1
|
von Morze C, Blazey T, Baeza R, Garipov R, Whitehead T, Reed GD, Garbow JR, Shoghi KI. Multi-band echo-planar spectroscopic imaging of hyperpolarized 13 C probes in a compact preclinical PET/MR scanner. Magn Reson Med 2022; 87:2120-2129. [PMID: 34971459 DOI: 10.1002/mrm.29145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Hyperpolarized (HP) 13 C MRI has enabled real-time imaging of specific enzyme-catalyzed metabolic reactions, but advanced pulse sequences are necessary to capture the dynamic, localized metabolic information. Herein we describe the design, implementation, and testing of a rapid and efficient HP 13 C pulse sequence strategy on a cryogen-free simultaneous positron emission tomography/MR molecular imaging platform with compact footprint. METHODS We developed an echo planar spectroscopic imaging pulse sequence incorporating multi-band spectral-spatial radiofrequency (SSRF) pulses for spatially coregistered excitation of 13 C metabolites with differential individual flip angles. Excitation profiles were measured in phantoms, and the SSRF-echo planar spectroscopic imaging sequence was tested in rats in vivo and compared to conventional echo planar spectroscopic imaging. The new sequence was applied for 2D dynamic metabolic imaging of HP [1-13 C]pyruvate and its molecular analog [1-13 C] α -ketobutyrate at a spatial resolution of 5 mm × 5 mm × 20 mm and temporal resolution of 4 s. We also obtained simultaneous 18 F-fluorodeoxyglucose positron emission tomography data for comparison with HP [1-13 C]pyruvate data acquired during the same scan session. RESULTS Measured SSRF excitation profiles corresponded well to Bloch simulations. Multi-band SSRF excitation facilitated efficient sampling of the multi-spectral kinetics of [1-13 C]pyruvate and [1-13 C] α - ketobutyrate . Whereas high pyruvate to lactate conversion was observed in liver, corresponding reduction of α -ketobutyrate to [1-13 C] α -hydroxybutyrate ( α HB) was largely restricted to the kidneys and heart, consistent with the known expression pattern of lactate dehydrogenase B. CONCLUSION Advanced 13 C SSRF imaging approaches are feasible on our compact positron emission tomography/MR platform, maximizing the potential of HP 13 C technology and facilitating direct comparison with positron emission tomography.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | - Timothy Whitehead
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Morón M. Protein hydration shell formation: Dynamics of water in biological systems exhibiting nanoscopic cavities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Walker CM, Gordon JW, Xu Z, Michel KA, Li L, Larson PEZ, Vigneron DB, Bankson JA. Slice profile effects on quantitative analysis of hyperpolarized pyruvate. NMR IN BIOMEDICINE 2020; 33:e4373. [PMID: 32743881 PMCID: PMC7484340 DOI: 10.1002/nbm.4373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/01/2023]
Abstract
Magnetic resonance imaging of hyperpolarized pyruvate provides a new imaging biomarker for cancer metabolism, based on the dynamic in vivo conversion of hyperpolarized pyruvate to lactate. Methods for quantification of signal evolution need to be robust and reproducible across a range of experimental conditions. Pharmacokinetic analysis of dynamic spectroscopic imaging data from hyperpolarized pyruvate and its metabolites generally assumes that signal arises from ideal rectangular slice excitation profiles. In this study, we examined whether this assumption could lead to bias in kinetic analysis of hyperpolarized pyruvate and, if so, whether such a bias can be corrected. A Bloch-McConnell simulator was used to generate synthetic data using a known set of "ground truth" pharmacokinetic parameter values. Signal evolution was then analyzed using analysis software that either assumed a uniform slice profile, or incorporated information about the slice profile into the analysis. To correct for slice profile effects, the expected slice profile was subdivided into multiple sub-slices to account for variable excitation angles along the slice dimension. An ensemble of sub-slices was then used to fit the measured signal evolution. A mismatch between slice profiles used for data acquisition and those assumed during kinetic analysis was identified as a source of quantification bias. Results indicate that imperfect slice profiles preferentially increase detected lactate signal, leading to an overestimation of the apparent metabolic exchange rate. The slice profile-correction algorithm was tested in simulation, in phantom measurements, and applied to data acquired from a patient with prostate cancer. The results demonstrated that slice profile-induced biases can be minimized by accounting for the slice profile during pharmacokinetic analysis. This algorithm can be used to correct data from either single or multislice acquisitions.
Collapse
Affiliation(s)
- Christopher M. Walker
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Keith A. Michel
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - James A. Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
4
|
Gordon JW, Chen HY, Dwork N, Tang S, Larson PEZ. Fast Imaging for Hyperpolarized MR Metabolic Imaging. J Magn Reson Imaging 2020; 53:686-702. [PMID: 32039520 DOI: 10.1002/jmri.27070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
MRI with hyperpolarized carbon-13 agents has created a new type of noninvasive, in vivo metabolic imaging that can be applied in cell, animal, and human studies. The use of 13 C-labeled agents, primarily [1-13 C]pyruvate, enables monitoring of key metabolic pathways with the ability to image substrate and products based on their chemical shift. Over 10 sites worldwide are now performing human studies with this new approach for studies of cancer, heart disease, liver disease, and kidney disease. Hyperpolarized metabolic imaging studies must be performed within several minutes following creation of the hyperpolarized agent due to irreversible decay of the net magnetization back to equilibrium, so fast imaging methods are critical. The imaging methods must include multiple metabolites, separated based on their chemical shift, which are also undergoing rapid metabolic conversion (via label exchange), further exacerbating the challenges of fast imaging. This review describes the state-of-the-art in fast imaging methods for hyperpolarized metabolic imaging. This includes the approach and tradeoffs between three major categories of fast imaging methods-fast spectroscopic imaging, model-based strategies, and metabolite specific imaging-as well additional options of parallel imaging, compressed sensing, tailored RF flip angles, refocused imaging methods, and calibration methods that can improve the scan coverage, speed, signal-to-noise ratio (SNR), resolution, and/or robustness of these studies. To date, these approaches have produced extremely promising initial human imaging results. Improvements to fast hyperpolarized metabolic imaging methods will provide better coverage, SNR, resolution, and reproducibility for future human imaging studies. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| |
Collapse
|
5
|
von Morze C, Merritt ME. Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology. NMR IN BIOMEDICINE 2019; 32:e3937. [PMID: 29870085 PMCID: PMC6281789 DOI: 10.1002/nbm.3937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 05/07/2023]
Abstract
Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Korenchan DE, Gordon JW, Subramaniam S, Sriram R, Baligand C, VanCriekinge M, Bok R, Vigneron DB, Wilson DM, Larson PEZ, Kurhanewicz J, Flavell RR. Using bidirectional chemical exchange for improved hyperpolarized [ 13 C]bicarbonate pH imaging. Magn Reson Med 2019; 82:959-972. [PMID: 31050049 DOI: 10.1002/mrm.27780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Molecular Imaging Research Center, French Alternative Energies and Atomic Energy Commission Fontenay-aux-Roses, France
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
7
|
Zhu X, Gordon JW, Bok RA, Kurhanewicz J, Larson PEZ. Dynamic diffusion-weighted hyperpolarized 13 C imaging based on a slice-selective double spin echo sequence for measurements of cellular transport. Magn Reson Med 2018; 81:2001-2010. [PMID: 30368893 DOI: 10.1002/mrm.27501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a pulse sequence to dynamically measure the ADC of hyperpolarized substrates during their perfusion, metabolic conversion, and transport. METHODS We proposed a slice-selective double spin echo sequence for dynamic hyperpolarized 13 C diffusion-weighted imaging. The proposed pulse sequence was optimized for a high field preclinical scanner through theoretical analysis and simulation. The performance of the method was compared to non-slice-selective double spin echo via in vivo studies. We also validated the sequence for dynamic ADC measurement in both phantom studies and transgenic mouse model of prostate cancer studies. RESULTS The optimized pulse sequence outperforms the traditional sequence with smaller saturation effects on the magnetization of hyperpolarized compounds that allowed more dynamic imaging frames covering a longer imaging time window. In pre-clinical studies (N = 8), the dynamic hyperpolarized lactate ADC maps of 6 studies in the prostate tumors showed an increase measured ADC over time, which might be related to lactate efflux from the tumor cells. CONCLUSIONS The proposed sequence was validated and shown to improve dynamic diffusion weighted imaging compared to the traditional double spin echo sequence, providing ADC maps of lactate through time.
Collapse
Affiliation(s)
- Xucheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.,UCSF/UC Berkeley Graduate Program in Bioengineering, University of California, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.,UCSF/UC Berkeley Graduate Program in Bioengineering, University of California, San Francisco, California
| |
Collapse
|
8
|
Sriram R, Gordon J, Baligand C, Ahamed F, Delos Santos J, Qin H, Bok RA, Vigneron DB, Kurhanewicz J, Larson PEZ, Wang ZJ. Non-Invasive Assessment of Lactate Production and Compartmentalization in Renal Cell Carcinomas Using Hyperpolarized 13C Pyruvate MRI. Cancers (Basel) 2018; 10:cancers10090313. [PMID: 30189677 PMCID: PMC6162434 DOI: 10.3390/cancers10090313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023] Open
Abstract
Optimal treatment selection for localized renal tumors is challenging due to their variable biological behavior and limited ability to pre-operatively assess their aggressiveness. We investigated hyperpolarized (HP) 13C pyruvate MRI to noninvasively assess tumor lactate production and compartmentalization, which are strongly associated with renal tumor aggressiveness. Orthotopic tumors were created in mice using human renal cell carcinoma (RCC) lines (A498, 786-O, UOK262) with varying expression of lactate dehydrogenase A (LDHA) which catalyzes the pyruvate-to-lactate conversion, and varying expression of monocarboxylate transporter 4 (MCT4) which mediates lactate export out of the cells. Dynamic HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C pyruvate-to-lactate conversion than the UOK262 and 786-O tumors, corresponding to higher A498 tumor LDHA expression. Additionally, diffusion-weighted HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C lactate apparent diffusion coefficients compared to 786-O tumors, with corresponding higher MCT4 expression, which likely reflects more rapid lactate export in the A498 tumors. Our data demonstrate the feasibility of HP 13C pyruvate MRI to inform on tumor lactate production and compartmentalization, and provide the scientific premise for future clinical investigation into the utility of this technique to noninvasively interrogate renal tumor aggressiveness and to guide treatment selection.
Collapse
Affiliation(s)
- Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Celine Baligand
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Fayyaz Ahamed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Gordon JW, Hansen RB, Shin PJ, Feng Y, Vigneron DB, Larson PEZ. 3D hyperpolarized C-13 EPI with calibrationless parallel imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:92-99. [PMID: 29476930 PMCID: PMC5856653 DOI: 10.1016/j.jmr.2018.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 05/08/2023]
Abstract
With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| | - Rie B Hansen
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yesu Feng
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Marco-Rius I, Gordon JW, Mattis AN, Bok R, Santos RD, Sukumar S, Larson PE, Vigneron DB, Ohliger MA. Diffusion-weighted imaging of hyperpolarized [ 13 C]urea in mouse liver. J Magn Reson Imaging 2018; 47:141-151. [PMID: 28419644 PMCID: PMC5645231 DOI: 10.1002/jmri.25721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To compare the apparent diffusion coefficient (ADC) of hyperpolarized (HP) [13 C,15 N]urea to the ADC of endogenous water in healthy and fibrotic mouse liver. MATERIALS AND METHODS ADC measurements for water and [13 C]urea were made in agarose phantoms at 14.1T. Next, the ADC of water and injected HP [13 C,15 N]urea were measured in eight CD1 mouse livers before and after induction of liver fibrosis using CCl4 . Liver fibrosis was quantified pathologically using the modified Brunt fibrosis score and compared to the measured ADC of water and urea. RESULTS In cell-free phantoms with 12.5% agarose, water ADC was nearly twice the ADC of urea (1.93 × 10-3 mm2 /s vs. 1.00 × 10-3 mm2 /s). The mean ADC values of water and [13 C,15 N]urea in healthy mouse liver (±SD) were nearly identical [(0.75 ± 0.11) × 10-3 mm2 /s and (0.75 ± 0.22) × 10-3 mm2 /s, respectively]. Mean water and [13 C,15 N]urea ADC values in fibrotic liver (±SD) were (0.84 ± 0.22) × 10-3 mm2 /s and (0.75 ± 0.15) × 10-3 mm2 /s, respectively. Neither water nor urea ADCs were statistically different in the fibrotic livers compared to baseline (P = 0.14 and P = 0.99, respectively). Water and urea ADCs were positively correlated at baseline (R2 = 0.52 and P = 0.045) but not in fibrotic livers (R2 = 0.23 and P = 0.23). CONCLUSION ADC of injected hyperpolarized urea in healthy liver reflects a smaller change as compared to free solution than ADC of water. This may reflect differences in cellular compartmentalization of the two compounds. No significant change in ADC of either water or urea were observed in relatively mild stages of liver fibrosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:141-151.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Subramanian Sukumar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|