1
|
Liu X, Lai YC, Cui D, Kung SC, Park M, Zoltan L, Larson PE, Wang ZJ. Initial Experience of Metabolic Imaging with Hyperpolarized [1- 13C]pyruvate MRI in Kidney Transplant Patients. ARXIV 2024:arXiv:2409.06664v1. [PMID: 39314508 PMCID: PMC11419194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Kidney transplant is the treatment of choice for patients with end-stage renal disease. Early detection of allograft injury is important to delay or prevent irreversible damage. PURPOSE To investigate the feasibility of hyperpolarized (HP) [1-13C]pyruvate MRI for assessing kidney allograft metabolism. STUDY TYPE Prospective. SUBJECTS 6 participants (mean age, 45.2 ± 12.4 years, 2 females) scheduled for kidney allograft biopsy and 5 patients (mean age, 59.6 ± 10.4 years, 2 females) with renal cell carcinoma (RCC). FIELD STRENGTH/SEQUENCE 3 Tesla, T2-weighted fast spin echo, multi-echo gradient echo, single shot diffusion-weighted echo-planar imaging, and time-resolved HP 13C metabolite-selective imaging. ASSESSMENT Five of the six kidney allograft participants underwent biopsy after MRI. Estimated glomerular filtration rate (eGFR) and urine protein-to-creatine ratio (uPCR) were collected within 4 weeks of MRI. Kidney metabolism was quantified from HP [1-13C]pyruvate MRI using the lactate-to-pyruvate ratio in allograft kidneys and non-tumor bearing kidneys from RCC patients. STATISTICAL TESTS Descriptive statistics (mean ± standard deviation). RESULTS Biopsy was performed a mean of 9 days (range 5-19 days) after HP [1-13C]pyruvate MRI. Three biopsies were normal, one showed low-grade fibrosis and one showed moderate microvascular inflammation. All had stable functioning allografts with eGFR > 60 mL/min/1.73 m2 and normal uPCR. One participant who did not undergo biopsy had reduced eGFR of 49 mL/min/1.73 m2 and elevated uPCR. The mean lactate-to-pyruvate ratio was 0.373 in participants with normal findings (n = 3) and 0.552 in participants with abnormal findings (n = 2). The lactate-to-pyruvate ratio was highest (0.847) in the participant with reduced eGFR and elevated uPRC. Native non-tumor bearing kidneys had a mean lactate-to-pyruvate ratio of 0.309. DATA CONCLUSION Stable allografts with normal findings at biopsy showed lactate-to-pyruvate ratios similar to native non-tumor bearing kidneys, whereas allografts with abnormal findings showed higher lactate-to-pyruvate ratios.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ying-Chieh Lai
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shiang-Cheng Kung
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Meyeon Park
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Laszik Zoltan
- Department of Pathology, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Liu X, Lai YC, Cui D, Kung SC, Park M, Laszik Z, Larson PEZ, Wang ZJ. Initial Experience of Metabolic Imaging With Hyperpolarized [1- 13C]pyruvate MRI in Kidney Transplant Patients. J Magn Reson Imaging 2024. [PMID: 39239784 DOI: 10.1002/jmri.29580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Kidney transplant is the treatment of choice for patients with end-stage renal disease. Early detection of allograft injury is important to delay or prevent irreversible damage. PURPOSE To investigate the feasibility of hyperpolarized (HP) [1-13C]pyruvate MRI for assessing kidney allograft metabolism. STUDY TYPE Prospective. SUBJECTS Six participants (mean age, 45.2 ± 12.4 years, two females) scheduled for kidney allograft biopsy and five patients (mean age, 59.6 ± 10.4 years, two females) with renal cell carcinoma (RCC). FIELD STRENGTH/SEQUENCE Three Tesla, T2-weighted fast spin echo, multi-echo gradient echo, single shot diffusion-weighted echo-planar imaging, and time-resolved HP 13C metabolite-selective imaging. ASSESSMENT Five of the six kidney allograft participants underwent biopsy after MRI. Estimated glomerular filtration rate (eGFR) and urine protein-to-creatine ratio (uPCR) were collected within 4 weeks of MRI. Kidney metabolism was quantified from HP [1-13C]pyruvate MRI using the lactate-to-pyruvate ratio in allograft kidneys and non-tumor bearing kidneys from RCC patients. STATISTICAL TESTS Descriptive statistics (mean ± SD). RESULTS Biopsy was performed a mean of 9 days (range 5-19 days) after HP [1-13C]pyruvate MRI. Three biopsies were normal, one showed low-grade fibrosis and one showed moderate microvascular inflammation. All had stable functioning allografts with eGFR >60 mL/min/1.73 m2 and normal uPCR. One participant who did not undergo biopsy had reduced eGFR of 49 mL/min/1.73 m2 and elevated uPCR. The mean lactate-to-pyruvate ratio was 0.373 in participants with normal findings (N = 3) and 0.552 in participants with abnormal findings (N = 2). The lactate-to-pyruvate ratio was highest (0.847) in the participant with reduced eGFR and elevated uPRC. Native non-tumor bearing kidneys had a mean lactate-to-pyruvate ratio of 0.309. DATA CONCLUSION Stable allografts with normal findings at biopsy showed lactate-to-pyruvate ratios similar to native non-tumor bearing kidneys, whereas allografts with abnormal findings showed higher lactate-to-pyruvate ratios. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ying-Chieh Lai
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shiang-Cheng Kung
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Meyeon Park
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Zoltan Laszik
- Department of Pathology, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Liu X, Cui D, Xu D, Bok R, Wang ZJ, Vigneron DB, Larson PEZ, Gordon JW. Dynamic T 2 * relaxometry of hyperpolarized [1- 13 C]pyruvate MRI in the human brain and kidneys. Magn Reson Med 2024; 91:1030-1042. [PMID: 38013217 PMCID: PMC10872504 DOI: 10.1002/mrm.29942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to quantifyT 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS DynamicT 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamicT 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients.T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimatedT 2 * $$ {T}_2^{\ast } $$ correction. RESULTS TheT 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas theT 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. TheT 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and theT 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). TheT 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION Multi-echo dynamic imaging can quantifyT 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in theT 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Di Cui
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert Bok
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, USA
| | - Peder E Z Larson
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, USA
| | - Jeremy W Gordon
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Liu X, Tang S, Cui D, Bok RA, Chen HY, Gordon JW, Wang ZJ, Larson PEZ. A metabolite specific 3D stack-of-spirals bSSFP sequence for improved bicarbonate imaging in hyperpolarized [1- 13C]Pyruvate MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107518. [PMID: 37402333 PMCID: PMC10498937 DOI: 10.1016/j.jmr.2023.107518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
13C-bicarbonate is a crucial measure of pyruvate oxidation and TCA cycle flux, but is challenging to measure due to its relatively low concentration and thus will greatly benefit from improved signal-to-noise ratio (SNR). To address this, we developed and investigated the feasibility of a 3D stack-of-spirals metabolite-specific balanced steady-state free precession (MS-bSSFP) sequence for improving the SNR and spatial resolution of dynamic 13C-bicarbonate imaging in hyperpolarized [1-13C]pyruvate studies. The bicarbonate MS-bSSFP sequence was evaluated by simulations, phantoms studies, preclinical studies on five rats, brain studies on two healthy volunteers and renal study on one renal cell carcinoma patient. The simulations and phantom results showed that the bicarbonate-specific pulse had minimal perturbation of other metabolites (<1%). In the animal studies, the MS-bSSFP sequence provided an approximately 2.6-3 × improvement in 13C-bicarbonate SNR compared to a metabolite-specific gradient echo (MS-GRE) sequence without altering the bicarbonate or pyruvate kinetics, and the shorter spiral readout in the MS-bSSFP approach reduced blurring. Using the SNR ratio between MS-bSSFP and MS-GRE, the T2 values of bicarbonate and lactate in the rat kidneys were estimated as 0.5 s and 1.1 s, respectively. The in-vivo feasibility of bicarbonate MS-bSSFP sequence was demonstrated in two human brain studies and one renal study. These studies demonstrate the potential of the sequence for in-vivo applications, laying the foundation for future studies to observe this relatively low concentration metabolite with high-quality images and improve measurements of pyruvate oxidation.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
6
|
Liu X, Tang S, Mu C, Qin H, Cu D, Lai YC, Riselli AM, Delos Santos R, Carvajal L, Gebrezgiabhier D, Bok RA, Chen HY, Flavell RR, Gordon JW, Vigneron DB, Kurhanewicz J, Larson PE. Development of specialized magnetic resonance acquisition techniques for human hyperpolarized [ 13 C, 15 N 2 ]urea + [1- 13 C]pyruvate simultaneous perfusion and metabolic imaging. Magn Reson Med 2022; 88:1039-1054. [PMID: 35526263 PMCID: PMC9810116 DOI: 10.1002/mrm.29266] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE This study aimed to develop and demonstrate the in vivo feasibility of a 3D stack-of-spiral balanced steady-state free precession(3D-bSSFP) urea sequence, interleaved with a metabolite-specific gradient echo (GRE) sequence for pyruvate and metabolic products, for improving the SNR and spatial resolution of the first hyperpolarized 13 C-MRI human study with injection of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea. METHODS A metabolite-specific bSSFP urea imaging sequence was designed using a urea-specific excitation pulse, optimized TR, and 3D stack-of-spiral readouts. Simulations and phantom studies were performed to validate the spectral response of the sequence. The image quality of urea data acquired by the 3D-bSSFP sequence and the 2D-GRE sequence was evaluated with 2 identical injections of co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea formula in a rat. Subsequently, the feasibility of the acquisition strategy was validated in a prostate cancer patient. RESULTS Simulations and phantom studies demonstrated that 3D-bSSFP sequence achieved urea-only excitation, while minimally perturbing other metabolites (<1%). An animal study demonstrated that compared to GRE, bSSFP sequence provided an ∼2.5-fold improvement in SNR without perturbing urea or pyruvate kinetics, and bSSFP approach with a shorter spiral readout reduced blurring artifacts caused by J-coupling of [13 C,15 N2 ]urea. The human study demonstrated the in vivo feasibility and data quality of the acquisition strategy. CONCLUSION The 3D-bSSFP urea sequence with a stack-of-spiral acquisition demonstrated significantly increased SNR and image quality for [13 C,15 N2 ]urea in co-hyperpolarized [1-13 C]pyruvate and [13 C,15 N2 ]urea imaging studies. This work lays the foundation for future human studies to achieve high-quality and high-SNR metabolism and perfusion images.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- HeartVista Inc., Los Altos, California, USA
| | - Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Di Cu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ying-Chieh Lai
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Andrew M. Riselli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Daniel Gebrezgiabhier
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Laustsen C, von Morze C, Reed GD. Hyperpolarized Carbon ( 13C) MRI of the Kidney: Experimental Protocol. Methods Mol Biol 2021; 2216:481-493. [PMID: 33476019 PMCID: PMC9703202 DOI: 10.1007/978-1-0716-0978-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Alterations in renal metabolism are associated with both physiological and pathophysiologic events. The existing noninvasive analytic tools including medical imaging have limited capability for investigating these processes, which potentially limits current understanding of kidney disease and the precision of its clinical diagnosis. Hyperpolarized 13C MRI is a new medical imaging modality that can capture changes in the metabolic processing of certain rapidly metabolized substrates, as well as changes in kidney function. Here we describe experimental protocols for renal metabolic [1-13C]pyruvate and functional 13C-urea imaging step-by-step. These methods and protocols are useful for investigating renal blood flow and function as well as the renal metabolic status of rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concept and data analysis.
Collapse
Affiliation(s)
- Christoffer Laustsen
- The MR Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
8
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
9
|
Farkash G, Markovic S, Novakovic M, Frydman L. Enhanced hyperpolarized chemical shift imaging based on a priori segmented information. Magn Reson Med 2019; 81:3080-3093. [PMID: 30652358 DOI: 10.1002/mrm.27631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/29/2018] [Accepted: 11/17/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of the study was to develop an approach for improving the resolution and sensitivity of hyperpolarized 13 C MRSI based on a priori anatomical information derived from featured, water-based 1 H images. METHODS A reconstruction algorithm exploiting 1 H MRI for the redefinition of the 13 C MRSI anatomies was developed, based on a modification of the spectroscopy with linear algebraic modeling (SLAM) principle. To enhance 13 C spatial resolution and reduce spillover effects without compromising SNR, this model was extended by endowing it with a search allowing smooth variations in the 13 C MR intensity within the targeted regions of interest. RESULTS Experiments were performed in vitro on enzymatic solutions and in vivo on rodents, based on the administration of 13 C-enriched hyperpolarized pyruvate and urea. The spectral images reconstructed for these substrates and from metabolic products based on predefined 1 H anatomical compartments using the new algorithm, compared favorably with those arising from conventional Fourier-based analyses of the same data. The new approach also delivered reliable kinetic 13 C results, for the kind of processes and timescales usually targeted by hyperpolarized MRSI. CONCLUSION A simple, flexible strategy is introduced to boost the sensitivity and resolution provided by hyperpolarized 13 C MRSI, based on readily available 1 H MR information.
Collapse
Affiliation(s)
- Gil Farkash
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|