1
|
Bi X, Liu X, Chen Z, Chen H, Du Y, Chen H, Huang X, Liu F. Complex-valued image reconstruction for compressed sensing MRI using hierarchical constraint. Magn Reson Imaging 2024; 115:110267. [PMID: 39454694 DOI: 10.1016/j.mri.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
In Magnetic Resonance Imaging (MRI), the sequential acquisition of raw complex-valued image data in Fourier space, also known as k-space, results in extended examination times. To speed up the MRI scans, k-space data are usually undersampled and processed using numerical techniques such as compressed sensing (CS). While the majority of CS-MRI algorithms primarily focus on magnitude images due to their significant diagnostic value, the phase components of complex-valued MRI images also hold substantial importance for clinical diagnosis, including neurodegenerative diseases. In this work, complex-valued MRI reconstruction is studied with a focus on the simultaneous reconstruction of both magnitude and phase images. The proposed algorithm is based on the nonsubsampled contourlet transform (NSCT) technique, which offers shift invariance in images. Instead of directly transforming the complex-valued image into the NSCT domain, we introduce a wavelet transform within the NSCT domain, reducing the size of the sparsity of coefficients. This two-level hierarchical constraint (HC) enforces sparse representation of complex-valued images for CS-MRI implementation. The proposed HC is seamlessly integrated into a proximal algorithm simultaneously. Additionally, to effectively minimize the artifacts caused by sub-sampling, thresholds related to different sub-bands in the HC are applied through an alternating optimization process. Experimental results show that the novel method outperforms existing CS-MRI techniques in phase-regularized complex-valued image reconstructions.
Collapse
Affiliation(s)
- Xue Bi
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Xinwen Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Zhifeng Chen
- Monash Biomedical Imaging Center, Monash University, Clayton, VIC, Australia; Department of Data Science, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Hongli Chen
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Yajun Du
- School of Computer and Software Engineering, Xihua University, Chengdu, China; Yibin Wite Rui'an Technology Co., LTD, Yibin, China.
| | - Huizu Chen
- Department of Radiology, West China Second University Hospital, Sichuan University,Chengdu, China
| | - Xiaoli Huang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Chen Z, Yuan Z, Cheng J, Liu J, Liu F, Chen Z. An adaptive parameter decoupling algorithm-based image reconstruction model (ADAIR) for rapid golden-angle radial DCE-MRI. Phys Med Biol 2024; 69:215012. [PMID: 39383887 DOI: 10.1088/1361-6560/ad8545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective. The acceleration of magnetic resonance imaging (MRI) acquisition is crucial for both clinical and research applications, particularly in dynamic MRI. Existing compressed sensing (CS) methods, despite being effective for fast imaging, face limitations such as the need for incoherent sampling and residual noise, which restrict their practical use for rapid MRI.Approach. To overcome these challenges, we propose a novel image reconstruction framework that integrates the MRI physical model with a flexible, self-adjusting, decoupling data-driven model. We validated this method through experiments using both simulated andin vivodynamic contrast-enhanced MRI datasets.Main results. The experimental results demonstrate that the proposed framework achieves high spatial and temporal resolution reconstructions. Additionally, when compared to state-of-the-art image reconstruction approaches, our method significantly enhances acceleration capabilities, enabling sparse and rapid imaging with high resolution.Significance. Our proposed framework offers a promising solution for real-time imaging and image-guided radiation therapy applications by providing superior performance in achieving high spatial and temporal resolution reconstructions, thus addressing the limitations of existing CS schemes.
Collapse
Affiliation(s)
- Zhifeng Chen
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Data Science & AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinhai Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Feng Liu
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, QLD, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Data Science & AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Ekanayake M, Pawar K, Harandi M, Egan G, Chen Z. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction. Comput Biol Med 2024; 168:107775. [PMID: 38061154 DOI: 10.1016/j.compbiomed.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.
Collapse
Affiliation(s)
- Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Australia
| | - Mehrtash Harandi
- Department of Electrical and Computer Systems Engineering, Monash University, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Australia; School of Psychological Sciences, Monash University, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Australia; Department of Data Science and AI, Monash University, Australia
| |
Collapse
|
4
|
Qu B, Zhang J, Kang T, Lin J, Lin M, She H, Wu Q, Wang M, Zheng G. Radial magnetic resonance image reconstruction with a deep unrolled projected fast iterative soft-thresholding network. Comput Biol Med 2024; 168:107707. [PMID: 38000244 DOI: 10.1016/j.compbiomed.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Radially sampling of magnetic resonance imaging (MRI) is an effective way to accelerate the imaging. How to preserve the image details in reconstruction is always challenging. In this work, a deep unrolled neural network is designed to emulate the iterative sparse image reconstruction process of a projected fast soft-threshold algorithm (pFISTA). The proposed method, an unrolled pFISTA network for Deep Radial MRI (pFISTA-DR), include the preprocessing module to refine coil sensitivity maps and initial reconstructed image, the learnable convolution filters to extract image feature maps, and adaptive threshold to robustly remove image artifacts. Experimental results show that, among the compared methods, pFISTA-DR provides the best reconstruction and achieved the highest PSNR, the highest SSIM and the lowest reconstruction errors.
Collapse
Affiliation(s)
- Biao Qu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Jialue Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, China
| | - Taishan Kang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meijin Lin
- Department of Applied Marine Physics & Engineering, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huajun She
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxia Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Chen Z, Liao C, Cao X, Poser BA, Xu Z, Lo WC, Wen M, Cho J, Tian Q, Wang Y, Feng Y, Xia L, Chen W, Liu F, Bilgic B. 3D-EPI blip-up/down acquisition (BUDA) with CAIPI and joint Hankel structured low-rank reconstruction for rapid distortion-free high-resolution T 2 * mapping. Magn Reson Med 2023; 89:1961-1974. [PMID: 36705076 PMCID: PMC10072851 DOI: 10.1002/mrm.29578] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitativeT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permitsT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. ForT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS The proposed technique enables rapid 3D distortion-free high-resolution imaging andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brainT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.
Collapse
Affiliation(s)
- Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Benedikt A. Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Science, Guangzhou, China
| | | | - Manyi Wen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Yaohui Wang
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Zhang Z, Cho J, Wang L, Liao C, Shin HG, Cao X, Lee J, Xu J, Zhang T, Ye H, Setsompop K, Liu H, Bilgic B. Blip up-down acquisition for spin- and gradient-echo imaging (BUDA-SAGE) with self-supervised denoising enables efficient T 2 , T 2 *, para- and dia-magnetic susceptibility mapping. Magn Reson Med 2022; 88:633-650. [PMID: 35436357 DOI: 10.1002/mrm.29219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To rapidly obtain high resolution T2 , T2 *, and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. METHODS We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient EPI sequence for quantitative mapping. The acquisition includes multiple T2 *-, T2 '-, and T2 -weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate distortion. A self-supervised neural network (NN), MR-Self2Self (MR-S2S), was used to perform denoising to boost SNR. Using Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on volumes acquired with 2 mm slice thickness. Quantitative T2 (=1/R2 ) and T2 * (=1/R2 *) maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion on the gradient echoes. Starting from the estimated R2 /R2 * maps, R2 ' information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. RESULTS In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution, multi-contrast images and quantitative T2 /T2 * maps, as well as yielding para- and dia-magnetic susceptibility maps. Estimated quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. CONCLUSION BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enables rapid, distortion-free, whole-brain T2 /T2 * mapping at 1 mm isotropic resolution under 90 s.
Collapse
Affiliation(s)
- Zijing Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Long Wang
- Subtle Medical Inc, Menlo Park, CA, USA
| | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinmin Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tao Zhang
- Subtle Medical Inc, Menlo Park, CA, USA
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Hu Y, Zhang X, Chen D, Yan Z, Shen X, Yan G, Ou-Yang L, Lin J, Dong J, Qu X. Spatiotemporal Flexible Sparse Reconstruction for Rapid Dynamic Contrast-enhanced MRI. IEEE Trans Biomed Eng 2021; 69:229-243. [PMID: 34166181 DOI: 10.1109/tbme.2021.3091881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a tissue perfusion imaging technique. Some versatile free-breathing DCE-MRI techniques combining compressed sensing (CS) and parallel imaging with golden-angle radial sampling have been developed to improve motion robustness with high spatial and temporal resolution. These methods have demonstrated good diagnostic performance in clinical setting, but the reconstruction quality will degrade at high acceleration rates and overall reconstruction time remains long. In this paper, we proposed a new parallel CS reconstruction model for DCE-MRI that enforces flexible weighted sparse constraint along both spatial and temporal dimensions. Weights were introduced to flexibly adjust the importance of time and space sparsity, and we derived a fast-thresholding algorithm which was proven to be simple and efficient for solving the proposed reconstruction model. Results on both the brain tumor DCE and liver DCE show that, at relatively high acceleration factor of fast sampling, lowest reconstruction error and highest image structural similarity are obtained by the proposed method. Besides, the proposed method achieves faster reconstruction for liver datasets and better physiological measures are also obtained on tumor images.
Collapse
|
8
|
Cao X, Wang K, Liao C, Zhang Z, Srinivasan Iyer S, Chen Z, Lo WC, Liu H, He H, Setsompop K, Zhong J, Bilgic B. Efficient T 2 mapping with blip-up/down EPI and gSlider-SMS (T 2 -BUDA-gSlider). Magn Reson Med 2021; 86:2064-2075. [PMID: 34046924 DOI: 10.1002/mrm.28872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. METHODS A T2 blip-up/down EPI acquisition with generalized slice-dithered enhanced resolution (T2 -BUDA-gSlider) is proposed. A RF-encoded multi-slab spin-echo (SE) EPI acquisition with multiple TEs was developed to obtain high SNR efficiency with reduced TR. This was combined with an interleaved 2-shot EPI acquisition using blip-up/down phase encoding. An estimated field map was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to achieve distortion-free and robust reconstruction for each slab without navigation. A Bloch simulated subspace model was integrated into gSlider reconstruction and used for T2 quantification. RESULTS In vivo results demonstrated that the T2 values estimated by the proposed method were consistent with gold standard spin-echo acquisition. Compared to the reference 3D fast spin echo (FSE) images, distortion caused by off-resonance and eddy current effects were effectively mitigated. CONCLUSION BUDA-gSlider SE-EPI acquisition and gSlider-subspace joint reconstruction enabled distortion-free whole-brain T2 mapping in 2 min at ~1 mm3 isotropic resolution, which could bring significant benefits to related clinical and neuroscience applications.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kang Wang
- Department of Neurology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zijing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siddharth Srinivasan Iyer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhifeng Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, USA.,School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Ching Lo
- Siemens Medical Solutions, Boston, Massachusetts, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard-MIT Department of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard-MIT Department of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Zhang J, Chu Y, Ding W, Kang L, Xia L, Jaiswal S, Wang Z, Chen Z. HF-SENSE: an improved partially parallel imaging using a high-pass filter. BMC Med Imaging 2019; 19:27. [PMID: 30943909 PMCID: PMC6448231 DOI: 10.1186/s12880-019-0327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Background One of the major limitations of MRI is its slow acquisition speed. To accelerate data acquisition, partially parallel imaging (PPI) methods have been widely used in clinical applications such as sensitivity encoding (SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA). SENSE is a popular image-domain partially parallel imaging method, which suffers from residual aliasing artifacts when the reduction factor goes higher. Undersampling the k-space data and then reconstruct images with artificial sparsity is an efficient way to accelerate data acquisition. By exploiting artificial sparsity with a high-pass filter, an improved SENSE method is proposed in this work, termed high-pass filtered SENSE (HF-SENSE). Methods First, a high-pass filter was applied to the raw k-space data, the result of which was used as the inputs of sensitivity estimation and undersampling process. Second, the adaptive array coil combination method was adopted to calculate sensitivity maps on a block-by-block basis. Third, Tikhonov regularized SENSE was then used to reconstruct magnetic resonance images. Fourth, the reconstructed images were transformed into k-space data, which was filtered with the corresponding inverse filter. Results Both simulation and in vivo experiments demonstrate that HF-SENSE method significantly reduces noise level of the reconstructed images compared with SENSE. Furthermore, it is found that HF-SENSE can achieve lower normalized root-mean-square error value than SENSE. Conclusions The proposed method explores artificial sparsity with a high-pass filter. Experiments demonstrate that the proposed HF-SENSE method can improve the image quality of SENSE reconstruction. The high-pass filter parameters can be predefined. With this image reconstruction method, high acceleration factors can be achieved, which will improve the clinical applicability of SENSE. This retrospective study (HF-SENSE: an improved partially parallel imaging using a high-pass filter) was approved by Institute Review Board of 2nd Affiliated Hospital of Zhejiang University (ethical approval number 2018–314). Participant for all images have informed consent that he knew the risks and agreed to participate in the research.
Collapse
Affiliation(s)
- Jucheng Zhang
- Department of Clinical Engineering, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yonghua Chu
- Department of Clinical Engineering, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhong Ding
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyi Kang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD & CG, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sanjay Jaiswal
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhikang Wang
- Department of Clinical Engineering, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Rigid motion correction for magnetic resonance fingerprinting with sliding-window reconstruction and image registration. Magn Reson Imaging 2018; 57:303-312. [PMID: 30439513 DOI: 10.1016/j.mri.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/08/2018] [Accepted: 11/11/2018] [Indexed: 11/23/2022]
Abstract
Magnetic resonance fingerprinting (MRF) can be used to simultaneously obtain multiple parameter maps from a single pulse sequence. However, patient motion during MRF acquisition may result in blurring and artifacts in estimated parameter maps. In this work, a novel motion correction method was proposed to correct for rigid motion in MRF. The proposed method involved sliding-window reconstruction to obtain intermediate images followed by image registration to estimate rigid motion information between these images. Finally, the motion-corrupted k-space data were corrected with the estimated motion parameters and then reconstructed to obtain the parameter maps via the conventional MRF processing pipeline. The proposed method was evaluated using both simulations and in vivo MRF experiments with intently different types of motion. For motion-corrupted data, the proposed method yielded brain T1, T2 and proton density maps with obviously reduced blurring and artifacts and lower normalized root-mean-square error, compared to MRF without motion correction. In conclusion, motion-corrected MRF using the proposed method has the potential to produce accurate parameter maps in the presence of in-plane rigid motion.
Collapse
|
11
|
Xu Z, Huang F, Wu Z, Mei Y, Jeong HK, Fang W, Chen Z, Wang Y, Dong Z, Guo H, Zhang X, Chen W, Feng Q, Feng Y. Technical Note: Clustering-based motion compensation scheme for multishot diffusion tensor imaging. Med Phys 2018; 45:5515-5524. [PMID: 30307624 DOI: 10.1002/mp.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To extend image reconstruction using image-space sampling function (IRIS) to address large-scale motion in multishot diffusion-weighted imaging (DWI). METHODS A clustered IRIS (CIRIS) algorithm that would extend IRIS was proposed to correct for large-scale motion. For DWI, CIRIS initially groups the shots into clusters without intracluster large-scale motion and reconstructs each cluster by using IRIS. Then, CIRIS registers these cluster images and combines the registered images by using a weighted average to correct for voxel mismatch caused by intercluster large-scale motion. For diffusion tensor imaging (DTI), CIRIS further reduces the effect of motion on diffusion directions by treating motion-induced direction changes as additional diffusion directions. CIRIS also introduces the detection and rejection of motion-corrupted data to avoid corresponding image degradation. The proposed method was evaluated by simulation and in vivo diffusion datasets. RESULTS Experiments demonstrated that CIRIS can reduce motion-induced blurring and artifacts in DWI and provide more accurate DTI estimations in the presence of large-scale motion, compared with IRIS. CONCLUSION The proposed method presents a novel approach to correct for large-scale in-plane motion for multishot DWI and is expected to benefit the practical application of high-resolution diffusion imaging.
Collapse
Affiliation(s)
- Zhongbiao Xu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Feng Huang
- Neusoft Medical System, Shanghai, 200000, China
| | - Zhigang Wu
- Neusoft Medical System, Shanghai, 200000, China
| | - Yingjie Mei
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.,Philips Healthcare, Guangzhou, 510515, China
| | | | | | - Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yishi Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Zijing Dong
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Hua Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Xinyuan Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Chen Z, Kang L, Xia L, Wang Q, Li Y, Hu X, Liu F, Huang F. Technical Note: Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free-breathing golden-angle radial dynamic MRI: K-T ARTS-GROWL. Med Phys 2017; 45:202-213. [DOI: 10.1002/mp.12639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zhifeng Chen
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Liyi Kang
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Ling Xia
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
- State Key Lab of CAD&CG; Zhejiang University; Hangzhou China
| | - Qiuliang Wang
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yi Li
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Xinning Hu
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Feng Liu
- School of Information Technology and Electrical Engineering; The University of Queensland; Brisbane QLD Australia
| | | |
Collapse
|
13
|
Improved k- t PCA Algorithm Using Artificial Sparsity in Dynamic MRI. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:4816024. [PMID: 28804506 PMCID: PMC5540396 DOI: 10.1155/2017/4816024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/14/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
Abstract
The k-t principal component analysis (k-t PCA) is an effective approach for high spatiotemporal resolution dynamic magnetic resonance (MR) imaging. However, it suffers from larger residual aliasing artifacts and noise amplification when the reduction factor goes higher. To further enhance the performance of this technique, we propose a new method called sparse k-t PCA that combines the k-t PCA algorithm with an artificial sparsity constraint. It is a self-calibrated procedure that is based on the traditional k-t PCA method by further eliminating the reconstruction error derived from complex subtraction of the sampled k-t space from the original reconstructed k-t space. The proposed method is tested through both simulations and in vivo datasets with different reduction factors. Compared to the standard k-t PCA algorithm, the sparse k-t PCA can improve the normalized root-mean-square error performance and the accuracy of temporal resolution. It is thus useful for rapid dynamic MR imaging.
Collapse
|