06 mmol/sec was recommended. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | | | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Xian Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Qiang Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jiaqi Dou
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang N, Christodoulou AG, Xie Y, Wang Z, Deng Z, Zhou B, Lee S, Fan Z, Chang H, Yu W, Li D. Quantitative 3D dynamic contrast-enhanced (DCE) MR imaging of carotid vessel wall by fast T1 mapping using Multitasking. Magn Reson Med 2018; 81:2302-2314. [PMID: 30368891 DOI: 10.1002/mrm.27553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a dynamic contrast-enhanced (DCE) MRI method capable of high spatiotemporal resolution, 3D carotid coverage, and T1-based quantification of contrast agent concentration for the assessment of carotid atherosclerosis using a newly developed Multitasking technique. METHODS 5D imaging with 3 spatial dimensions, 1 T1 recovery dimension, and 1 DCE time dimension was performed using MR Multitasking based on low-rank tensor modeling, which allows direct T1 quantification with high spatiotemporal resolution (0.7 mm isotropic and 595 ms, respectively). Saturation recovery preparations followed by 3D segmented fast low angle shot readouts were implemented with Gaussian-density random 3D Cartesian sampling. A bulk motion removal scheme was developed to improve image quality. The proposed protocol was tested in phantom and human studies. In vivo scans were performed on 14 healthy subjects and 7 patients with carotid atherosclerosis. Kinetic parameters including area under the concentration versus time curve (AUC), vp , Ktrans , and ve were evaluated for each case. RESULTS Phantom experiments showed that T1 measurements using the proposed protocol were in good agreement with reference value ( R 2 = 0.96 ). In vivo studies demonstrated that AUC, vp , and Ktrans in the patient group were significantly higher than in the control group (0.63 ± 0.13 versus 0.42 ± 0.12, P < 0.001; 0.14 ± 0.05 versus 0.11 ± 0.03, P = 0.034; and 0.13 ± 0.04 versus 0.08 ± 0.02, P < 0.001, respectively). Results from repeated subjects showed good interscan reproducibility (intraclass correlation coefficient: vp , 0.83; Ktrans , 0.87; ve , 0.92; AUC, 0.94). CONCLUSION Multitasking DCE is a promising approach for quantitatively assessing the vascularity properties of the carotid vessel wall.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | | | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhenjia Wang
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bill Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sangeun Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Severance Cardiovascular Hospital, Seoul, Korea.,College of Medicine, Yonsei University, Seoul, Korea
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyukjae Chang
- Severance Cardiovascular Hospital, Seoul, Korea.,College of Medicine, Yonsei University, Seoul, Korea
| | - Wei Yu
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
3
|
Ning J, Sun Y, Xie S, Zhang B, Huang F, Koken P, Smink J, Yuan C, Chen H. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver. Magn Reson Med 2017; 79:2629-2641. [PMID: 28905413 DOI: 10.1002/mrm.26915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. METHODS The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. RESULTS Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. CONCLUSIONS The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jia Ning
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yongliang Sun
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | - Chun Yuan
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Huijun Chen
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Wang J, Chen H, Sun J, Hippe DS, Zhang H, Yu S, Cai J, Xie L, Cui B, Yuan C, Zhao X, Yuan W, Liu H. Dynamic contrast-enhanced MR imaging of carotid vasa vasorum in relation to coronary and cerebrovascular events. Atherosclerosis 2017. [DOI: 10.1016/j.atherosclerosis.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Qi H, Huang F, Zhou Z, Koken P, Balu N, Zhang B, Yuan C, Chen H. Large coverage black-bright blood interleaved imaging sequence (LaBBI) for 3D dynamic contrast-enhanced MRI of vessel wall. Magn Reson Med 2017. [PMID: 28626998 DOI: 10.1002/mrm.26786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To propose a large coverage black-bright blood interleaved imaging sequence (LaBBI) for 3D dynamic contrast-enhanced MRI (DCE-MRI) of the vessel wall. METHODS LaBBI consists of a 3D black-blood stack-of-stars golden angle radial acquisition with high spatial resolution for vessel wall imaging and a 2D bright-blood Cartesian acquisition with high temporal resolution for arterial input function estimation. The two acquisitions were performed in an interleaved fashion within a single scan. Simulations, phantom experiments, and in vivo tests in three patients were performed to investigate the feasibility and performance of the proposed LaBBI. RESULTS In simulation tests, the estimated Ktrans and vp by LaBBI were more accurate than conventional bright-blood DCE-MRI with lower root mean square error in all the tested conditions. In phantom test, no signal interference was found on the 2D scan in LaBBI. Pharmacokinetic analysis of the patients' data acquired by LaBBI showed that Ktrans was higher in fibrous tissue (0.0717 ± 0.0279 min-1 ), while lower in necrotic core (0.0206 ± 0.0040 min-1 ) and intraplaque hemorrhage (0.0078 ± 0.0007 min-1 ), compared with normal vessel wall (0.0273 ± 0.0052 min-1 ). CONCLUSION The proposed LaBBI sequence, with high spatial and temporal resolution, and large coverage blood suppression, was promising to probe the perfusion properties of vessel wall lesions. Magn Reson Med 79:1334-1344, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Haikun Qi
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
van Hoof RHM, Heeneman S, Wildberger JE, Kooi ME. Dynamic Contrast-Enhanced MRI to Study Atherosclerotic Plaque Microvasculature. Curr Atheroscler Rep 2016; 18:33. [PMID: 27115144 PMCID: PMC4846686 DOI: 10.1007/s11883-016-0583-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rupture of a vulnerable atherosclerotic plaque of the carotid artery is an important underlying cause of clinical ischemic events, such as stroke. Abundant microvasculature has been identified as an important aspect contributing to plaque vulnerability. Plaque microvasculature can be studied non-invasively with dynamic contrast-enhanced (DCE-)MRI in animals and patients. In recent years, several DCE-MRI studies have been published evaluating the association between microvasculature and other key features of plaque vulnerability (e.g., inflammation and intraplaque hemorrhage), as well as the effects of novel therapeutic interventions. The present paper reviews this literature, focusing on DCE-MRI methods of acquisition and analysis of atherosclerotic plaques, the current state and future potential of DCE-MRI in the evaluation of plaque microvasculature in clinical and preclinical settings.
Collapse
Affiliation(s)
- Raf H. M. van Hoof
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - Sylvia Heeneman
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
- />Department of Pathology, Maastricht University Medical Center (MUMC), P.O. Box 5800, Maastricht, 6202 AZ The Netherlands
| | - Joachim E. Wildberger
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - M. Eline Kooi
- />Department of Radiology, Maastricht University Medical Center (MUMC), P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- />CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| |
Collapse
|
7
|
Qiao H, He Q, Chen Z, Xu D, Huang L, He L, Jiang L, Li R, Luo J, Yuan C, Zhao X. Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. J Magn Reson Imaging 2016; 44:1270-1276. [PMID: 27079951 DOI: 10.1002/jmri.25264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the usefulness of quantitative characteristics of morphology and signal intensity of arterial wall measured by 3D multicontrast magnetic resonance vessel wall imaging (MRVWI) in identification of carotid early atherosclerosis (CEAS). MATERIALS AND METHODS In all, 61 older subjects (mean age 71.8 ± 5.6 years old; 25 males) without cardiovascular symptoms in the last 6 months were recruited. The carotid arteries without advanced plaque features on 3.0T MRI were included for analysis. Ultrasound imaging was used as a reference to identify CEAS. The morphological parameters including lumen area (LA), wall area (WA), wall thickness (WT), and normalized wall index (NWI = WA/[WA+LA] × 100%) and the signal intensity on 3.0T MR T2 -weighted images (T2 SI) of the carotid arterial wall were measured. Three regression models were built to identify CEAS with the following parameters: Model 1 with both morphological and T2 SI parameters; Model 2 with T2 SI parameters; and Model 3 with morphological parameters. All models were adjusted for age and sex. Area under the curve (AUC) was calculated to validate models. RESULTS Of the 86 carotid arteries without advanced plaques, 47 (54.7%) were found to have early plaques determined by ultrasound. Among three regression models, Model 1 showed the highest AUC values in identifying CEAS (left: AUC = 0.856, P < 0.001; right: AUC = 0.867, P < 0.001), followed by Model 2 (left: AUC = 0.843, P < 0.001; right: AUC = 0.798, P = 0.001), and Model 3 (left: AUC = 0.790, P = 0.002; right: AUC = 0.806, P < 0.001). CONCLUSION The combination of morphology and normalized T2 SI of arterial wall measured by MRVWI is more effective than each characteristic alone in identification of CEAS. J. Magn. Reson. Imaging 2016;44:1270-1276.
Collapse
Affiliation(s)
- Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Qiong He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Zhensen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Li Jiang
- Philips Healthcare (Suzhou), Jiangsu, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jianwen Luo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
8
|
Calcagno C, Lobatto ME, Dyvorne H, Robson PM, Millon A, Senders ML, Lairez O, Ramachandran S, Coolen BF, Black A, Mulder WJM, Fayad ZA. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR IN BIOMEDICINE 2015; 28:1304-14. [PMID: 26332103 PMCID: PMC4573915 DOI: 10.1002/nbm.3369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 05/28/2023]
Abstract
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.
Collapse
Affiliation(s)
- Claudia Calcagno
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark E Lobatto
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Hadrien Dyvorne
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip M Robson
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antoine Millon
- Department of Vascular Surgery, University Hospital of Lyon, Lyon, France
| | - Max L Senders
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Lairez
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiac Imaging Center, University Hospital of Rangueil, Toulouse, France
| | - Sarayu Ramachandran
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram F Coolen
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Alexandra Black
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Zahi A Fayad
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|