1
|
Jacobs PS, Wilson N, Brink W, Swain A, Armbruster R, Hanumapur A, Tisdall MD, Detre J, Nanga RPR, Elliott MA, Reddy R. In vivo B 1 + enhancement of calf MRI at 7 T via optimized flexible metasurfaces. Magn Reson Med 2024; 92:1277-1289. [PMID: 38469893 PMCID: PMC11209820 DOI: 10.1002/mrm.30060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Ultrahigh field (≥7 T) MRI is at the cutting edge of medical imaging, enabling enhanced spatial and spectral resolution as well as enhanced susceptibility contrast. However, transmit (B 1 + $$ {\mathrm{B}}_1^{+} $$ ) field inhomogeneity due to standing wave effects caused by the shortened RF wavelengths at 7 T is still a challenge to overcome. Novel hardware methods such as dielectric pads have been shown to improve theB 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneity but are currently limited in their corrective effect by the range of high-permittivity materials available and have a fixed shelf life. In this work, an optimized metasurface design is presented that demonstrates in vivo enhancement of theB 1 + $$ {\mathrm{B}}_1^{+} $$ field. METHODS A prototype metasurface was optimized by an empirical capacitor sweep and by varying the period size. Phantom temperature experiments were performed to evaluate potential metasurface heating effects during scanning. Lastly, in vivo gradient echo images andB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired on five healthy subjects on a 7 T system. Dielectric pads were also used as a comparison throughout the work as a standard comparison. RESULTS The metasurfaces presented here enhanced the average relative SNR of the gradient echo images by a factor of 2.26 compared to the dielectric pads factor of 1.61. AverageB 1 + $$ {\mathrm{B}}_1^{+} $$ values reflected a similar enhancement of 27.6% with the metasurfaces present versus 8.9% with the dielectric pads. CONCLUSION The results demonstrate that metasurfaces provide superior performance to dielectric padding as shown byB 1 + $$ {\mathrm{B}}_1^{+} $$ maps reflecting their direct effects and resulting enhancements in image SNR at 7 T.
Collapse
Affiliation(s)
- Paul S Jacobs
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Wyger Brink
- Magnetic Detection and Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Anshuman Swain
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Armbruster
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Aniketh Hanumapur
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - M. Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - John Detre
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Jacobs PS, Brink W, Reddy R. A review of recent developments and applications of high-permittivity dielectric shimming in magnetic resonance. NMR IN BIOMEDICINE 2024; 37:e5094. [PMID: 38214202 DOI: 10.1002/nbm.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
We present a review outlining the basic mechanism, background, recent technical developments, and clinical applications of aqueous dielectric padding in the field of MRI. Originally meant to be a temporary solution, it has gained traction as an effective method for correcting B1 + inhomogeneities due to the unique properties of the calcium titanate and barium titanate perovskites used. Aqueous dielectric pads have used a variety of high-permittivity materials over the years to improve the quality of MRI acquisitions at 1.5 and 3 T and more recently for 7 T neuroimaging applications. The technical development and assessment of these pads have been advanced by an increased use of mathematical modeling and electromagnetic simulations. These tools have allowed for a more complete understanding of the physical interactions between dielectric pads and the RF coil, making testing and safety assessments more accurate. The ease of use and effectiveness that dielectric pads offer have allowed them to become more commonplace in tackling imaging challenges in more clinically focused environments. More recently, they have seen usage not only in anatomical imaging methods but also in specialized metabolic imaging sequences such as GluCEST and NOEMTR . New colossally high-permittivity materials have been proposed; however, practical utilization has been a continued challenge due to unfavorable frequency dependences as well as safety limitations. A new class of metasurfaces has been under development to address the shortcomings of conventional dielectric padding while also providing increased performance in enhancing MRI images.
Collapse
Affiliation(s)
- Paul S Jacobs
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wyger Brink
- Magnetic Detection and Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Brink WM, Remis RF, Webb AG. Radiofrequency safety of high permittivity pads in MRI-Impact of insulation material. Magn Reson Med 2023; 89:2109-2116. [PMID: 36708148 DOI: 10.1002/mrm.29580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE High permittivity dielectric pads are known to be effective for tailoring the RF field and improving image quality in high field MRI. Despite a number of studies reporting benign specific absorption rate (SAR) effects, their "universal" safety remains an open concern. In this work, we evaluate the impact of the insulation material in between the pad and the body, using both RF simulations as well as phantom experiments. METHODS A 3T configuration with high permittivity material was simulated and characterized experimentally in terms of B1 + fields and RF power absorption, both with and without electrical insulation in between the high permittivity material and the sample. Different insulation conditions were compared, and electromagnetic analyses on the induced current density were performed to elucidate the effect. RESULTS Increases in RF heating of up to 49% were observed experimentally in a tissue-mimicking phantom after removing the material insulation. The B1 + magnitude and RF transceive phase were not affected. Simulations indicated that an insulation thickness of 0.5-2 mm should be accounted for in numerical models in order to ensure reliable results. CONCLUSION A reliable RF safety assessment of high permittivity dielectric pads requires accounting for the insulating properties of the plastic encasing. Ignoring the electrical insulation can lead to erroneous results with substantial increases in local SAR at the interface. Conversely, the material insulation does not need to be modeled to predict the B1 + effects during the design of the pad geometry.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Magnetic Detection & Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Rob F Remis
- Circuits and Systems Group, Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Hilabi BS, Alghamdi SA, Almanaa M. Impact of Magnetic Resonance Imaging on Healthcare in Low- and Middle-Income Countries. Cureus 2023; 15:e37698. [PMID: 37081900 PMCID: PMC10112545 DOI: 10.7759/cureus.37698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Magnetic resonance imaging (MRI) played a significant role in the digital health platforms that influenced and supported modern medicine. However, there is a shortage of MRI in low- and middle-income countries (LMICs). The International Society of Radiology offers a detailed plan for LMICs to advance imaging quality in the global health agenda. The overarching objective of this scoping review was to determine the impact of MRI in healthcare in LMICs. This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify available evidence. We systematically searched four academic databases for peer-reviewed literature published between 2018 and 2021, namely, Medline, PubMed, Web of Science, and Scopus, as well as Google Scholar as a source for gray literature. The search identified 54 articles. We identified a range of reasons for introducing MRI in LMICs. Nonetheless, some challenges to accepting MRI as a method of healthcare have been reported, including technological, regulatory, and economical challenges. To implement the proposed plan, the involvement of professional and international organizations is considered crucial. The establishment of an International Commission on Medical Imaging under the umbrella of international organizations is suggested and collaboration with other diagnostic disciplines is encouraged to raise awareness of the importance of upscale diagnostics at large and to foster its integration into the care pathway globally.
Collapse
|
5
|
Torchio R, Arduino A, Zilberti L, Bottauscio O. A fast tool for the parametric analysis of human body exposed to LF electromagnetic fields in biomedical applications. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106543. [PMID: 34861616 DOI: 10.1016/j.cmpb.2021.106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A numerical procedure for analyzing electromagnetic (EM) fields interactions with biological tissues is presented. The proposed approach aims at drastically reducing the computational burden required by the repeated solution of large scale problems involving the interaction of the human body with EM fields, such as in the study of the time evolution of EM fields, uncertainty quantification, and inverse problems. The proposed volume integral equation (VIE), focused on low frequency applications, is a system of integral equations in terms of current density and scalar potential in the biological tissues excited by EM fields and/or electrodes connected to the human body. The proposed formulation requires the voxelization of the human body and takes advantage of the regularity of such discretization by speeding-up the computational procedure. Moreover, it exploits recent advancements in the solution of VIE by means of iterative preconditioned solvers and ad hoc parametric Model Order Reduction techniques. The efficiency of the proposed tool is demonstrated by applying it to a couple of realistic model problems: the assessment of the peripheral nerve stimulation, performed in terms of evaluation of the induced electric field, due to the gradient coils of a magnetic resonance imaging scanner during a clinical examination and the assessment of the exposure to environmental fields at 50 Hz of live-line workers with uncertain properties of the biological tissues. Thanks to the proposed method, uncertainty quantification analyses and time domain simulations are possible even for large scale problems and they can be performed on standard computers and reasonable computation time. Sample implementation of the method is made publicly available at https://github.com/UniPD-DII-ETCOMP/BioMOR.
Collapse
Affiliation(s)
- Riccardo Torchio
- Department of Industrial Engineering, Università degli Studi di Padova, Padova 35131, Italy.
| | | | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica, Torino 10135, Italy
| | | |
Collapse
|
6
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Stijnman PRS, Stefano Mandija, Fuchs PS, van den Berg CAT, Remis RF. Transceive phase corrected 2D contrast source inversion-electrical properties tomography. Magn Reson Med 2021; 85:2856-2868. [PMID: 33280166 PMCID: PMC7898605 DOI: 10.1002/mrm.28619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE To remove the necessity of the tranceive phase assumption for CSI-EPT and show electrical properties maps reconstructed from measured data obtained using a standard 3T birdcage body coil setup. METHODS The existing CSI-EPT algorithm is reformulated to use the transceive phase rather than relying on the transceive phase assumption. Furthermore, the radio frequency (RF)-shield is numerically implemented to accurately model the RF fields inside the MRI scanner. We verify that the reformulated two-dimensional (2D) CSI-EPT algorithm can reconstruct electrical properties maps given 2D electromagnetic simulations. Afterward, the algorithm is tested with three-dimensional (3D) FDTD simulations to investigate if the 2D CSI-EPT can retrieve the electrical properties for 3D RF fields. Finally, an MR experiment at 3T with a phantom is performed. RESULTS From the results of the 2D simulations, it is seen that CSI-EPT can reconstruct the electrical properties using MRI accessible quantities. For 3D simulations, it is observed that the electrical properties are underestimated, nonetheless, CSI-EPT has a lower standard deviation than the standard Helmholtz based methods. Finally, the first CSI-EPT reconstructions based on measured data are presented showing comparable accuracy and precision to reconstructions based on simulated data, and demonstrating the feasibility of CSI-EPT. CONCLUSIONS The CSI-EPT algorithm was rewritten to use MRI accessible quantities. This allows for CSI-EPT to fully exploit the benefits of the higher static magnetic field strengths with a standard quadrature birdcage coil setup.
Collapse
Affiliation(s)
- Peter R. S. Stijnman
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Stefano Mandija
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Patrick S. Fuchs
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Rob F. Remis
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
8
|
Mitigation of B 1+ inhomogeneity for ultra-high-field magnetic resonance imaging: hybrid mode shaping with auxiliary EM potential. Sci Rep 2020; 10:11752. [PMID: 32678182 PMCID: PMC7366730 DOI: 10.1038/s41598-020-68651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022] Open
Abstract
The notion of mode shaping based on evanescent coupling has been successfully applied in various fields of optics, such as in the dispersion engineering of optical waveguides. Here, we show that the same concept provides an opportunity for the seemingly different field of ultra-high-field MRI, addressing transmit RF magnetic field (B1+) inhomogeneity. In this work, treating the human phantom as a resonator, we employ an evanescently coupled high-index cladding layer to study the effects of the auxiliary potential on shaping the B1+ field distribution inside the phantom. Controlling the strength and coupling of the auxiliary potential ultimately determining the hybridized mode, we successfully demonstrate the global 2D homogenization of axial B1+ for a simplified cylindrical phantom and for a more realistic phantom of spheroidal geometry. The mode-shaping potentials with a magnetic permeability or material loss are also tested to offer additional degrees of freedom in the selection of materials as well as in the manipulation of the B1+ distribution, opening up the possibility of B1+ homogenization for 3D MRI scanning.
Collapse
|
9
|
Koutsoupidou M, Saha SC, Pricci RL, Cano-Garcia H, Palikaras G, Kosmas P, Kallos E. Metasurface Resonator for 1.5 T MRI Based on BaTiO 3 Host Material. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6810-6813. [PMID: 31947404 DOI: 10.1109/embc.2019.8856404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Magnetic resonance imaging (MRI) is a widely used clinical tool for medical diagnosis and therapy. Several research studies focus on passively improving MRI sensitivity using high dielectric constant (HDC) materials and metamaterials. In this work, we investigate a new metasurface resonator which can enhance local transmit and receive efficiency in 1.5T MRI. The metasurface has been realized with an array of non-magnetic rods embedded in two blocks of a BaTiO3 aqueous mixture. BaTiO3 when mixed with water exhibits high dielectric permittivity values in the 40-200 MHz range, allowing the design of a compact and safe device for practical use in an MRI scanner. Simulation results show 50% enhancement of the magnetic field in the region-of-interest. The resonance frequency of the metasurface is also validated experimentally with a small loop antenna and a vector network analyzer (VNA) in a laboratory-controlled environment.
Collapse
|
10
|
Sica CT, Rupprecht S, Hou RJ, Lanagan MT, Gandji NP, Lanagan MT, Yang QX. Toward whole-cortex enhancement with an ultrahigh dielectric constant helmet at 3T. Magn Reson Med 2019; 83:1123-1134. [PMID: 31502708 DOI: 10.1002/mrm.27962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B 1 + homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.
Collapse
Affiliation(s)
- Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Ryan J Hou
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Navid P Gandji
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, University Park, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,HyQ Research Solutions, LLC, State College, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
11
|
van Gemert J, Brink W, Remis R, Webb A. A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3T. Magn Reson Med 2019; 82:1822-1831. [PMID: 31199014 PMCID: PMC6771485 DOI: 10.1002/mrm.27849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE One of the main concerns in fetal MRI is the radiofrequency power that is absorbed both by the mother and the fetus. Passive shimming using high permittivity materials in the form of "dielectric pads" has previously been shown to increase the B 1 + efficiency and homogeneity in different applications, while reducing the specific absorption rate (SAR). In this work, we study the effect of optimized dielectric pads for 3 pregnant models. METHODS Pregnant models in the 3rd, 7th, and 9th months of gestation were used for simulations in a birdcage coil at 3T. Dielectric pads were optimized regions of interest (ROI) using previously developed methods for B 1 + efficiency and homogeneity and were designed for 2 ROIs: the entire fetus and the brain of the fetus. The SAR was evaluated in terms of the whole-body SAR, average SAR in the fetus and amniotic fluid, and maximum 10 g-averaged SAR in the mother, fetus, and amniotic fluid. RESULTS The optimized dielectric pads increased the transmit efficiency up to 55% and increased the B 1 + homogeneity in almost every tested configuration. The B 1 + -normalized whole-body SAR was reduced by more than 31% for all body models. The B 1 + -normalized local SAR was reduced in most scenarios by up to 62%. CONCLUSION Simulations have shown that optimized high permittivity pads can reduce SAR in pregnant subjects at the 3rd, 7th, and 9th month of gestation, while improving the transmit field homogeneity in the fetus. However, significantly more work is required to demonstrate that fetal imaging is safe under standard operating conditions.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| | - Rob Remis
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| |
Collapse
|
12
|
van Gemert J, Brink W, Webb A, Remis R. High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn Reson Med 2018; 81:3370-3378. [PMID: 30561797 PMCID: PMC6519234 DOI: 10.1002/mrm.27629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022]
Abstract
Purpose High‐permittivity materials in the form of flexible “dielectric pads” have proved very useful for addressing RF inhomogeneities in high field MRI systems. Finding the optimal design of such pads is, however, a tedious task, reducing the impact of this technique. We present an easy‐to‐use software tool which allows researchers and clinicians to design dielectric pads efficiently on standard computer systems, for 7T neuroimaging and 3T body imaging applications. Methods The tool incorporates advanced computational methods based on field decomposition and model order reduction as a framework to efficiently evaluate the B1+ fields resulting from dielectric pads. The tool further incorporates optimization routines which can either optimize the position of a given dielectric pad, or perform a full parametric design. The optimization procedure can target either a single target field, or perform a sweep to explore the trade‐off between homogeneity and efficiency of the B1+ field in a specific region of interest. The 3T version further allows for shifting of the imaging landmark to enable different imaging targets to be centered in the body coil. Results Example design results are shown for imaging the inner ear at 7T and for cardiac imaging at 3T. Computation times for all cases are approximately a minute per target field. Conclusion The developed tool can be easily used to design dielectric pads for any 7T neuroimaging and 3T body imaging application within minutes. This bridges the gap between the advanced design methods and the practical application by the MR community.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Wyger Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Rob Remis
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
van Gemert JHF, Brink WM, Webb AG, Remis RF. High-Permittivity Pad Design for Dielectric Shimming in Magnetic Resonance Imaging Using Projection-Based Model Reduction and a Nonlinear Optimization Scheme. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1035-1044. [PMID: 29610080 DOI: 10.1109/tmi.2018.2791179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhomogeneities in the transmit radio frequency magnetic field ( ) reduce the quality of magnetic resonance (MR) images. This quality can be improved by using high-permittivity pads that tailor the fields. The design of an optimal pad is application-specific and not straightforward and would therefore benefit from a systematic optimization approach. In this paper, we propose such a method to efficiently design dielectric pads. To this end, a projection-based model order reduction technique is used that significantly decreases the dimension of the design problem. Subsequently, the resulting reduced-order model is incorporated in an optimization method in which a desired field in a region of interest can be set. The method is validated by designing a pad for imaging the cerebellum at 7 T. The optimal pad that is found is used in an MR measurement to demonstrate its effectiveness in improving the image quality.
Collapse
|
14
|
Koolstra K, Börnert P, Brink W, Webb A. Improved image quality and reduced power deposition in the spine at 3 T using extremely high permittivity materials. Magn Reson Med 2017; 79:1192-1199. [PMID: 28543615 PMCID: PMC5811912 DOI: 10.1002/mrm.26721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022]
Abstract
Purpose To explore the effect of using extremely high permittivity (εr∼1,000) materials on image quality and power requirements of spine imaging at 3 T. Theory and Methods A linear array of high permittivity dielectric blocks made of lead zirconate titanate (PZT) was designed and characterized by electromagnetic simulations and experiments. Their effect on the transmit efficiency, receive sensitivity, power deposition, and diagnostic image quality was analyzed in vivo in 10 healthy volunteers. Results Simulation results showed that for quadrature mode excitation, the PZT blocks improve the transmit efficiency by 75% while reducing the maximum 10g average specific absorption rate (SAR10) by 20%. In vivo experiments in 10 healthy volunteers showed statistically significant improvements for the transmit efficiency, and image quality. Compared to active radiofrequency shimming, image quality was similar, but the required system input power was significantly lower for quadrature excitation using the PZT blocks. Conclusion For single‐channel transmit systems, using high permittivity PZT blocks offer a way to improve transmit efficiency and image quality in the spine. Results show that the effect, and therefore optimal design, is body mass index and sex specific. Magn Reson Med 79:1192–1199, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Kirsten Koolstra
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Börnert
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wyger Brink
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Van Gemert J, Brink W, Webb A, Remis R. An Efficient Methodology for the Analysis of Dielectric Shimming Materials in Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:666-673. [PMID: 27831868 DOI: 10.1109/tmi.2016.2624507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interference effects in the transmit B1+ field can severely degrade the image quality in high-field Magnetic Resonance Imaging (MRI). High-permittivity pads are increasingly used to counteract these effects, but designing such pads is not trivial. In this paper, we present an efficient solution methodology for this dielectric RF shimming problem. By exploiting the fact that dielectric pads form a low rank perturbation of a large-scale background model, we are able to efficiently compute B1+ fields that correspond to a wide range of different pad realizations. This allows us to efficiently design dielectric pads that eliminate the B1+ -interference effects of high-field MRI. We show that significant speed up factors can be achieved compared with traditional field simulation approaches and we validate our approach against measurements. Measured and simulated field responses are in good agreement with each other indicating that the proposed solution methodology enables us to efficiently analyze dielectric pads in realistic MRI measurement settings.
Collapse
|
16
|
Slobozhanyuk AP, Poddubny AN, Raaijmakers AJE, van den Berg CAT, Kozachenko AV, Dubrovina IA, Melchakova IV, Kivshar YS, Belov PA. Enhancement of Magnetic Resonance Imaging with Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1832-8. [PMID: 26754827 DOI: 10.1002/adma.201504270] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Indexed: 05/12/2023]
Abstract
It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution.
Collapse
Affiliation(s)
- Alexey P Slobozhanyuk
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
- Nonlinear Physics Center, Australian National University, Canberra, ACT, 0200, Australia
| | - Alexander N Poddubny
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, 194021, Russia
| | - Alexander J E Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, P.O. Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, P.O. Box 85500, 3508, GA, Utrecht, The Netherlands
| | - Alexander V Kozachenko
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
| | - Irina A Dubrovina
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, 197376, Russia
| | - Irina V Melchakova
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
| | - Yuri S Kivshar
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
- Nonlinear Physics Center, Australian National University, Canberra, ACT, 0200, Australia
| | - Pavel A Belov
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, 197101, Russia
| |
Collapse
|