1
|
Nosrati R, Calakli F, Afacan O, Pelkola K, Nichols R, Connaughton P, Bedoya MA, Tsai A, Bixby S, Warfield SK. Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI. Invest Radiol 2024:00004424-990000000-00221. [PMID: 38857418 DOI: 10.1097/rli.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI. MATERIALS AND METHODS Twenty-two pediatric patients (4.2 ± 2.3 years) underwent abdominal MRI on a 3 T scanner with routine abdominal protocol and with a 3-point Dixon radial-VIBE (volumetric interpolated breath-hold examination) sequence. Field maps were calculated using 3D graph-cut optimization followed by fat and water calculation from k-space data by iteratively solving an optimization problem. A 6-peak fat model was used to model chemical shifts in k-space. Residual respiratory motion was corrected through soft-gating by weighting each projection based on the estimated respiratory motion from the center of the k-space. Reconstructed images were reviewed by 3 pediatric radiologists on a PACS (picture archiving and communication systems) workstation. Subjective image quality and water/fat swapping artifact were scored by each pediatric radiologist using a 5-point Likert scale. The VoL (variance of Laplacian) of the reconstructed images was used to objectively quantify image sharpness. RESULTS Based on the overall Likert scores, the images generated using the described method were significantly superior to those reconstructed by the conventional 2-point Dixon technique (P < 0.05). Water/fat swapping artifact was observed in 14 of 22 patients using 2-point Dixon, and this artifact was not present when using the proposed method. Image sharpness was significantly improved using the proposed framework. CONCLUSIONS In smaller patients, a high-quality water/fat separation with sharp visualization of fine details is critical for diagnostic accuracy. High-resolution golden angle radial-VIBE 3-point Dixon acquisition with 6-peak fat model and soft-gated motion correction offers improved image quality at the expense of an additional ~1-minute acquisition time. Thus, this technique offers the potential to replace the conventional 2-point Dixon technique.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- From the Department of Radiology, Boston Children's Hospital, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.); and Harvard Medical School, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Monteuuis D, Bouzerar R, Dantoing C, Poujol J, Bohbot Y, Renard C. Prospective Comparison of Free-Breathing Accelerated Cine Deep Learning Reconstruction Versus Standard Breath-Hold Cardiac MRI Sequences in Patients With Ischemic Heart Disease. AJR Am J Roentgenol 2024; 222:e2330272. [PMID: 38323784 DOI: 10.2214/ajr.23.30272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND. Cine cardiac MRI sequences require repeated breath-holds, which can be difficult for patients with ischemic heart disease (IHD). OBJECTIVE. The purpose of the study was to compare a free-breathing accelerated cine sequence using deep learning (DL) reconstruction and a standard breath-hold cine sequence in terms of image quality and left ventricular (LV) measurements in patients with IHD undergoing cardiac MRI. METHODS. This prospective study included patients undergoing 1.5- or 3-T cardiac MRI for evaluation of IHD between March 15, 2023, and June 21, 2023. Examinations included an investigational free-breathing cine short-axis sequence with DL reconstruction (hereafter, cine-DL sequence). Two radiologists (reader 1 [R1] and reader 2 [R2]), in blinded fashion, independently assessed left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and subjective image quality for the cine-DL sequence and a standard breath-hold balanced SSFP sequence; R1 assessed artifacts. RESULTS. The analysis included 26 patients (mean age, 64.3 ± 11.7 [SD] years; 14 men, 12 women). Acquisition was shorter for the cine-DL sequence than the standard sequence (mean ± SD, 0.6 ± 0.1 vs 2.4 ± 0.6 minutes; p < .001). The cine-DL sequence, in comparison with the standard sequence, showed no significant difference for LVEF for R1 (mean ± SD, 51.7% ± 14.3% vs 51.3% ± 14.7%; p = .56) or R2 (53.4% ± 14.9% vs 52.8% ± 14.6%; p = .53); significantly greater LVEDV for R2 (mean ± SD, 171.9 ± 51.9 vs 160.6 ± 49.4 mL; p = .01) but not R1 (171.8 ± 53.7 vs 165.5 ± 52.4 mL; p = .16); and no significant difference in LVESV for R1 (mean ± SD, 88.1 ± 49.3 vs 86.0 ± 50.5 mL; p = .45) or R2 (85.2 ± 48.1 vs 81.3 ± 48.2 mL; p = .10). The mean bias between the cine-DL and standard sequences by LV measurement was as follows: LVEF, 0.4% for R1 and 0.7% for R2; LVEDV, 6.3 mL for R1 and 11.3 mL for R2; and LVESV, 2.1 mL for R1 and 3.9 mL for R2. Subjective image quality was better for cine-DL sequence than the standard sequence for R1 (mean ± SD, 2.3 ± 0.5 vs 1.9 ± 0.8; p = .02) and R2 (2.2 ± 0.4 vs 1.9 ± 0.7; p = .02). R1 reported no significant difference between the cine-DL and standard sequences for off-resonance artifacts (3.8% vs 23.1% examinations; p = .10) and parallel imaging artifacts (3.8% vs 19.2%; p = .19); blurring artifacts were more frequent for the cine-DL sequence than the standard sequence (42.3% vs 7.7% examinations; p = .008). CONCLUSION. A free-breathing cine-DL sequence, in comparison with a standard breath-hold cine sequence, showed very small bias for LVEF measurements and better subjective quality. The cine-DL sequence yielded greater LV volumes than the standard sequence. CLINICAL IMPACT. A free-breathing cine-DL sequence may yield reliable LVEF measurements in patients with IHD unable to repeatedly breath-hold. TRIAL REGISTRATION. ClinicalTrials.gov NCT05105984.
Collapse
Affiliation(s)
- David Monteuuis
- Department of Radiology, Amiens University Hospital, 1 Rond-Point du Professeur Christian Cabrol, Amiens 80054 Cedex 01, France
| | - Roger Bouzerar
- Biophysics and Image Processing Unit, Amiens University Hospital, Amiens, France
| | - Charlotte Dantoing
- Department of Radiology, Amiens University Hospital, 1 Rond-Point du Professeur Christian Cabrol, Amiens 80054 Cedex 01, France
| | | | - Yohann Bohbot
- Department of Cardiology, Amiens University Hospital, Amiens, France
| | - Cédric Renard
- Department of Radiology, Amiens University Hospital, 1 Rond-Point du Professeur Christian Cabrol, Amiens 80054 Cedex 01, France
| |
Collapse
|
3
|
Spogis J, Katemann C, Zhang S, Esser M, Tsiflikas I, Schäfer J. Feasibility and Implementation of a 4D Free-Breathing Variable Density Stack-of-Stars Functional Magnetic Resonance Urography in Young Children Without Sedation. Invest Radiol 2024; 59:271-277. [PMID: 37707861 DOI: 10.1097/rli.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Functional magnetic resonance urography (MRU) is well established in the diagnostic workup of urinary tract anomalies in children, providing comprehensive morphological and functional information. However, dynamic contrast-enhanced images acquired in the standard Cartesian k-space manner are prone to motion artifacts. A newly introduced 4D high spatiotemporal resolution dynamic contrast-enhanced magnetic resonance imaging based on variable density elliptical centric radial stack-of-stars sharing technique has shown improved image quality regarding motions under free breathing. OBJECTIVE The aims of this study were to implement this 4D free-breathing sequence for functional MRU and to compare its image quality and analyzability with standard breath-hold Cartesian MRU. MATERIALS AND METHODS We retrospectively evaluated all functional 4D MRU performed without general anesthesia between September 2021 and December 2022 and compared them with matched pairs (age, affected kidney, diagnosis) of standard Cartesian MRU between 2016 and 2022. Image analysis was performed by 2 radiologists independently regarding the following criteria using a 4-point Likert scale, with 4 being the best: overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of aorta, kidneys, and ureters. We also measured vertical kidney motion due to respiratory motion and compared the variance for each kidney using F test. Finally, both radiologists calculated the volume, split renal volume (vDRF), split renal Patlak function (pDRF), and split renal function considering the volume and Patlak function (vpDRF) for each kidney. Values were compared using Bland-Altman plots and F test. RESULTS Forty children (20 for 4D free-breathing and standard breath-hold, respectively) were enrolled. Ten children of each group were examined using feed-and-sleep technique (median age: 4D, 3.3 months; standard, 4.2 months), 10 were awake (median age: 4D, 8.9 years; standard, 8.6 years). Overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of the aorta, kidneys, and ureters were rated significantly better for 4D free-breathing compared with standard breath-hold by both readers ( P ranging from <0.0001 to 0.005). Vertical kidney motion was significantly reduced in 4D free-breathing for the right and the left kidney (both P < 0.001). There was a significantly smaller variance concerning the differences between the 2 readers for vpDRF in 4D MRU ( P = 0.0003). In contrast, no significant difference could be demonstrated for volume ( P = 0.05), vDRF ( P = 0.93), and pDRF ( P = 0.14). CONCLUSIONS We demonstrated the feasibility of applying a 4D free-breathing variable density stack-of-stars imaging for functional MRU in young pediatric patients with improved image quality, fewer motion artifacts, and improved functional analyzability.
Collapse
Affiliation(s)
- Jakob Spogis
- From the Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (J.S., M.E., I.T., J.S.); and Philips GmbH Market DACH, Hamburg, Germany (C.K., S.Z.)
| | | | | | | | | | | |
Collapse
|
4
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
6
|
Ghodrati V, Bydder M, Bedayat A, Prosper A, Yoshida T, Nguyen KL, Finn JP, Hu P. Temporally aware volumetric generative adversarial network-based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI. Magn Reson Med 2021; 86:2666-2683. [PMID: 34254363 PMCID: PMC10172149 DOI: 10.1002/mrm.28912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Develop a novel three-dimensional (3D) generative adversarial network (GAN)-based technique for simultaneous image reconstruction and respiratory motion compensation of 4D MRI. Our goal was to enable high-acceleration factors 10.7X-15.8X, while maintaining robust and diagnostic image quality superior to state-of-the-art self-gating (SG) compressed sensing wavelet (CS-WV) reconstruction at lower acceleration factors 3.5X-7.9X. METHODS Our GAN was trained based on pixel-wise content loss functions, adversarial loss function, and a novel data-driven temporal aware loss function to maintain anatomical accuracy and temporal coherence. Besides image reconstruction, our network also performs respiratory motion compensation for free-breathing scans. A novel progressive growing-based strategy was adapted to make the training process possible for the proposed GAN-based structure. The proposed method was developed and thoroughly evaluated qualitatively and quantitatively based on 3D cardiac cine data from 42 patients. RESULTS Our proposed method achieved significantly better scores in general image quality and image artifacts at 10.7X-15.8X acceleration than the SG CS-WV approach at 3.5X-7.9X acceleration (4.53 ± 0.540 vs. 3.13 ± 0.681 for general image quality, 4.12 ± 0.429 vs. 2.97 ± 0.434 for image artifacts, P < .05 for both). No spurious anatomical structures were observed in our images. The proposed method enabled similar cardiac-function quantification as conventional SG CS-WV. The proposed method achieved faster central processing unit-based image reconstruction (6 s/cardiac phase) than the SG CS-WV (312 s/cardiac phase). CONCLUSION The proposed method showed promising potential for high-resolution (1 mm3 ) free-breathing 4D MR data acquisition with simultaneous respiratory motion compensation and fast reconstruction time.
Collapse
Affiliation(s)
- Vahid Ghodrati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Mark Bydder
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Arash Bedayat
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ashley Prosper
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Fok WYR, Chan YCI, Romanowicz J, Jang J, Powell AJ, Moghari MH. Accelerated free-breathing 3D whole-heart magnetic resonance angiography with a radial phyllotaxis trajectory, compressed sensing, and curvelet transform. Magn Reson Imaging 2021; 83:57-67. [PMID: 34147592 DOI: 10.1016/j.mri.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To develop and validate an accelerated free-breathing 3D whole-heart magnetic resonance angiography (MRA) technique using a radial k-space trajectory with compressed sensing and curvelet transform. METHOD A 3D radial phyllotaxis trajectory was implemented to traverse the centerline of k-space immediately before the segmented whole-heart MRA data acquisition at each cardiac cycle. The k-space centerlines were used to correct the respiratory-induced heart motion in the acquired MRA data. The corrected MRA data were then reconstructed by a novel compressed sensing algorithm using curvelets as the sparsifying domain. The proposed 3D whole-heart MRA technique (radial CS curvelet) was then prospectively validated against compressed sensing with a conventional wavelet transform (radial CS wavelet) and a standard Cartesian acquisition in terms of scan time and border sharpness. RESULTS Fifteen patients (females 10, median age 34-year-old) underwent 3D whole-heart MRA imaging using a standard Cartesian trajectory and our proposed radial phyllotaxis trajectory. Scan time for radial phyllotaxis was significantly shorter than Cartesian (4.88 ± 0.86 min. vs. 6.84 ± 1.79 min., P-value = 0.004). Radial CS curvelet border sharpness was slightly lower than Cartesian and, for the majority of vessels, was significantly better than radial CS wavelet (P-value < 0.050). CONCLUSION The proposed technique of 3D whole-heart MRA acquisition with a radial CS curvelet has a shorter scan time and slightly lower vessel sharpness compared to the Cartesian acquisition with radial profile ordering, and has slightly better sharpness than radial CS wavelet. Future work on this technique includes additional clinical trials and extending this technique to 3D cine imaging.
Collapse
Affiliation(s)
- Wai Yan Ryana Fok
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Technical University of Munich, Garching, Germany.
| | - Yan Chi Ivy Chan
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Technical University of Munich, Garching, Germany
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jihye Jang
- Philips Healthcare, Gainesville, FL, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Kim D, Heo YJ, Jeong HW, Baek JW, Shin GW, Jin SC, Baek HJ, Ryu KH, Kim KS, Kim I. Compressed sensing time-of-flight magnetic resonance angiography with high spatial resolution for evaluating intracranial aneurysms: comparison with digital subtraction angiography. Neuroradiol J 2021; 34:213-221. [PMID: 33455533 DOI: 10.1177/1971400920988099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Compressed sensing is used for accelerated acquisitions with incoherently under-sampled k-space data, and intracranial time-of-flight magnetic resonance angiography is suitable for compressed sensing. Compressed sensing time-of-flight is beneficial in decreasing acquisition time and increasing spatial resolution while maintaining acquisition time. In this retrospective study, we aimed to evaluate the image quality and diagnostic performance of compressed sensing time-of-flight with high spatial resolution and compare with parallel imaging time-of-flight using digital subtraction angiography as a reference. MATERIAL AND METHODS In total, 39 patients with 46 intracranial aneurysms underwent parallel imaging and compressed sensing time-of-flight in the same imaging session and digital subtraction angiography before or after magnetic resonance angiography. The overall image quality, artefacts and diagnostic confidence were assessed by two observers. The contrast ratio, maximal aneurysm diameters and diagnostic performance were evaluated. RESULTS Compressed sensing time-of-flight showed significantly better overall image quality, degree of artefacts and diagnostic confidence in both observers, with better inter-observer agreement. The contrast ratio was significantly higher for compressed sensing time-of-flight than for parallel imaging time-of-flight in both observers (source images, P < 0.001; maximum intensity projection images, P < 0.05 for both observers); however, the measured maximal diameters of aneurysms were not significantly different. Compressed sensing time-of-flight showed higher sensitivity, specificity, accuracy and positive and negative predictive values for detecting aneurysms than parallel imaging time-of-flight in both observers, with better inter-observer agreement. Compressed sensing time-of-flight was preferred over parallel imaging time-of-flight by both observers; however, parallel imaging time-of-flight was preferred in cases of giant and large aneurysms. CONCLUSIONS Compressed sensing-time-of-flight provides better image quality and diagnostic performance than parallel imaging time-of-flight. However, neuroradiologists should be aware of under-sampling artefacts caused by compressed sensing.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiology, Inje University Busan Paik Hospital, Republic of Korea
| | - Young Jin Heo
- Department of Radiology, Inje University Busan Paik Hospital, Republic of Korea
| | - Hae Woong Jeong
- Department of Radiology, Inje University Busan Paik Hospital, Republic of Korea
| | - Jin Wook Baek
- Department of Radiology, Inje University Busan Paik Hospital, Republic of Korea
| | - Gi Won Shin
- Department of Radiology, Inje University Busan Paik Hospital, Republic of Korea
| | - Sung-Chul Jin
- Department of Neurosurgery, Inje University Haeundae Paik Hospital, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Republic of Korea
| | - Kyeong Hwa Ryu
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Republic of Korea
| | | | | |
Collapse
|
9
|
Bae K, Jeon KN, Hwang MJ, Lee JS, Park SE, Kim HC, Menini A. Respiratory motion-resolved four-dimensional zero echo time (4D ZTE) lung MRI using retrospective soft gating: feasibility and image quality compared with 3D ZTE. Eur Radiol 2020; 30:5130-5138. [PMID: 32333146 DOI: 10.1007/s00330-020-06890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate the feasibility and image quality of respiratory motion-resolved 4D zero echo time (ZTE) lung MRI compared with that of 3D ZTE. METHODS Our institutional review board approved this study. Twenty-one patients underwent lung scans using 3D ZTE and 4D ZTE sequences via prospective and retrospective soft gating techniques, respectively. Image qualities of 3D ZTE and 4D ZTE at end-expiration were compared through objective and subjective assessments. The quality of end-expiratory images of 3D ZTE and 4D ZTE of the two groups with different lung functions was also compared. RESULTS Images were successfully acquired in all patients without any adverse events. Signal-to-noise ratios (SNRs) of lung parenchyma and thoracic structures were significantly (all p < 0.001) higher in 4D ZTE. Contrast-to-noise ratios (CNRs) of peripheral bronchi, peripheral pulmonary vessels, and nodules or masses were significantly (all p < 0.001) higher in 4D ZTE. The subjective image quality assessed by two independent radiologists showed that intrapulmonary structures, noise and artifacts, and overall acceptability were superior in 4D ZTE (all p < 0.001). Image qualities of groups with normal and low lung functions differed significantly (all p < 0.05) in 3D ZTE, but not in 4D ZTE. The mean acquisition time was 136 s (127-143 s) in 3D ZTE and 325 s (308-352 s) in 4D ZTE. CONCLUSIONS Respiratory motion-resolved 4D ZTE lung imaging was feasible as part of routine chest MRI. The 4D ZTE provides motion-robust lung parenchymal images with better SNR and CNR than the 3D ZTE, regardless of patients' lung function. KEY POINTS • ZTE MRI captures rapidly decaying transverse magnetization in the lung parenchyma. • 4D ZTE provides motion-robust lung parenchymal images with better SNR and CNR compared with 3D ZTE. • Compared with 3D ZTE, the image quality of 4D ZTE lung MRI was affected less by patients' lung function and respiratory performance.
Collapse
Affiliation(s)
- Kyungsoo Bae
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea.,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea
| | - Kyung Nyeo Jeon
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea. .,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea.
| | | | - Joon Sung Lee
- General Electric (GE) Healthcare Korea, Seoul, South Korea
| | - Sung Eun Park
- Department of Radiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, South Korea.,Department of Radiology, Gyeongsang National University Changwon Hospital, 555 Samjeongja-dong, Seongsan-gu, Changwon, South Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Anne Menini
- Applied Science Lab, GE Healthcare, Menlo Park, CA, USA
| |
Collapse
|
10
|
Ong F, Zhu X, Cheng JY, Johnson KM, Larson PEZ, Vasanawala SS, Lustig M. Extreme MRI: Large-scale volumetric dynamic imaging from continuous non-gated acquisitions. Magn Reson Med 2020; 84:1763-1780. [PMID: 32270547 DOI: 10.1002/mrm.28235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop a framework to reconstruct large-scale volumetric dynamic MRI from rapid continuous and non-gated acquisitions, with applications to pulmonary and dynamic contrast-enhanced (DCE) imaging. THEORY AND METHODS The problem considered here requires recovering 100 gigabytes of dynamic volumetric image data from a few gigabytes of k-space data, acquired continuously over several minutes. This reconstruction is vastly under-determined, heavily stressing computing resources as well as memory management and storage. To overcome these challenges, we leverage intrinsic three-dimensional (3D) trajectories, such as 3D radial and 3D cones, with ordering that incoherently cover time and k-space over the entire acquisition. We then propose two innovations: (a) A compressed representation using multiscale low-rank matrix factorization that constrains the reconstruction problem, and reduces its memory footprint. (b) Stochastic optimization to reduce computation, improve memory locality, and minimize communications between threads and processors. We demonstrate the feasibility of the proposed method on DCE imaging acquired with a golden-angle ordered 3D cones trajectory and pulmonary imaging acquired with a bit-reversed ordered 3D radial trajectory. We compare it with "soft-gated" dynamic reconstruction for DCE and respiratory-resolved reconstruction for pulmonary imaging. RESULTS The proposed technique shows transient dynamics that are not seen in gating-based methods. When applied to datasets with irregular, or non-repetitive motions, the proposed method displays sharper image features. CONCLUSIONS We demonstrated a method that can reconstruct massive 3D dynamic image series in the extreme undersampling and extreme computation setting.
Collapse
Affiliation(s)
- Frank Ong
- Electrical Engineering, Stanford University, Stanford, CA, USA.,Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Xucheng Zhu
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joseph Y Cheng
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kevin M Johnson
- Medical Physics, University of Wisconsin, Madison, WI, USA.,Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Peder E Z Larson
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | - Michael Lustig
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Bustin A, Fuin N, Botnar RM, Prieto C. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Front Cardiovasc Med 2020; 7:17. [PMID: 32158767 PMCID: PMC7051921 DOI: 10.3389/fcvm.2020.00017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is an important tool for the non-invasive assessment of cardiovascular disease. However, CMR suffers from long acquisition times due to the need of obtaining images with high temporal and spatial resolution, different contrasts, and/or whole-heart coverage. In addition, both cardiac and respiratory-induced motion of the heart during the acquisition need to be accounted for, further increasing the scan time. Several undersampling reconstruction techniques have been proposed during the last decades to speed up CMR acquisition. These techniques rely on acquiring less data than needed and estimating the non-acquired data exploiting some sort of prior information. Parallel imaging and compressed sensing undersampling reconstruction techniques have revolutionized the field, enabling 2- to 3-fold scan time accelerations to become standard in clinical practice. Recent scientific advances in CMR reconstruction hinge on the thriving field of artificial intelligence. Machine learning reconstruction approaches have been recently proposed to learn the non-linear optimization process employed in CMR reconstruction. Unlike analytical methods for which the reconstruction problem is explicitly defined into the optimization process, machine learning techniques make use of large data sets to learn the key reconstruction parameters and priors. In particular, deep learning techniques promise to use deep neural networks (DNN) to learn the reconstruction process from existing datasets in advance, providing a fast and efficient reconstruction that can be applied to all newly acquired data. However, before machine learning and DNN can realize their full potentials and enter widespread clinical routine for CMR image reconstruction, there are several technical hurdles that need to be addressed. In this article, we provide an overview of the recent developments in the area of artificial intelligence for CMR image reconstruction. The underlying assumptions of established techniques such as compressed sensing and low-rank reconstruction are briefly summarized, while a greater focus is given to recent advances in dictionary learning and deep learning based CMR reconstruction. In particular, approaches that exploit neural networks as implicit or explicit priors are discussed for 2D dynamic cardiac imaging and 3D whole-heart CMR imaging. Current limitations, challenges, and potential future directions of these techniques are also discussed.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Niccolo Fuin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M. Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Chen L, Zeng X, Ji B, Liu D, Wang J, Zhang J, Feng L. Improving dynamic contrast-enhanced MRI of the lung using motion-weighted sparse reconstruction: Initial experiences in patients. Magn Reson Imaging 2020; 68:36-44. [PMID: 32001328 DOI: 10.1016/j.mri.2020.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the performance of motion-weighted Golden-angle RAdial Sparse Parallel MRI (motion-weighted GRASP) for free-breathing dynamic contrast-enhanced MRI (DCE-MRI) of the lung. METHODS Motion-weighted GRASP incorporates a soft-gating motion compensation algorithm into standard GRASP reconstruction, so that motion-corrupted motion k-space (e.g., k-space acquired in inspiratory phases) contributes less to the final reconstructed images. Lung MR data from 20 patients (mean age = 57.9 ± 13.5) with known pulmonary lesions were retrospectively collected for this study. Each subject underwent a free-breathing DCE-MR scan using a fat-statured T1-weighted stack-of-stars golden-angle radial sequence and a post-contrast breath-hold MR scan using a Cartesian volumetric-interpolated imaging sequence (BH-VIBE). Each radial dataset was reconstructed using GRASP without motion compensation and motion-weighted GRASP. All MR images were visually evaluated by two experienced radiologists blinded to reconstruction and acquisition schemes independently. In addition, the influence of motion-weighted reconstruction on dynamic contrast-enhancement patterns was also investigated. RESULTS For image quality assessment, motion-weighted GRASP received significantly higher visual scores than GRASP (P < 0.05) for overall image quality (3.68 vs. 3.39), lesion conspicuity (3.54 vs. 3.18) and overall artifact level (3.53 vs. 3.15). There was no significant difference (P > 0.05) between the breath-hold BH-VIBE and motion-weighted GRASP images. For assessment of temporal fidelity, motion-weighted GRASP maintained a good agreement with respect to GRASP. CONCLUSION Motion-weighted GRASP achieved better reconstruction performance in free-breathing DCE-MRI of the lung compared to standard GRASP, and it may enable improved assessment of pulmonary lesions.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, PLA 904 Hospital, Wuxi, Jiangsu, China
| | - Xianchun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Bing Ji
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| | - Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
13
|
Albrecht MH, Varga-Szemes A, Schoepf UJ, Nance JW, De Cecco CN, De Santis D, Tesche C, Eid MH, Penmetsa M, Lesslie VW, Piccini D, Goeller M, Wichmann JL, Vogl TJ, Chowdhury SM, Nutting A, Hlavacek AM. Diagnostic Accuracy of Noncontrast Self-navigated Free-breathing MR Angiography versus CT Angiography: A Prospective Study in Pediatric Patients with Suspected Anomalous Coronary Arteries. Acad Radiol 2019; 26:1309-1317. [PMID: 30655052 DOI: 10.1016/j.acra.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate the diagnostic accuracy of a prototype noncontrast, free-breathing, self-navigated 3D (SN3D) MR angiography (MRA) technique for the assessment of coronary artery anatomy in children with known or suspected coronary anomalies, using CT angiography (CTA) as the reference standard. MATERIALS AND METHODS Twenty-one children (15 male, 12.3 ± 2.6 years) were prospectively enrolled between July 2014 and August 2016 in this IRB-approved, HIPAA-compliant study. Patients underwent same-day unenhanced SN3D-MRA and contrast-enhanced CTA. Two observers rated the visualization of coronary artery segments and diagnostic confidence on a 3-point scale and assessed coronary arteries for anomalous origin, as well as interarterial and intramural course. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of SN3D-MRA for the detection of coronary artery abnormalities were calculated. Interobserver agreement was assessed using Intraclass Correlation Coefficients (ICC). RESULTS Fourteen children showed coronary artery abnormalities on CTA. The visualization of coronary segments was rated significantly higher for CTA compared to MRA (p <0.015), except for the left main coronary artery (p = 0.301), with good to excellent interobserver agreement (ICC = 0.62-0.94). Diagnostic confidence was higher for CTA (p = 0.046). Sensitivity, specificity, PPV, and NPV of MRA were 92%, 92%, 96%, and 87% for the detection of coronary artery anomalies, 85%, 85%, 74%, and 92% for high origin, 71%, 92%, 82%, and 87% for interarterial, and 41%, 96%, 87%, and 80% for intramural course. CONCLUSIONS Noncontrast SN3D-MRA is highly accurate for the detection of coronary artery anomalies in pediatric patients while diagnostic confidence and coronary artery visualization remain superior with CTA.
Collapse
|
14
|
Munoz C, Cruz G, Neji R, Botnar RM, Prieto C. Motion corrected water/fat whole-heart coronary MR angiography with 100% respiratory efficiency. Magn Reson Med 2019; 82:732-742. [PMID: 30927310 PMCID: PMC6563440 DOI: 10.1002/mrm.27732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To develop a framework for respiratory motion-corrected 3D whole-heart water/fat coronary MR angiography (CMRA) at 3T with reduced and predictable scan time. METHODS A 3D dual-echo acquisition and respiratory motion-corrected reconstruction framework for water/fat CMRA imaging was developed. The acquisition sequence integrates a 2D dual-echo image navigator (iNAV), enabling 100% respiratory scan efficiency. Respiratory motion estimated from both the 2D iNAVs and the 3D data itself is used to produce nonrigid motion-corrected water/fat CMRA images. A first study to investigate which iNAV (water, fat, in-phase or out-of-phase) provides the best translational motion estimation was performed in 10 healthy subjects. Subsequently, nonrigid motion-corrected water/fat images were compared to a diaphragmatic navigator gated and tracked water/fat CMRA acquisition. Image quality metrics included visible vessel length and vessel sharpness for both the left anterior descending and right coronary arteries. RESULTS Average vessel sharpness achieved with water, fat, in-phase and out-of-phase iNAVs was 33.8%, 29.6%, 32.2%, and 38.5%, respectively. Out-of-phase iNAVs were therefore used for estimating translational respiratory motion for the remainder of the study. No statistically significant differences in vessel length and sharpness (P > 0.01) were observed between the proposed nonrigid motion correction approach and the reference images, although data acquisition was significantly shorter (P < 2.6×10-4 ). Motion correction improved vessel sharpness by 60.4% and vessel length by 47.7%, on average, in water CMRA images in comparison with no motion correction. CONCLUSION The feasibility of a novel motion-corrected water/fat CMRA approach has been demonstrated at 3T, producing images comparable to a reference gated acquisition, but in a shorter and predictable scan time.
Collapse
Affiliation(s)
- Camila Munoz
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Gastão Cruz
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Radhouene Neji
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Siemens Healthcare, MR Research CollaborationsFrimleyUnited Kingdom
| | - Rene M. Botnar
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de ChileEscuela de IngenieríaSantiagoChile
| | - Claudia Prieto
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de ChileEscuela de IngenieríaSantiagoChile
| |
Collapse
|
15
|
Milotta G, Ginami G, Cruz G, Neji R, Prieto C, Botnar RM. Simultaneous 3D whole-heart bright-blood and black blood imaging for cardiovascular anatomy and wall assessment with interleaved T 2 prep-IR. Magn Reson Med 2019; 82:312-325. [PMID: 30896049 DOI: 10.1002/mrm.27734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a motion-corrected 3D flow-insensitive imaging approach interleaved T2 prepared-inversion recovery (iT2 prep-IR) for simultaneous lumen and wall visualization of the great thoracic vessels and cardiac structures. METHODS A 3D flow-insensitive approach for simultaneous cardiovascular lumen and wall visualization (iT2 prep) has been previously proposed. This approach requires subject-dependent weighted subtraction to completely null the arterial blood signal in the black-blood volume. Here, we propose an (T2 prep-IR) approach to improve wall visualization and remove need for weighted subtraction. The proposed sequence is based on the acquisition and direct subtraction of 2 interleaved 3D whole-heart data sets acquired with and without T2 prep-IR preparation. Image navigators are acquired before data acquisition to enable 2D translational and 3D non-rigid motion correction allowing 100% respiratory scan efficiency. The proposed approach was evaluated in 10 healthy subjects and compared with the conventional 2D double inversion recovery (DIR) sequence and the 3D iT2 prep sequence. Additionally, 5 patients with congenital heart disease were acquired to test the clinical feasibility of the proposed approach. RESULTS The proposed iT2 prep-IR sequence showed improved blood nulling compared to both DIR and iT2 prep techniques in terms of SNR (SNRblood = 6.9, 12.2, and 18.2, respectively) and contrast-to-noise-ratio (CNRmyoc-blood = 28.4, 15.4, and 15.3, respectively). No statistical difference was observed between iT2 prep-IR, iT2 prep and DIR atrial and ventricular wall thickness quantification. CONCLUSION The proposed interleaved T2 prep-IR sequence enables the simultaneous lumen and wall visualization of cardiac structures and shows promising results in terms of SNR, CNR, and wall thickness measurement.
Collapse
Affiliation(s)
- Giorgia Milotta
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Tang H, Hu N, Yuan Y, Xia C, Liu X, Zuo P, Stalder AF, Schmidt M, Zhou X, Song B, Sun J. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries. Korean J Radiol 2019; 20:265-274. [PMID: 30672166 PMCID: PMC6342758 DOI: 10.3348/kjr.2017.0634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/18/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To compare the image quality of three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) with sparse undersampling and iterative reconstruction (sparse TOF) with that of conventional TOF MRA. MATERIALS AND METHODS This study included 56 patients who had undergone sparse TOF MRA for intracranial artery evaluation on a 3T MR scanner. Conventional TOF MRA scans were also acquired from 29 patients with matched acquisition times and another 27 patients with matched scanning parameters. The image quality was scored using a five-point scale based on the delineation of arterial vessel segments, artifacts, overall vessel visualization, and overall image quality by two radiologists independently, and the data were analyzed using the non-parametric Wilcoxon signed-rank test. Contrast ratios (CRs) of vessels were compared using the paired t test. Interobserver agreement was calculated using the kappa test. RESULTS Compared with conventional TOF at the same spatial resolution, sparse TOF with an acceleration factor of 3.5 could reduce acquisition time by 40% and showed comparable image quality. In addition, when compared with conventional TOF with the same acquisition time, sparse TOF with an acceleration factor of 5 could also achieve higher spatial resolution, better delineation of vessel segments, fewer artifacts, higher image quality, and a higher CR (p < 0.05). Good-to-excellent interobserver agreement (κ: 0.65-1.00) was obtained between the two radiologists. CONCLUSION Compared with conventional TOF, sparse TOF can achieve equivalent image quality in a reduced duration. Furthermore, using the same acquisition time, sparse TOF could improve the delineation of vessels and decrease image artifacts.
Collapse
Affiliation(s)
- Hehan Tang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiumin Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Panli Zuo
- MR Collaboration NEA, Siemens Healthineers Ltd., Beijing, China
| | | | | | - Xiaoyue Zhou
- MR Collaboration NEA, Siemens Healthineers Ltd., Shanghai, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Ginami G, Lòpez K, Mukherjee RK, Neji R, Munoz C, Roujol S, Mountney P, Razavi R, Botnar RM, Prieto C. Non-contrast enhanced simultaneous 3D whole-heart bright-blood pulmonary veins visualization and black-blood quantification of atrial wall thickness. Magn Reson Med 2019; 81:1066-1079. [PMID: 30230609 PMCID: PMC6492092 DOI: 10.1002/mrm.27472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Pre-interventional assessment of atrial wall thickness (AWT) and of subject-specific variations in the anatomy of the pulmonary veins may affect the success rate of RF ablation procedures for the treatment of atrial fibrillation (AF). This study introduces a novel non-contrast enhanced 3D whole-heart sequence providing simultaneous information on the cardiac anatomy-including both the arterial and the venous system-(bright-blood volume) and AWT (black-blood volume). METHODS The proposed MT-prepared bright-blood and black-blood phase sensitive inversion recovery (PSIR) BOOST framework acquires 2 differently weighted bright-blood volumes in an interleaved fashion. The 2 data sets are then combined in a PSIR-like reconstruction to obtain a complementary black-blood volume for atrial wall visualization. Image-based navigation and non-rigid respiratory motion correction are exploited for 100% scan efficiency and predictable acquisition time. The proposed approach was evaluated in 11 healthy subjects and 4 patients with AF scheduled for RF ablation. RESULTS Improved depiction of the cardiac venous system was obtained in comparison to a T2 -prepared BOOST implementation, and quantified AWT was shown to be in good agreement with previously reported measurements obtained in healthy subjects (right atrium AWT: 2.54 ± 0.87 mm, left atrium AWT: 2.51 ± 0.61 mm). Feasibility for MT-prepared BOOST acquisitions in patients with AF was demonstrated. CONCLUSION The proposed motion-corrected MT-prepared BOOST sequence provides simultaneous non-contrast pulmonary vein depiction as well as black-blood visualization of atrial walls. The proposed sequence has a large spectrum of potential clinical applications and further validation in patients is warranted.
Collapse
Affiliation(s)
- Giulia Ginami
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Karina Lòpez
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens Healthcare LimitedFrimleyUnited Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Peter Mountney
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Medical Imaging TechnologiesSiemens HealthineersPrincetonNew Jersey
| | - Reza Razavi
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
18
|
Technical Feasibility of a Combined Noncontrast Magnetic Resonance Protocol for Preoperative Transcatheter Aortic Valve Replacement Evaluation. J Thorac Imaging 2018; 33:60-67. [PMID: 28549023 DOI: 10.1097/rti.0000000000000278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to prospectively evaluate the technical feasibility of a noncontrast magnetic resonance angiography (MRA) protocol using investigational prototype self-navigated 3D (SN3D) radial whole-heart and quiescent-interval single-shot (QISS) pulse sequences regarding their potential in planning transcatheter aortic valve replacement (TAVR). MATERIALS AND METHODS Five patients (76±7 y) with severe aortic valve stenosis and prior computed tomographic angiography (CTA) for TAVR planning and 10 healthy volunteers (28±6 y) underwent noncontrast MRA on a 1.5 T system. A SN3D whole-heart acquisition was used to assess the aortic root anatomy. Evaluation of the aortoiliac access route was performed with both SN3D and QISS. Measurements were compared among SN3D, QISS, and CTA using a paired t test or 1-way analysis of variance. Image quality ratings and contrast-to-noise ratios (CNR) were analyzed using Mann-Whitney U tests. Interobserver agreement was evaluated using Cohen's κ. RESULTS The combined SN3D and QISS protocol provided a 10.1±1.6-minute acquisition time. TAVR-relevant evaluation was technically feasible in healthy volunteers. All measurements showed good agreement with CTA in patients (all P>0.098). SN3D and QISS produced similar image quality both in volunteers and in patients (all P>0.122). There was no difference in qualitative ratings between MRA and CTA (all P>0.119). Interobserver agreement was good for MRA (κ=0.71 to 0.76) and excellent for CTA (κ=0.82 to 0.84). Thoracic SN3D provided a similar CNR compared with CTA (P=0.117). CTA yielded higher CNR in the abdominopelvic region compared with QISS (P=0.006). CONCLUSIONS A noncontrast MRA protocol combining SN3D and QISS acquisitions for the assessment of cardiac and vascular access route anatomy has technical feasibility for TAVR planning.
Collapse
|
19
|
Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, Neji R, Botnar RM, Prieto C. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med 2018; 81:102-115. [PMID: 30058252 PMCID: PMC6617822 DOI: 10.1002/mrm.27354] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
Purpose To enable whole‐heart 3D coronary magnetic resonance angiography (CMRA) with isotropic sub‐millimeter resolution in a clinically feasible scan time by combining respiratory motion correction with highly accelerated variable density sampling in concert with a novel 3D patch‐based undersampled reconstruction (3D‐PROST). Methods An undersampled variable density spiral‐like Cartesian trajectory was combined with 2D image‐based navigators to achieve 100% respiratory efficiency and predictable scan time. 3D‐PROST reconstruction integrates structural information from 3D patch neighborhoods through sparse representation, thereby exploiting the redundancy of the 3D anatomy of the coronary arteries in an efficient low‐rank formulation. The proposed framework was evaluated in a static resolution phantom and in 10 healthy subjects with isotropic resolutions of 1.2 mm3 and 0.9 mm3 and undersampling factors of ×5 and ×9. 3D‐PROST was compared against fully sampled (1.2 mm3 only), conventional parallel imaging, and compressed sensing reconstructions. Results Phantom and in vivo (1.2 mm3) reconstructions were in excellent agreement with the reference fully sampled image. In vivo average acquisition times (min:s) were 7:57 ± 1:18 (×5) and 4:35 ± 0:44 (×9) for 0.9 mm3 resolution. Sub‐millimeter 3D‐PROST resulted in excellent depiction of the left and right coronary arteries including small branch vessels, leading to further improvements in vessel sharpness and visible vessel length in comparison with conventional reconstruction techniques. Image quality rated by 2 experts demonstrated that 3D‐PROST provides good image quality and is robust even at high acceleration factors. Conclusion The proposed approach enables free‐breathing whole‐heart 3D CMRA with isotropic sub‐millimeter resolution in <5 min and achieves improved coronary artery visualization in a short and predictable scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhou Z, Han F, Yoshida T, Nguyen KL, Finn JP, Hu P. Improved 4D cardiac functional assessment for pediatric patients using motion-weighted image reconstruction. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:747-756. [PMID: 30043124 DOI: 10.1007/s10334-018-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Our aim was to develop and evaluate a motion-weighted reconstruction technique for improved cardiac function assessment in 4D magnetic resonance imaging (MRI). MATERIALS AND METHODS A flat-topped, two-sided Gaussian kernel was used to weigh k-space data in each target cardiac phase and adjacent two temporal phases during the proposed phase-by-phase reconstruction algorithm. The proposed method (Strategy 3) was used to reconstruct 18 cardiac phases based on data acquired using a previously proposed technique [4D multiphase steady-state imaging with contrast enhancement (MUSIC) technique and its self-gated extension using rotating Cartesian k-space (ROCK-MUSIC) from 12 pediatric patients. As a comparison, the same data set was reconstructed into nine phases using a phase-by-phase method (Strategy 1), 18 phases using view sharing (Strategy 4), and 18 phases using a temporal regularized method (Strategy 2). Regional image sharpness and left ventricle volumetric measurements were used to compare the four reconstructions quantitatively. RESULTS Strategies 1 and 4 generated significantly sharper images of static structures (P ≤ 0.018) than Strategies 2 and 3 but significantly more blurry (P ≤ 0.021) images of the heart. Left ventricular volumetric measurements from the nine-phase reconstruction (Strategy 1) correlated moderately (r < 0.8) with the 2D cine, whereas the remaining three techniques had a higher correlation (r > 0.9). The computational burden of Strategy 2 was six times that of Strategy 3. CONCLUSION The proposed method of motion-weighted reconstruction improves temporal resolution in 4D cardiac imaging with a clinically practical workflow.
Collapse
Affiliation(s)
- Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Takegawa Yoshida
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Coristine AJ, Chaptinel J, Ginami G, Bonanno G, Coppo S, van Heeswijk RB, Piccini D, Stuber M. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T 2 -prep for free-breathing, whole-heart coronary MRA. Magn Reson Med 2018; 79:1293-1303. [PMID: 28568961 PMCID: PMC5931377 DOI: 10.1002/mrm.26764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE In respiratory self-navigation (SN), signal from static structures, such as the chest wall, may complicate motion detection or introduce post-correction artefacts. Suppressing signal from superfluous tissues may therefore improve image quality. We thus test the hypothesis that SN whole-heart coronary magnetic resonance angiography (MRA) will benefit from an outer-volume suppressing 2D-T2 -Prep and present both phantom and in vivo results. METHODS A 2D-T2 -Prep and a conventional T2 -Prep were used prior to a free-breathing 3D-radial SN sequence. Both techniques were compared by imaging a home-built moving cardiac phantom and by performing coronary MRA in nine healthy volunteers. Reconstructions were performed using both a reference-based and a reference-independent approach to motion tracking, along with several coil combinations. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared, along with vessel sharpness (VS). RESULTS In phantoms, using the 2D-T2 -Prep increased SNR by 16% to 53% and mean VS by 8%; improved motion tracking precision was also achieved. In volunteers, SNR increased by an average of 29% to 33% in the blood pool and by 15% to 25% in the myocardium, depending on the choice of reconstruction coils and algorithm, and VS increased by 34%. CONCLUSION A 2D-T2 -Prep significantly improves image quality in both phantoms and volunteers when performing SN coronary MRA. Magn Reson Med 79:1293-1303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- A. J. Coristine
- Department of BioMedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - J. Chaptinel
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Ginami
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Bonanno
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - S. Coppo
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - R. B. van Heeswijk
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - D. Piccini
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - M. Stuber
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| |
Collapse
|
22
|
Correia T, Cruz G, Schneider T, Botnar RM, Prieto C. Technical note: Accelerated nonrigid motion-compensated isotropic 3D coronary MR angiography. Med Phys 2017; 45:214-222. [PMID: 29131353 PMCID: PMC5814733 DOI: 10.1002/mp.12663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. METHODS Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled acquisition was performed using a variable-density Cartesian trajectory with radial order (VD-CAPR). Motion correction was performed in two steps: beat-to-beat 2D translational correction with motion estimated from interleaved image navigators, and bin-to-bin 3D nonrigid correction with motion estimated from respiratory-resolved images reconstructed from undersampled 3D CMRA data using CS. Nonrigid motion fields were incorporated into an undersampled motion-compensated reconstruction, which combines CS with the general matrix description formalism. The proposed approach was tested on 10 healthy subjects and compared against a conventional twofold accelerated 5-mm navigator-gated and tracked acquisition. RESULTS The proposed method achieves isotropic 1.2-mm Cartesian whole-heart CMRA in 5 min ± 1 min (~8× acceleration). The proposed approach provides good-quality images of the left and right coronary arteries, comparable to those of a twofold accelerated navigator-gated and tracked acquisition, but scan time was up to about four times faster. For both coronaries, no significant differences (P > 0.05) in vessel sharpness and length were found between the proposed method and reference scan. CONCLUSION The feasibility of a highly efficient motion-compensated reconstruction framework for accelerated 3D CMRA has been demonstrated in healthy subjects. Further investigation is required to assess the clinical value of the method.
Collapse
Affiliation(s)
- Teresa Correia
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Gastão Cruz
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - René M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
23
|
Moghari MH, Barthur A, Amaral ME, Geva T, Powell AJ. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation. Magn Reson Med 2017; 80:181-189. [PMID: 29222852 DOI: 10.1002/mrm.27021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop and validate a new prospective respiratory motion compensation algorithm for free-breathing whole-heart 3D cine steady-state free precession (SSFP) imaging. METHODS In a 3D cine SSFP sequence, 4 excitations per cardiac cycle are re-purposed to prospectively track heart position. Specifically, their 1D image is reconstructed and routed into the scanner's standard diaphragmatic navigator processing system. If all 4 signals are in end-expiration, cine image data from the entire cardiac cycle is accepted for image reconstruction. Prospective validation was carried out in patients (N = 17) by comparing in each a conventional breath-hold 2D cine ventricular short-axis stack and a free-breathing whole-heart 3D cine data set. RESULTS All 3D cine SSFP acquisitions were successful and the mean scan time was 5.9 ± 2.7 min. Left and right ventricular end-diastolic, end-systolic, and stroke volumes by 3D cine SSFP were all larger than those from 2D cine SSFP. This bias was < 6% except for right ventricular end-systolic volume that was 12%. The 3D cine images had a lower ventricular blood-to-myocardium contrast ratio, contrast-to-noise ratio, mass, and subjective quality score. CONCLUSION The novel prospective respiratory motion compensation method for 3D cine SSFP imaging was robust and efficient and yielded slightly larger ventricular volumes and lower mass compared to breath-hold 2D cine imaging. Magn Reson Med 80:181-189, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashita Barthur
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maria E Amaral
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Jiang W, Ong F, Johnson KM, Nagle SK, Hope TA, Lustig M, Larson PEZ. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn Reson Med 2017; 79:2954-2967. [PMID: 29023975 DOI: 10.1002/mrm.26958] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/16/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. METHODS Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. RESULTS Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. CONCLUSION An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Wenwen Jiang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Frank Ong
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Scott K Nagle
- Department of Medical Physics, University of Wisconsin, Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Michael Lustig
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Peder E Z Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
25
|
Han F, Zhou Z, Cao M, Yang Y, Sheng K, Hu P. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med Phys 2017; 44:1359-1368. [PMID: 28133752 DOI: 10.1002/mp.12139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. METHODS The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. RESULTS The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. CONCLUSION The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA.,Department of Bioengineering, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Yingli Yang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, 200 UCLA Medical Plaza Suite B265, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA.,Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine, University of California, 300 UCLA Medical Plaza Suite B119, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Toupin S, Bour P, Lepetit-Coiffé M, Ozenne V, Denis de Senneville B, Schneider R, Vaussy A, Chaumeil A, Cochet H, Sacher F, Jaïs P, Quesson B. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo. J Cardiovasc Magn Reson 2017; 19:14. [PMID: 28143574 PMCID: PMC5286737 DOI: 10.1186/s12968-017-0323-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical treatment of cardiac arrhythmia by radiofrequency ablation (RFA) currently lacks quantitative and precise visualization of lesion formation in the myocardium during the procedure. This study aims at evaluating thermal dose (TD) imaging obtained from real-time magnetic resonance (MR) thermometry on the heart as a relevant indicator of the thermal lesion extent. METHODS MR temperature mapping based on the Proton Resonance Frequency Shift (PRFS) method was performed at 1.5 T on the heart, with 4 to 5 slices acquired per heartbeat. Respiratory motion was compensated using navigator-based slice tracking. Residual in-plane motion and related magnetic susceptibility artifacts were corrected online. The standard deviation of temperature was measured on healthy volunteers (N = 5) in both ventricles. On animals, the MR-compatible catheter was positioned and visualized in the left ventricle (LV) using a bSSFP pulse sequence with active catheter tracking. Twelve MR-guided RFA were performed on three sheep in vivo at various locations in left ventricle (LV). The dimensions of the thermal lesions measured on thermal dose images, on 3D T1-weighted (T1-w) images acquired immediately after the ablation and at gross pathology were correlated. RESULTS MR thermometry uncertainty was 1.5 °C on average over more than 96% of the pixels covering the left and right ventricles, on each volunteer. On animals, catheter repositioning in the LV with active slice tracking was successfully performed and each ablation could be monitored in real-time by MR thermometry and thermal dosimetry. Thermal lesion dimensions on TD maps were found to be highly correlated with those observed on post-ablation T1-w images (R = 0.87) that also correlated (R = 0.89) with measurements at gross pathology. CONCLUSIONS Quantitative TD mapping from real-time rapid CMR thermometry during catheter-based RFA is feasible. It provides a direct assessment of the lesion extent in the myocardium with precision in the range of one millimeter. Real-time MR thermometry and thermal dosimetry may improve safety and efficacy of the RFA procedure by offering a reliable indicator of therapy outcome during the procedure.
Collapse
Affiliation(s)
- Solenn Toupin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Siemens Healthineers France, F-93210 Saint-Denis, France
| | - Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Image Guided Therapy, F-33600 Pessac, France
| | | | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
| | | | | | - Alexis Vaussy
- Siemens Healthineers France, F-93210 Saint-Denis, France
| | - Arnaud Chaumeil
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), F-33600 Pessac, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), F-33600 Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), F-33600 Pessac, France
| | - Pierre Jaïs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), F-33600 Pessac, France
| | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, F-33000 Bordeaux, France
| |
Collapse
|
27
|
|
28
|
Usman M, Ruijsink B, Nazir MS, Cruz G, Prieto C. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory. Magn Reson Imaging 2016; 38:129-137. [PMID: 28034638 PMCID: PMC5375620 DOI: 10.1016/j.mri.2016.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/22/2023]
Abstract
Purpose To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. Material and methods 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4–5 min and 4D whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. Results For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. Conclusion The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5 min free breathing acquisition. A novel self-gated 3D Cartesian acquisition is proposed for free breathing whole-heart cardiac MRI The proposed framework has efficient k-space sampling, better eddy current performance and high computational efficiency The Proposed method is able to achieve high spatio-temporal resolution 3D cardiac CINE The proposed method only requires four to five minute free breathing scan
Collapse
Affiliation(s)
- M Usman
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Department of Computer Science, University College London, London, UK.
| | - B Ruijsink
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - M S Nazir
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - G Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - C Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
29
|
Respiratory optimized data selection for more resilient self-navigated whole-heart coronary MR angiography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:215-225. [DOI: 10.1007/s10334-016-0598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
|
30
|
Han F, Zhou Z, Han E, Gao Y, Nguyen KL, Finn JP, Hu P. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease. Magn Reson Med 2016; 78:472-483. [PMID: 27529745 DOI: 10.1002/mrm.26376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. METHODS The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. RESULTS All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P < 0.05). There was a strong trend toward superior image scores for ROCK-MUSIC in the other anatomic locations. CONCLUSION ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Eric Han
- Harvard Westlake School, Los Angeles, California, USA
| | - Yu Gao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Cruz G, Atkinson D, Henningsson M, Botnar RM, Prieto C. Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med 2016; 77:1894-1908. [PMID: 27221073 PMCID: PMC5412916 DOI: 10.1002/mrm.26274] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022]
Abstract
Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Collapse
Affiliation(s)
- Gastão Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Henningsson
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Claudia Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
32
|
Luo J, Addy NO, Ingle RR, Baron CA, Cheng JY, Hu BS, Nishimura DG. Nonrigid Motion Correction With 3D Image-Based Navigators for Coronary MR Angiography. Magn Reson Med 2016; 77:1884-1893. [PMID: 27174673 DOI: 10.1002/mrm.26273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a retrospective nonrigid motion-correction method based on 3D image-based navigators (iNAVs) for free-breathing whole-heart coronary magnetic resonance angiography (MRA). METHODS The proposed method detects global rigid-body motion and localized nonrigid motion from 3D iNAVs and compensates them with an autofocusing algorithm. To model the global motion, 3D rotation and translation are estimated from the 3D iNAVs. Two sets of localized nonrigid motions are obtained from deformation fields between 3D iNAVs and reconstructed binned images, respectively. A bank of motion-corrected images is generated and the final image is assembled pixel-by-pixel by selecting the best focused pixel from this bank. In vivo studies with six healthy volunteers were conducted to compare the performance of the proposed method with 3D translational motion correction and no correction. RESULTS In vivo studies showed that compared to no correction, 3D translational motion correction and the proposed method increased the vessel sharpness by 13% ± 13% and 19% ± 16%, respectively. Out of 90 vessel segments, 75 segments showed improvement with the proposed method compared to 3D translational correction. CONCLUSION We have developed a nonrigid motion-correction method based on 3D iNAVs and an autofocusing algorithm that improves the vessel sharpness of free-breathing whole-heart coronary MRA. Magn Reson Med 77:1884-1893, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jieying Luo
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Nii Okai Addy
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - R Reeve Ingle
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Corey A Baron
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Joseph Y Cheng
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| | - Bob S Hu
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA.,Palo Alto Medical Foundation, Palo Alto, California, USA
| | - Dwight G Nishimura
- Department of Electrical Engineering, Magnetic Resonance Systems Research Laboratory, Stanford University, Stanford, California, USA
| |
Collapse
|
33
|
Cardiovascular Imaging: The Past and the Future, Perspectives in Computed Tomography and Magnetic Resonance Imaging. Invest Radiol 2016; 50:557-70. [PMID: 25985464 DOI: 10.1097/rli.0000000000000164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Today's noninvasive imaging of the cardiovascular system has revolutionized the approach to various diseases and has substantially affected prognostic information. Cardiovascular magnetic resonance (MR) and computed tomographic (CT) imaging are at center stage of these approaches, although 5 decades ago, these technologies were unheard of. Both modalities had their inception in the 1970s with a primary focus on noncardiovascular applications. The technical development of the various decades, however, substantially pushed the envelope for cardiovascular MR and CT applications. Within the past 10-15 years, MR and CT technologies have pushed each other in cardiac applications; and without the "rival" modality, neither one would likely not have reached its potential today. This view on the history of MR and CT in the field of cardiovascular applications provides insight into the story of success of applications that once have been ideas only but are at prime time today.
Collapse
|
34
|
Cruz G, Atkinson D, Buerger C, Schaeffter T, Prieto C. Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn Reson Med 2016; 75:1484-98. [PMID: 25996443 PMCID: PMC4979665 DOI: 10.1002/mrm.25708] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Develop a nonrigid motion corrected reconstruction for highly accelerated free-breathing three-dimensional (3D) abdominal images without external sensors or additional scans. METHODS The proposed method accelerates the acquisition by undersampling and performs motion correction directly in the reconstruction using a general matrix description of the acquisition. Data are acquired using a self-gated 3D golden radial phase encoding trajectory, enabling a two stage reconstruction to estimate and then correct motion of the same data. In the first stage total variation regularized iterative SENSE is used to reconstruct highly undersampled respiratory resolved images. A nonrigid registration of these images is performed to estimate the complex motion in the abdomen. In the second stage, the estimated motion fields are incorporated in a general matrix reconstruction, which uses total variation regularization and incorporates k-space data from multiple respiratory positions. The proposed approach was tested on nine healthy volunteers and compared against a standard gated reconstruction using measures of liver sharpness, gradient entropy, visual assessment of image sharpness and overall image quality by two experts. RESULTS The proposed method achieves similar quality to the gated reconstruction with nonsignificant differences for liver sharpness (1.18 and 1.00, respectively), gradient entropy (1.00 and 1.00), visual score of image sharpness (2.22 and 2.44), and visual rank of image quality (3.33 and 3.39). An average reduction of the acquisition time from 102 s to 39 s could be achieved with the proposed method. CONCLUSION In vivo results demonstrate the feasibility of the proposed method showing similar image quality to the standard gated reconstruction while using data corresponding to a significantly reduced acquisition time. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Gastao Cruz
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - David Atkinson
- Centre for Medical ImagingUniversity College LondonLondonUnited Kingdom
| | | | - Tobias Schaeffter
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
| | - Claudia Prieto
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|
35
|
Piccini D, Feng L, Bonanno G, Coppo S, Yerly J, Lim RP, Schwitter J, Sodickson DK, Otazo R, Stuber M. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 2016; 77:1473-1484. [PMID: 27052418 DOI: 10.1002/mrm.26221] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. METHODS Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. RESULTS Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. CONCLUSION XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Li Feng
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gabriele Bonanno
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Simone Coppo
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Ruth P Lim
- Department of Radiology, Austin Health and The University of Melbourne, Melbourne, Victoria, Australia
| | - Juerg Schwitter
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Matthias Stuber
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
36
|
Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 2015; 45:1635-43. [PMID: 26040509 PMCID: PMC4580561 DOI: 10.1007/s00247-015-3384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. OBJECTIVE To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children. MATERIALS AND METHODS With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. RESULTS Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. CONCLUSION Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.
Collapse
|
37
|
Piccini D, Bonanno G, Ginami G, Littmann A, Zenge MO, Stuber M. Is there an optimal respiratory reference position for self-navigated whole-heart coronary MR angiography? J Magn Reson Imaging 2015; 43:426-33. [PMID: 26174582 DOI: 10.1002/jmri.24992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/18/2015] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To test the direct influence of the reference respiratory position on image quality for self-navigated whole-heart coronary MRI. METHODS Self-navigated whole-heart coronary MRI was performed in 11 healthy adult subjects. Respiratory motion was compensated for by using three different respiratory reference positions of the heart: end-inspiratory, end-expiratory, and the mean of the entire respiratory excursion. All datasets were reconstructed without motion compensation for comparison. Image quality was assessed in all reconstructions using signal-to-noise ratio (SNR) and contrst-to-noise ratio (CNR) measurements, as well as percentage vessel sharpness and visible length of the coronary arteries. RESULTS While SNR and CNR remained close to constant in all reconstructions, a clear and significant improvement in vessel sharpness was identified in all motion corrected datasets with respect to their uncorrected counterpart (e.g., percentage sharpness of the proximal right coronary artery (RCA): 61.6 ± 8.2% for end-inspiration, 64.1 ± 10.7% for end-expiration, and 63.3 ± 7.0% for the mean respiratory position versus 55.0 ± 10.4 for the uncorrected datasets; P < 0.05). Among all motion corrected reconstructions, the use of an end-expiratory reference position most consistently provided the highest image quality. In particular, some of the improvements in vessel sharpness and length measured for end-expiration were statistically significant with respect to the reconstructions performed at end-inspiration (e.g., percentage sharpness of the proximal left anterior descending coronary: 58.2 ± 7.4% versus 55.8 ± 8.4%; P < 0.05; and visible length of the RCA: 125.7 ± 25.9 mm versus 114.4 ± 27.4 mm; P < 0.05). CONCLUSION The use of end-expiration as a reference position for respiratory motion correction in free-breathing self-navigated whole heart coronary MRA significantly improves image quality. J
Collapse
Affiliation(s)
- Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Gabriele Bonanno
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Giulia Ginami
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | - Matthias Stuber
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
38
|
Cheng JY, Zhang T, Ruangwattanapaisarn N, Alley MT, Uecker M, Pauly JM, Lustig M, Vasanawala SS. Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 2014; 42:407-20. [PMID: 25329325 DOI: 10.1002/jmri.24785] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/06/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop and assess motion correction techniques for high-resolution pediatric abdominal volumetric magnetic resonance images acquired free-breathing with high scan efficiency. MATERIALS AND METHODS First, variable-density sampling and radial-like phase-encode ordering were incorporated into the 3D Cartesian acquisition. Second, intrinsic multichannel butterfly navigators were used to measure respiratory motion. Lastly, these estimates are applied for both motion-weighted data-consistency in a compressed sensing and parallel imaging reconstruction, and for nonrigid motion correction using a localized autofocusing framework. With Institutional Review Board approval and informed consent/assent, studies were performed on 22 consecutive pediatric patients. Two radiologists independently scored the images for overall image quality, degree of motion artifacts, and sharpness of hepatic vessels and the diaphragm. The results were assessed using paired Wilcoxon test and weighted kappa coefficient for interobserver agreements. RESULTS The complete procedure yielded significantly better overall image quality (mean score of 4.7 out of 5) when compared to using no correction (mean score of 3.4, P < 0.05) and to using motion-weighted accelerated imaging (mean score of 3.9, P < 0.05). With an average scan time of 28 seconds, the proposed method resulted in comparable image quality to conventional prospective respiratory-triggered acquisitions with an average scan time of 91 seconds (mean score of 4.5). CONCLUSION With the proposed methods, diagnosable high-resolution abdominal volumetric scans can be obtained from free-breathing data acquisitions.
Collapse
Affiliation(s)
- Joseph Y Cheng
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Marcus T Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Martin Uecker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - John M Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | | |
Collapse
|