1
|
Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four-dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR IN BIOMEDICINE 2024; 37:e5082. [PMID: 38124351 PMCID: PMC11162953 DOI: 10.1002/nbm.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI). While two-dimensional (2D) PC MRI is routinely utilized in research and clinical settings to assess flow dynamics through a single imaging slice, comprehensive neurofluid dynamic assessment can be limited or impractical. Recently, four-dimensional (4D) flow MRI (or time-resolved three-dimensional PC with three-directional velocity encoding) has emerged as a powerful extension of 2D PC, allowing for large volumetric coverage of fluid velocities at high spatiotemporal resolution within clinically reasonable scan times. Yet, most 4D flow studies have focused on blood flow imaging. Characterizing CSF flow dynamics with 4D flow (i.e., 4D CSF flow) is of high interest to understand normal brain and spine physiology, but also to study neurological disorders such as dysfunctional brain metabolite waste clearance, where CSF dynamics appear to play an important role. However, 4D CSF flow imaging is challenged by the long T1 time of CSF and slower velocities compared with blood flow, which can result in longer scan times from low flip angles and extended motion-sensitive gradients, hindering clinical adoption. In this work, we review the state of 4D CSF flow MRI including challenges, novel solutions from current research and ongoing needs, examples of clinical and research applications, and discuss an outlook on the future of 4D CSF flow.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tomas Vikner
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
2
|
Özdemir S, Ilicak E, Zapp J, Schad LR, Zöllner FG. Feasibility of undersampled spiral trajectories in MREPT for fast conductivity imaging. Magn Reson Med 2024; 91:1567-1575. [PMID: 38044757 DOI: 10.1002/mrm.29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE To investigate spiral-based imaging including trajectories with undersampling as a fast and robust alternative for phase-based magnetic resonance electrical properties tomography (MREPT) techniques. METHODS Spiral trajectories with various undersampling ratios were prescribed to acquire images from an experimental phantom and a healthy volunteer at 3T. The non-Cartesian acquisitions were reconstructed using SPIRiT, and conductivity maps were derived using phase-based cr-MREPT. The resulting maps were compared between different sampling trajectories. Additionally, a conductivity map was obtained using a Cartesian balanced SSFP acquisition from the volunteer to comparatively demonstrate the robustness of the proposed method. RESULTS The phantom and volunteer results illustrate the benefits of the spiral acquisitions. Specifically, undersampled spiral acquisitions display improved robustness against field inhomogeneity artifacts and lowered SD values with shortened readout times. Furthermore, average of conductivity values measured for the cerebrospinal fluid with the spiral acquisitions were 1.703 S/m, indicating a close agreement with the theoretical values of 1.794 S/m. CONCLUSION A spiral-based acquisition framework for conductivity imaging with and without undersampling is presented. Overall, spiral-based acquisitions improved robustness against field inhomogeneity artifacts, while achieving whole head coverage with multiple averages in less than a minute.
Collapse
Affiliation(s)
- Safa Özdemir
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Efe Ilicak
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jascha Zapp
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Ma P, Zhu L, Wen R, Lv F, Li Y, Li X, Zhang Z. Revolutionizing vascular imaging: trends and future directions of 4D flow MRI based on a 20-year bibliometric analysis. Quant Imaging Med Surg 2024; 14:1873-1890. [PMID: 38415143 PMCID: PMC10895087 DOI: 10.21037/qims-23-1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/08/2023] [Indexed: 02/29/2024]
Abstract
Background Four-dimensional flow magnetic resonance imaging (4D flow MRI) is a promising new technology with potential clinical value in hemodynamic quantification. Although an increasing number of articles on 4D flow MRI have been published over the past decades, few studies have statistically analyzed these published articles. In this study, we aimed to perform a systematic and comprehensive bibliometric analysis of 4D flow MRI to explore the current hotspots and potential future directions. Methods The Web of Science Core Collection searched for literature on 4D flow MRI between 2003 and 2022. CiteSpace was utilized to analyze the literature data, including co-citation, cooperative network, cluster, and burst keyword analysis. Results A total of 1,069 articles were extracted for this study. The main research hotspots included the following: quantification and visualization of blood flow in different clinical settings, with keywords such as "cerebral aneurysm", "heart", "great vessel", "tetralogy of Fallot", "portal hypertension", and "stiffness"; optimization of image acquisition schemes, such as "resolution" and "reconstruction"; measurement and analysis of flow components and patterns, as indicated by keywords "pattern", "KE", "WSS", and "fluid dynamics". In addition, international consensus for metrics derived from 4D flow MRI and multimodality imaging may also be the future research direction. Conclusions The global domain of 4D flow MRI has grown over the last 2 decades. In the future, 4D flow MRI will evolve towards becoming a relatively short scan duration with adequate spatiotemporal resolution, expansion into the diagnosis and treatment of vascular disease in other related organs, and a shift in focus from vascular structure to function. In addition, artificial intelligence (AI) will assist in the clinical promotion and application of 4D flow MRI.
Collapse
Affiliation(s)
- Peisong Ma
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lishu Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ru Wen
- Department of Radiology, Guizhou Provincial People Hospital, Guiyang, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyou Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Kim D, Jen ML, Eisenmenger LB, Johnson KM. Accelerated 4D-flow MRI with 3-point encoding enabled by machine learning. Magn Reson Med 2023; 89:800-811. [PMID: 36198027 PMCID: PMC9712238 DOI: 10.1002/mrm.29469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE To investigate the acceleration of 4D-flow MRI using a convolutional neural network (CNN) that produces three directional velocities from three flow encodings, without requiring a fourth reference scan measuring background phase. METHODS A fully 3D CNN using a U-net architecture was trained in a block-wise fashion to take complex images from three flow encodings and to produce three real-valued images for each velocity component. Using neurovascular 4D-flow scans (n = 144), the CNN was trained to predict velocities computed from four flow encodings by standard reconstruction including correction for residual background phase offsets. Methods to optimize loss functions were investigated, including magnitude, complex difference, and uniform velocity weightings. Subsequently, 3-point encoding was evaluated using cross validation of pixelwise correlation, flow measurements in major arteries, and in experiments with data at differing acceleration rates than the training data. RESULTS The CNN-produced 3-point velocities showed excellent agreements with the 4-point velocities, both qualitatively in velocity images, in flow rate measures, and quantitatively in regression analysis (slope = 0.96, R2 = 0.992). Optimizing the training to focus on vessel velocities rather than the global velocity error and improved the correlation of velocity within vessels themselves. The lowest error was observed when the loss function used uniform velocity weighting, in which the magnitude-weighted inverse of the velocity frequency uniformly distributed weighting across all velocity ranges. When applied to highly accelerated data, the 3-point network maintained a high correlation with ground truth data and demonstrated a denoising effect. CONCLUSION The 4D-flow MRI can be accelerated using machine learning requiring only three flow encodings to produce three-directional velocity maps with small errors.
Collapse
Affiliation(s)
- Dahan Kim
- Department of Physics, University of Wisconsin, Madison, Wisconsin, USA,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mu-Lan Jen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura B. Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kevin M. Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Assadi H, Uthayachandran B, Li R, Wardley J, Nyi TH, Grafton-Clarke C, Swift AJ, Solana AB, Aben JP, Thampi K, Hewson D, Sawh C, Greenwood R, Hughes M, Kasmai B, Zhong L, Flather M, Vassiliou VS, Garg P. Kat-ARC accelerated 4D flow CMR: clinical validation for transvalvular flow and peak velocity assessment. Eur Radiol Exp 2022; 6:46. [PMID: 36131185 PMCID: PMC9492816 DOI: 10.1186/s41747-022-00299-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/24/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To validate the k-adaptive-t autocalibrating reconstruction for Cartesian sampling (kat-ARC), an exclusive sparse reconstruction technique for four-dimensional (4D) flow cardiac magnetic resonance (CMR) using conservation of mass principle applied to transvalvular flow. METHODS This observational retrospective study (2020/21-075) was approved by the local ethics committee at the University of East Anglia. Consent was waived. Thirty-five patients who had a clinical CMR scan were included. CMR protocol included cine and 4D flow using Kat-ARC acceleration factor 6. No respiratory navigation was applied. For validation, the agreement between mitral net flow (MNF) and the aortic net flow (ANF) was investigated. Additionally, we checked the agreement between peak aortic valve velocity derived by 4D flow and that derived by continuous-wave Doppler echocardiography in 20 patients. RESULTS The median age of our patient population was 63 years (interquartile range [IQR] 54-73), and 18/35 (51%) were male. Seventeen (49%) patients had mitral regurgitation, and seven (20%) patients had aortic regurgitation. Mean acquisition time was 8 ± 4 min. MNF and ANF were comparable: 60 mL (51-78) versus 63 mL (57-77), p = 0.310). There was an association between MNF and ANF (rho = 0.58, p < 0.001). Peak aortic valve velocity by Doppler and 4D flow were comparable (1.40 m/s, [1.30-1.75] versus 1.46 m/s [1.25-2.11], p = 0.602) and also correlated with each other (rho = 0.77, p < 0.001). CONCLUSIONS Kat-ARC accelerated 4D flow CMR quantified transvalvular flow in accordance with the conservation of mass principle and is primed for clinical translation.
Collapse
Affiliation(s)
- Hosamadin Assadi
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bhalraam Uthayachandran
- grid.8241.f0000 0004 0397 2876Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Rui Li
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - James Wardley
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Tha H. Nyi
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Ciaran Grafton-Clarke
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Andrew J. Swift
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | | | | - Kurian Thampi
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - David Hewson
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Chris Sawh
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Richard Greenwood
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Marina Hughes
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bahman Kasmai
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Liang Zhong
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, 5 Hospital Drive, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Marcus Flather
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Vassilios S. Vassiliou
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Pankaj Garg
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK ,grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
6
|
Evaluation of axial gradient Echo spiral MRI of the spine at 1.5 T. Magn Reson Imaging 2022; 89:24-32. [DOI: 10.1016/j.mri.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
|
7
|
Liu CY. Editorial for "Whole-Heart 4D Flow MRI for Evaluation of Normal and Regurgitant Valvular Flow: A Quantitative Comparison Between Pseudo-Spiral Sampling and EPI Readout". J Magn Reson Imaging 2021; 55:1131-1132. [PMID: 34510636 DOI: 10.1002/jmri.27919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chia-Ying Liu
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-shi, Tochigi, 324-8550, Japan
| |
Collapse
|
8
|
Geiger J, Callaghan FM, Burkhardt BEU, Valsangiacomo Buechel ER, Kellenberger CJ. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 2021; 51:1503-1517. [PMID: 33313980 PMCID: PMC8266722 DOI: 10.1007/s00247-020-04885-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT. In recent years, four-dimensional (4-D) flow MRI has emerged as an additional MR technique for retrospective assessment and visualisation of blood flow within the heart and any vessel of interest within the acquired three-dimensional (3-D) volume. Its application in young children requires special adaptations for the smaller vessel size and faster heart rate compared to adolescents or adults. In this article, we provide an overview of 4-D flow MRI in various types of complex CHD in neonates and infants to demonstrate its potential indications and beneficial application for optimised individual cardiovascular assessment. We focus on its application in clinical routine cardiovascular workup and, in addition, show some examples with pathologies other than CHD to highlight that 4-D flow MRI yields new insights in disease understanding and therapy planning. We shortly review the essentials of 4-D flow data acquisition, pre- and post-processing techniques in neonates, infants and young children. Finally, we conclude with some details on accuracy, limitations and pitfalls of the technique.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr 75, 8032, Zürich, Switzerland. .,Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Fraser M. Callaghan
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Center for MR research, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Barbara E. U. Burkhardt
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela R. Valsangiacomo Buechel
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christian J. Kellenberger
- Department of Diagnostic Imaging, University Children’s Hospital Zürich, Steinwiesstr 75, 8032 Zürich, Switzerland ,Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol 2020; 31:1160-1174. [PMID: 32870392 DOI: 10.1007/s00330-020-07210-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Advances in the diagnosis and management of congenital heart disease (CHD) have resulted in a growing population of patients surviving well into adulthood and requiring lifelong follow-up. Flow quantification is a central component in the assessment of patients with CHD. 4D flow magnetic resonance imaging (MRI) has emerged as a tool that enables comprehensive study of flow. It involves the acquisition of a three-dimensional time-resolved volume with velocity encoding in all three spatial directions along the cardiac cycle. This allows flow quantification and visualization of blood flow patterns as well as the study of advanced hemodynamic parameters as kinetic energy and wall shear stress. 4D flow MRI-based study of flow has given insight into the altered hemodynamics in CHD particularly in bicuspid aortic valve disease and Fontan circulation. The aim of this review is to discuss the expanding clinical and research applications of 4D flow MRI in CHD as well its limitations.Key Points• Three-dimensional velocity encoding allows not only flow quantification but also the visualization of multidirectional flow patterns and the study of advanced hemodynamic parameters.• 4D flow MRI has added insight into the abnormal hemodynamics involved in congenital heart disease in particular in bicuspid aortic valve and Fontan circulation.• The main limitation of 4D flow MRI in congenital heart disease is the relatively long scan duration required for the complete coverage of the heart and great vessels with adequate spatiotemporal resolution.
Collapse
Affiliation(s)
- Judy Rizk
- Department of Cardiology, Faculty of Medicine, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt.
| |
Collapse
|
10
|
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
11
|
Viola F, Dyverfeldt P, Carlhäll CJ, Ebbers T. Data Quality and Optimal Background Correction Order of Respiratory-Gated k-Space Segmented Spoiled Gradient Echo (SGRE) and Echo Planar Imaging (EPI)-Based 4D Flow MRI. J Magn Reson Imaging 2019; 51:885-896. [PMID: 31332874 PMCID: PMC7027768 DOI: 10.1002/jmri.26879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
Background A reduction in scan time of 4D Flow MRI would facilitate clinical application. A recent study indicates that echo‐planar imaging (EPI) 4D Flow MRI allows for a reduction in scan time and better data quality than the recommended k‐space segmented spoiled gradient echo (SGRE) sequence. It was argued that the poor data quality of SGRE was related to the nonrecommended absence of respiratory motion compensation. However, data quality can also be affected by the background offset compensation. Purpose To compare the data quality of respiratory motion‐compensated SGRE and EPI 4D Flow MRI and their dependence on background correction (BC) order. Study Type Retrospective. Subjects Eighteen healthy subjects (eight female, mean age 32 ± 5 years). Field Strength and Sequence 1.5 T. [Correction added on July 26, 2019, after first online publication: The preceding field strength was corrected.] SGRE and EPI‐based 4D Flow MRI. Assessment Data quality was investigated visually and by comparing flows through the cardiac valves and aorta. Measurements were obtained from transvalvular flow and pathline analysis. Statistical Tests Linear regression and Bland–Altman analysis were used. Wilcoxon test was used for comparison of visual scoring. Student's t‐test was used for comparison of flow volumes. Results No significant difference was found by visual inspection (P = 0.08). Left ventricular (LV) flows were strongly and very strongly associated with SGRE and EPI, respectively (R2 = 0.86–0.94 SGRE; 0.71–0.79 EPI, BC0–4). LV and right ventricular (RV) outflows and LV pathline flows were very strongly associated (R2 = 0.93–0.95 SGRE; 0.88–0.91 EPI, R2 = 0.91–0.95 SGRE; 0.91–0.93 EPI, BC1–4). EPI LV outflow was lower than the short‐axis‐based stroke volume. EPI RV outflow and proximal descending aortic flow were lower than SGREs. Data Conclusion Both sequences yielded good internal data consistency when an adequate background correction was applied. Second and first BC order were considered sufficient for transvalvular flow analysis in SGRE and EPI, respectively. Higher BC orders were preferred for particle tracing. Level of Evidence 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2020;51:885–896.
Collapse
Affiliation(s)
- Federica Viola
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
|
13
|
Bock J, Töger J, Bidhult S, Markenroth Bloch K, Arvidsson P, Kanski M, Arheden H, Testud F, Greiser A, Heiberg E, Carlsson M. Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating. Acta Radiol 2019; 60:327-337. [PMID: 30479136 PMCID: PMC6402051 DOI: 10.1177/0284185118784981] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background 4D-flow magnetic resonance imaging (MRI) is increasingly used. Purpose To validate 4D-flow sequences in phantom and in vivo, comparing volume flow
and kinetic energy (KE) head-to-head, with and without respiratory
gating. Material and Methods Achieva dStream (Philips Healthcare) and MAGNETOM Aera (Siemens Healthcare)
1.5-T scanners were used. Phantom validation measured pulsatile,
three-dimensional flow with 4D-flow MRI and laser particle imaging
velocimetry (PIV) as reference standard. Ten healthy participants underwent
three cardiac MRI examinations each, consisting of cine-imaging, 2D-flow
(aorta, pulmonary artery), and 2 × 2 accelerated 4D-flow with (Resp+) and
without (Resp−) respiratory gating. Examinations were acquired consecutively
on both scanners and one examination repeated within two weeks. Volume flow
in the great vessels was compared between 2D- and 4D-flow. KE were
calculated for all time phases and voxels in the left ventricle. Results Phantom results showed high accuracy and precision for both scanners.
In vivo, higher accuracy and precision (P < 0.001) was
found for volume flow for the Aera prototype with Resp+ (–3.7 ± 10.4 mL,
r = 0.89) compared to the Achieva product sequence (–17.8 ± 18.6 mL,
r = 0.56). 4D-flow Resp− on Aera had somewhat larger bias (–9.3 ± 9.6 mL,
r = 0.90) compared to Resp+ (P = 0.005). KE measurements
showed larger differences between scanners on the same day compared to the
same scanner at different days. Conclusion Sequence-specific in vivo validation of 4D-flow is needed before clinical
use. 4D-flow with the Aera prototype sequence with a clinically acceptable
acquisition time (<10 min) showed acceptable bias in healthy controls to
be considered for clinical use. Intra-individual KE comparisons should use
the same sequence.
Collapse
Affiliation(s)
- Jelena Bock
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
- Department of Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sebastian Bidhult
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Karin Markenroth Bloch
- Philips Healthcare, Lund, Sweden
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Per Arvidsson
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Mikael Kanski
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | | | | | - Einar Heiberg
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences, Lund University, Clinical Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Robison RK, Li Z, Wang D, Ooi MB, Pipe JG. Correction of B
0
eddy current effects in spiral MRI. Magn Reson Med 2018; 81:2501-2513. [DOI: 10.1002/mrm.27583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan K. Robison
- Phoenix Children's Hospital Phoenix Arizona
- Barrow Neurological Institute Phoenix Arizona
| | - Zhiqiang Li
- Barrow Neurological Institute Phoenix Arizona
| | | | - Melvyn B. Ooi
- Barrow Neurological Institute Phoenix Arizona
- Philips Healthcare Gainesville Florida
| | | |
Collapse
|
15
|
Bastkowski R, Weiss K, Maintz D, Giese D. Self-gated golden-angle spiral 4D flow MRI. Magn Reson Med 2018; 80:904-913. [PMID: 29344990 DOI: 10.1002/mrm.27085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rene Bastkowski
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Kilian Weiss
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Philips Healthcare Germany, Hamburg, Germany
| | - David Maintz
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Fredriksson A, Trzebiatowska‐Krzynska A, Dyverfeldt P, Engvall J, Ebbers T, Carlhäll C. Turbulent kinetic energy in the right ventricle: Potential MR marker for risk stratification of adults with repaired Tetralogy of Fallot. J Magn Reson Imaging 2017; 47:1043-1053. [DOI: 10.1002/jmri.25830] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alexandru Fredriksson
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
| | - Aleksandra Trzebiatowska‐Krzynska
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
- Department of CardiologyDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
- Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköping Sweden
| | - Jan Engvall
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
- Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköping Sweden
- Department of Clinical PhysiologyDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
| | - Tino Ebbers
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
- Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköping Sweden
| | - Carl‐Johan Carlhäll
- Division of Cardiovascular MedicineDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
- Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköping Sweden
- Department of Clinical PhysiologyDepartment of Medical and Health Sciences, Linköping UniversityLinköping Sweden
| |
Collapse
|
17
|
Garg P, Westenberg JJM, van den Boogaard PJ, Swoboda PP, Aziz R, Foley JRJ, Fent GJ, Tyl FGJ, Coratella L, ElBaz MSM, van der Geest RJ, Higgins DM, Greenwood JP, Plein S. Comparison of fast acquisition strategies in whole-heart four-dimensional flow cardiac MR: Two-center, 1.5 Tesla, phantom and in vivo validation study. J Magn Reson Imaging 2017; 47:272-281. [PMID: 28470915 PMCID: PMC5801550 DOI: 10.1002/jmri.25746] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose To validate three widely‐used acceleration methods in four‐dimensional (4D) flow cardiac MR; segmented 4D‐spoiled‐gradient‐echo (4D‐SPGR), 4D‐echo‐planar‐imaging (4D‐EPI), and 4D‐k‐t Broad‐use Linear Acquisition Speed‐up Technique (4D‐k‐t BLAST). Materials and Methods Acceleration methods were investigated in static/pulsatile phantoms and 25 volunteers on 1.5 Tesla MR systems. In phantoms, flow was quantified by 2D phase‐contrast (PC), the three 4D flow methods and the time‐beaker flow measurements. The later was used as the reference method. Peak velocity and flow assessment was done by means of all sequences. For peak velocity assessment 2D PC was used as the reference method. For flow assessment, consistency between mitral inflow and aortic outflow was investigated for all pulse‐sequences. Visual grading of image quality/artifacts was performed on a four‐point‐scale (0 = no artifacts; 3 = nonevaluable). Results For the pulsatile phantom experiments, the mean error for 2D PC = 1.0 ± 1.1%, 4D‐SPGR = 4.9 ± 1.3%, 4D‐EPI = 7.6 ± 1.3% and 4D‐k‐t BLAST = 4.4 ± 1.9%. In vivo, acquisition time was shortest for 4D‐EPI (4D‐EPI = 8 ± 2 min versus 4D‐SPGR = 9 ± 3 min, P < 0.05 and 4D‐k‐t BLAST = 9 ± 3 min, P = 0.29). 4D‐EPI and 4D‐k‐t BLAST had minimal artifacts, while for 4D‐SPGR, 40% of aortic valve/mitral valve (AV/MV) assessments scored 3 (nonevaluable). Peak velocity assessment using 4D‐EPI demonstrated best correlation to 2D PC (AV:r = 0.78, P < 0.001; MV:r = 0.71, P < 0.001). Coefficient of variability (CV) for net forward flow (NFF) volume was least for 4D‐EPI (7%) (2D PC:11%, 4D‐SPGR: 29%, 4D‐k‐t BLAST: 30%, respectively). Conclusion In phantom, all 4D flow techniques demonstrated mean error of less than 8%. 4D‐EPI demonstrated the least susceptibility to artifacts, good image quality, modest agreement with the current reference standard for peak intra‐cardiac velocities and the highest consistency of intra‐cardiac flow quantifications. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:272–281.
Collapse
Affiliation(s)
- Pankaj Garg
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | | | | | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Rahoz Aziz
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - James R J Foley
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Graham J Fent
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - F G J Tyl
- Leiden University Medical Center, Leiden, The Netherlands
| | - L Coratella
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Valvano G, Martini N, Huber A, Santelli C, Binter C, Chiappino D, Landini L, Kozerke S. Accelerating 4D flow MRI by exploiting low-rank matrix structure and hadamard sparsity. Magn Reson Med 2016; 78:1330-1341. [PMID: 27787911 DOI: 10.1002/mrm.26508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Giuseppe Valvano
- Department of Information Engineering; University of Pisa; Pisa Italy
- Fondazione G. Monasterio CNR-Regione Toscana; Massa Italy
| | - Nicola Martini
- Fondazione G. Monasterio CNR-Regione Toscana; Massa Italy
| | - Adrian Huber
- Institute for Biomedical Engineering; University and ETH Zurich; Zurich Switzerland
| | - Claudio Santelli
- Institute for Biomedical Engineering; University and ETH Zurich; Zurich Switzerland
| | - Christian Binter
- Institute for Biomedical Engineering; University and ETH Zurich; Zurich Switzerland
| | | | - Luigi Landini
- Department of Information Engineering; University of Pisa; Pisa Italy
- Fondazione G. Monasterio CNR-Regione Toscana; Massa Italy
| | - Sebastian Kozerke
- Institute for Biomedical Engineering; University and ETH Zurich; Zurich Switzerland
| |
Collapse
|
19
|
Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D flow MRI. Physiol Rep 2016; 4:4/3/e12685. [PMID: 26841965 PMCID: PMC4758930 DOI: 10.14814/phy2.12685] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that the direction of global left ventricular (LV) hemodynamic forces during diastolic filling are concordant with the main flow axes in normal LVs, but that this pattern would be altered in dilated and dysfunctional LVs. Therefore, we aimed to assess the LV hemodynamic filling forces in a group of healthy subjects and compare them to the results from a group of patients with dilated cardiomyopathy (DCM). Ten healthy subjects and 10 DCM patients were enrolled. Morphological short‐ (SAx) and long‐axis (LAx) images and 4D flow MRI data were acquired at 1.5T. The LV pressure gradients were computed from the 4D flow data using the Navier–Stokes equations. By integrating the pressure gradients over the LV volume at each time frame, the magnitude and direction of the global hemodynamic force was calculated over the cardiac cycle. The hemodynamic forces acting in the SAx‐ and LAx‐directions were used to calculate the “SAx‐max/LAx‐max”‐ratio for the early (E‐wave) and late (A‐wave) diastolic filling. In the LAx‐plane, the temporal progression of the hemodynamic force followed a consistent pattern in the healthy subjects. The “SAx‐max/LAx‐max”‐ratio was significantly larger at both E‐wave (0.53 ± 0.15 vs. 0.23 ± 0.12, P < 0.0001) and A‐wave (0.44 ± 0.21 vs. 0.26 ± 0.09, P < 0.03) in the DCM patients compared to the healthy subjects. 4D flow MRI data allow quantification of LV hemodynamic forces acting on the LV myocardial wall. The LV hemodynamic filling forces showed a similar temporal progression among healthy subjects, whereas DCM patients had forces that were more heterogeneous in their direction and magnitude during diastole.
Collapse
Affiliation(s)
- Jonatan Eriksson
- Divsion of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ann F Bolger
- Divsion of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden Department of Medicine, University of California, San Francisco, California
| | - Tino Ebbers
- Divsion of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden Division of Media and Information Technology, Department of Science and Technology/Swedish e-Science Research Centre (SeRC), Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Divsion of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Ha H, Kim GB, Kweon J, Lee SJ, Kim YH, Lee DH, Yang DH, Kim N. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications. Korean J Radiol 2016; 17:445-62. [PMID: 27390537 PMCID: PMC4936168 DOI: 10.3348/kjr.2016.17.4.445] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/22/2016] [Indexed: 11/21/2022] Open
Abstract
Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.
Collapse
Affiliation(s)
- Hojin Ha
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Guk Bae Kim
- Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jihoon Kweon
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Joon Lee
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea.; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young-Hak Kim
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Deok Hee Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Namkug Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|