1
|
Ming Z, Pogosyan A, Christodoulou AG, Finn JP, Ruan D, Nguyen KL. Dynamic Regularized Adaptive Cluster Optimization (DRACO) for Quantitative Cardiac Cine MRI in Complex Arrhythmias. J Magn Reson Imaging 2024:10.1002/jmri.29425. [PMID: 38708951 PMCID: PMC11538382 DOI: 10.1002/jmri.29425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Irregular cardiac motion can render conventional segmented cine MRI nondiagnostic. Clustering has been proposed for cardiac motion binning and may be optimized for complex arrhythmias. PURPOSE To develop an adaptive cluster optimization method for irregular cardiac motion, and to generate the corresponding time-resolved cine images. STUDY TYPE Prospective. SUBJECTS Thirteen with atrial fibrillation, four with premature ventricular contractions, and one patient in sinus rhythm. FIELD STRENGTH/SEQUENCE Free-running balanced steady state free precession (bSSFP) with sorted golden-step, reference real-time sequence. ASSESSMENT Each subject underwent both the sorted golden-step bSSFP and the reference Cartesian real-time imaging. Golden-step bSSFP images were reconstructed using the dynamic regularized adaptive cluster optimization (DRACO) method and k-means clustering. Image quality (4-point Likert scale), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, and ventricular function were assessed. STATISTICAL TESTS Paired t-tests, Friedman test, regression analysis, Fleiss' Kappa, Bland-Altman analysis. Significance level P < 0.05. RESULTS The DRACO method had the highest percent of images with scores ≥3 (96% for diastolic frame, 93% for systolic frame, and 93% for multiphase cine) and the percentages were significantly higher compared with both the k-means and real-time methods. Image quality scores, SNR, and CNR were significantly different between DRACO vs. k-means and between DRACO vs. real-time. Cardiac function analysis showed no significant differences between DRACO vs. the reference real-time. CONCLUSION DRACO with time-resolved reconstruction generated high quality images and has early promise for quantitative cine cardiac MRI in patients with complex arrhythmias including atrial fibrillation. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
| | - Anthony G. Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Dan Ruan
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, CA, USA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ming Z, Pogosyan A, Gao C, Colbert CM, Wu HH, Finn JP, Ruan D, Hu P, Christodoulou AG, Nguyen KL. ECG-free cine MRI with data-driven clustering of cardiac motion for quantification of ventricular function. NMR IN BIOMEDICINE 2024; 37:e5091. [PMID: 38196195 PMCID: PMC10947936 DOI: 10.1002/nbm.5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Despite the widespread use of cine MRI for evaluation of cardiac function, existing real-time methods do not easily enable quantification of ventricular function. Moreover, segmented cine MRI assumes periodicity of cardiac motion. We aim to develop a self-gated, cine MRI acquisition scheme with data-driven cluster-based binning of cardiac motion. METHODS A Cartesian golden-step balanced steady-state free precession sequence with sorted k-space ordering was designed. Image data were acquired with breath-holding. Principal component analysis and k-means clustering were used for binning of cardiac phases. Cluster compactness in the time dimension was assessed using temporal variability, and dispersion in the spatial dimension was assessed using the Caliński-Harabasz index. The proposed and the reference electrocardiogram (ECG)-gated cine methods were compared using a four-point image quality score, SNR and CNR values, and Bland-Altman analyses of ventricular function. RESULTS A total of 10 subjects with sinus rhythm and 8 subjects with arrhythmias underwent cardiac MRI at 3.0 T. The temporal variability was 45.6 ms (cluster) versus 24.6 ms (ECG-based) (p < 0.001), and the Caliński-Harabasz index was 59.1 ± 9.1 (cluster) versus 22.0 ± 7.1 (ECG based) (p < 0.001). In subjects with sinus rhythm, 100% of the end-systolic and end-diastolic images from both the cluster and reference approach received the highest image quality score of 4. Relative to the reference cine images, the cluster-based multiphase (cine) image quality consistently received a one-point lower score (p < 0.05), whereas the SNR and CNR values were not significantly different (p = 0.20). In cases with arrhythmias, 97.9% of the end-systolic and end-diastolic images from the cluster approach received an image quality score of 3 or more. The mean bias values for biventricular ejection fraction and volumes derived from the cluster approach versus reference cine were negligible. CONCLUSION ECG-free cine cardiac MRI with data-driven clustering for binning of cardiac motion is feasible and enables quantification of cardiac function.
Collapse
Affiliation(s)
- Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
| | - Chang Gao
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
| | - Holden H. Wu
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
| | - Dan Ruan
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, CA, USA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anthony G. Christodoulou
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, CA, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
ACR Appropriateness Criteria® Dyspnea-Suspected Cardiac Origin (Ischemia Already Excluded): 2021 Update. J Am Coll Radiol 2022; 19:S37-S52. [PMID: 35550804 DOI: 10.1016/j.jacr.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Dyspnea is the symptom of perceived breathing discomfort and is commonly encountered in a variety of clinical settings. Cardiac etiologies of dyspnea are an important consideration; among these, valvular heart disease (Variant 1), arrhythmia (Variant 2), and pericardial disease (Variant 3) are reviewed in this document. Imaging plays an important role in the clinical assessment of these suspected abnormalities, with usually appropriate procedures including resting transthoracic echocardiography in all three variants, radiography for Variants 1 and 3, MRI heart function and morphology in Variants 2 and 3, and CT heart function and morphology with intravenous contrast for Variant 3. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
|
4
|
Continuous cardiac thermometry via simultaneous catheter tracking and undersampled radial golden angle acquisition for radiofrequency ablation monitoring. Sci Rep 2022; 12:4006. [PMID: 35256627 PMCID: PMC8901729 DOI: 10.1038/s41598-022-06927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
The complexity of the MRI protocol is one of the factors limiting the clinical adoption of MR temperature mapping for real-time monitoring of cardiac ablation procedures and a push-button solution would ease its use. Continuous gradient echo golden angle radial acquisition combined with intra-scan motion correction and undersampled temperature determination could be a robust and more user-friendly alternative than the ultrafast GRE-EPI sequence which suffers from sensitivity to magnetic field susceptibility artifacts and requires ECG-gating. The goal of this proof-of-concept work is to establish the temperature uncertainty as well as the spatial and temporal resolutions achievable in an Agar-gel phantom and in vivo using this method. GRE radial golden angle acquisitions were used to monitor RF ablations in a phantom and in vivo in two sheep hearts with different slice orientations. In each case, 2D rigid motion correction based on catheter micro-coil signal, tracking its motion, was performed and its impact on the temperature imaging was assessed. The temperature uncertainty was determined for three spatial resolutions (1 × 1 × 3 mm3, 2 × 2 × 3 mm3, and 3 × 3 × 3 mm3) and three temporal resolutions (0.48, 0.72, and 0.97 s) with undersampling acceleration factors ranging from 2 to 17. The combination of radial golden angle GRE acquisition, simultaneous catheter tracking, intra-scan 2D motion correction, and undersampled thermometry enabled temperature monitoring in the myocardium in vivo during RF ablations with high temporal (< 1 s) and high spatial resolution. The temperature uncertainty ranged from 0.2 ± 0.1 to 1.8 ± 0.2 °C for the various temporal and spatial resolutions and, on average, remained superior to the uncertainty of an EPI acquisition while still allowing clinical monitoring of the RF ablation process. The proposed method is a robust and promising alternative to EPI acquisition to monitor in vivo RF cardiac ablations. Further studies remain required to improve the temperature uncertainty and establish its clinical applicability.
Collapse
|
5
|
Contijoch F, Han Y, Kamesh Iyer S, Kellman P, Gualtieri G, Elliott MA, Berisha S, Gorman JH, Gorman RC, Pilla JJ, Witschey WRT. Closed-loop control of k-space sampling via physiologic feedback for cine MRI. PLoS One 2020; 15:e0244286. [PMID: 33373391 PMCID: PMC7771662 DOI: 10.1371/journal.pone.0244286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Segmented cine cardiac MRI combines data from multiple heartbeats to achieve high spatiotemporal resolution cardiac images, yet predefined k-space segmentation trajectories can lead to suboptimal k-space sampling. In this work, we developed and evaluated an autonomous and closed-loop control system for radial k-space sampling (ARKS) to increase sampling uniformity. METHODS The closed-loop system autonomously selects radial k-space sampling trajectory during live segmented cine MRI and attempts to optimize angular sampling uniformity by selecting views in regions of k-space that were not previously well-sampled. Sampling uniformity and the ability to detect cardiac phase in vivo was assessed using ECG data acquired from 10 normal subjects in an MRI scanner. The approach was then implemented with a fast gradient echo sequence on a whole-body clinical MRI scanner and imaging was performed in 4 healthy volunteers. The closed-loop k-space trajectory was compared to random, uniformly distributed and golden angle view trajectories via measurement of k-space uniformity and the point spread function. Lastly, an arrhythmic dataset was used to evaluate a potential application of the approach. RESULTS The autonomous trajectory increased k-space sampling uniformity by 15±7%, main lobe point spread function (PSF) signal intensity by 6±4%, and reduced ringing relative to golden angle sampling. When implemented, the autonomous pulse sequence prescribed radial view angles faster than the scan TR (0.98 ± 0.01 ms, maximum = 1.38 ms) and increased k-space sampling mean uniformity by 10±11%, decreased uniformity variability by 44±12%, and increased PSF signal ratio by 6±6% relative to golden angle sampling. CONCLUSION The closed-loop approach enables near-uniform radial sampling in a segmented acquisition approach which was higher than predetermined golden-angle radial sampling. This can be utilized to increase the sampling or decrease the temporal footprint of an acquisition and the closed-loop framework has the potential to be applied to patients with complex heart rhythms.
Collapse
Affiliation(s)
- Francisco Contijoch
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, United States of America
- Department of Radiology, School of Medicine, University of California, San Diego, CA, United States of America
| | - Yuchi Han
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Peter Kellman
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Mark A. Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sebastian Berisha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joseph H. Gorman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert C. Gorman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James J. Pilla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Walter R. T. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
Fyrdahl A, Ramos JG, Eriksson MJ, Caidahl K, Ugander M, Sigfridsson A. Sector-wise golden-angle phase contrast with high temporal resolution for evaluation of left ventricular diastolic dysfunction. Magn Reson Med 2019; 83:1310-1321. [PMID: 31631403 PMCID: PMC6972568 DOI: 10.1002/mrm.28018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a high temporal resolution phase-contrast pulse sequence for evaluation of diastolic filling patterns, and to evaluate it in comparison to transthoracic echocardiography. METHODS A phase-contrast velocity-encoded gradient-echo pulse sequence was implemented with a sector-wise golden-angle radial ordering. Acquisitions were optimized for myocardial tissue (TE/TR: 4.4/6.8 ms, flip angle: 8º, velocity encoding: 30 cm/s) and transmitral flow (TE/TR: 4.0/6.6 ms, flip angle: 20º, velocity encoding: 150 cm/s). Shared velocity encoding was combined with a sliding-window reconstruction that enabled up to 250 frames per cardiac cycle. Transmitral and myocardial velocities were measured in 35 patients. Echocardiographic velocities were obtained with pulsed-wave Doppler using standard methods. RESULTS Myocardial velocity showed a low difference and good correlation between MRI and Doppler (mean ± 95% limits of agreement 0.9 ± 3.7 cm/s, R2 = 0.63). Transmitral velocity was underestimated by MRI (P < .05) with a difference of -11 ± 28 cm/s (R2 = 0.45). The early-to-late ratio correlated well (R2 = 0.66) with a minimal difference (0.03 ± 0.6). Analysis of interobserver and intra-observer variability showed excellent agreement for all measurements. CONCLUSIONS The proposed method enables the acquisition of phase-contrast images during a single breath-hold with a sufficiently high temporal resolution to match transthoracic echocardiography, which opens the possibility for many clinically relevant variables to be assessed by MRI.
Collapse
Affiliation(s)
- Alexander Fyrdahl
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Joao G Ramos
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden.,The Kolling Institute, Royal North Shore Hospital, and Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Chava R, Assis F, Herzka D, Kolandaivelu A. Segmented radial cardiac MRI during arrhythmia using retrospective electrocardiogram and respiratory gating. Magn Reson Med 2018; 81:1726-1738. [PMID: 30362588 DOI: 10.1002/mrm.27533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE To improve segmented cardiac MRI image quality during arrhythmia. METHODS Electrocardiogram (ECG) and respiratory waveforms were recorded during imaging. Imaging readouts were retrospectively classified into heartbeat-types based on the RR interval of the current and preceding beats, QRS morphology, and respiratory phase. Image data were sorted by these classifiers to generate separate cine images of different heartbeat-types during sinus rhythm and arrhythmia. A simulation study evaluated the efficiency of K-space sampling over a range of heart rhythms, heart rates, and respiratory rates. In vivo imaging was performed in volunteers with sinus rhythm, swine with arrhythmia simulated by pacing, and a human subject with spontaneous premature beats. RESULTS K-space sampling uniformity and image quality incrementally improve with additional occurrences of the desired normal sinus or arrhythmia heartbeat-type. To approach the image quality of breath-hold imaging, sufficiently restrictive gating parameters are required. Compared with real-time imaging, retrospective gated images had reduced noise and improved sharpness while maintaining desired cine temporal resolution. Variations of cardiac function between arrhythmia heartbeats could be observed in arrhythmia imaging cases that are not captured by conventional segmented imaging. CONCLUSION Retrospective ECG and respiratory gating permits imaging of various heartbeats during arrhythmia with fewer resolution restrictions compared to real-time imaging. For a fixed imaging time, imaging quality depends on frequency of the imaged heartbeat-type. Imaging additional heartbeats permits incremental improvement in image quality.
Collapse
Affiliation(s)
- Raghuram Chava
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fabrizio Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Herzka
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aravindan Kolandaivelu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Meyer GMB, Spilimbergo FB, Altmayer S, Pacini GS, Zanon M, Watte G, Marchiori E, Hochhegger B. Multiparametric Magnetic Resonance Imaging in the Assessment of Pulmonary Hypertension: Initial Experience of a One-Stop Study. Lung 2018; 196:165-171. [PMID: 29435739 DOI: 10.1007/s00408-018-0097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Our goal was to assess the diagnostic performance of magnetic resonance imaging (MRI) as a single method to diagnose pulmonary hypertension (PH) compared to right heart catheterization (RHC), computed tomography (CT), and ventilation/perfusion (V/Q) scintigraphy. METHODS We identified 35 patients diagnosed with PH by RHC in our institution who have also undergone a CT, a scintigraphy, and an MRI within a month. All cases were discussed in multidisciplinary meetings. We performed correlations between the MRI-derived hemodynamic parameters and those from RHC. The sensitivity and specificity of MRI were determined to identify its diagnostic performance to identify chronic thromboembolic pulmonary hypertension (CTEPH) and interstitial lung disease PH. The gold standard reference for the diagnosis of CTEPH and ILD was based on a review of multimodality imaging (V/Q scintigraphy and CT scan) and clinical findings. RESULTS Our results showed a good correlation between the hemodynamic parameters of cardiac MRI and RHC. Pulmonary vascular resistance had the best correlation between both methods (r = 0.923). The sensitivity and specificity of MRI to diagnose CTEPH was 100 and 96.8%, respectively. For the ILD-related PH, the MRI yielded a sensitivity of 60.0% and a specificity of 100%. Additionally, cardiac MRI was able to confirm all cases of PAH due to congenital heart disease initially detected by echocardiography. CONCLUSIONS MRI represents a promising imaging modality as an initial, single-shot study, for patients with suspected PH with the advantages of being non-invasive and having no radiation exposure.
Collapse
Affiliation(s)
- Gisela M B Meyer
- Pulmonary Hypertension Group, Santa Casa de Porto Alegre, Av. Independência, 75, Porto Alegre, Rio Grande Do Sul, 90020-160, Brazil
| | - Fernanda B Spilimbergo
- Pulmonary Hypertension Group, Santa Casa de Porto Alegre, Av. Independência, 75, Porto Alegre, Rio Grande Do Sul, 90020-160, Brazil
| | - Stephan Altmayer
- Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- LABIMED - Medical Imaging Research Lab, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av. Independência, 75, Porto Alegre, 90020-160, Brazil
| | - Gabriel S Pacini
- Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil.
- Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil.
- LABIMED - Medical Imaging Research Lab, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av. Independência, 75, Porto Alegre, 90020-160, Brazil.
| | - Matheus Zanon
- Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- LABIMED - Medical Imaging Research Lab, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av. Independência, 75, Porto Alegre, 90020-160, Brazil
| | - Guilherme Watte
- Department of Respiratory Medicine and Thoracic Surgery, Irmandade da Santa Casa de Misericordia de Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- LABIMED - Medical Imaging Research Lab, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av. Independência, 75, Porto Alegre, 90020-160, Brazil
| | - Edson Marchiori
- Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio De Janeiro, 21941-902, Brazil
| | - Bruno Hochhegger
- Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- Medical Imaging Research Laboratory, Federal University of Health Sciences of Porto Alegre, R. Sarmento Leite, 245, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
- LABIMED - Medical Imaging Research Lab, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Av. Independência, 75, Porto Alegre, 90020-160, Brazil
| |
Collapse
|
9
|
Piekarski E, Chitiboi T, Ramb R, Latson LA, Bhatla P, Feng L, Axel L. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:49-59. [PMID: 29067539 DOI: 10.1007/s10334-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. MATERIALS AND METHODS One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. RESULTS Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). CONCLUSION Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.
Collapse
Affiliation(s)
- Eve Piekarski
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Teodora Chitiboi
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Rebecca Ramb
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Larry A Latson
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Puneet Bhatla
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave., New York, NY, USA.
- Department of Radiology, New York University Langone Medical Center, 650 First Ave., New York, NY, USA.
| |
Collapse
|