1
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Liu X, Zhang Y, Zhu H, Jia B, Wang J, He Y, Zhang H. Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease. Front Cardiovasc Med 2024; 11:1345761. [PMID: 38720920 PMCID: PMC11076681 DOI: 10.3389/fcvm.2024.1345761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Artificial intelligence (AI) has made significant progress in the medical field in the last decade. The AI-powered analysis methods of medical images and clinical records can now match the abilities of clinical physicians. Due to the challenges posed by the unique group of fetuses and the dynamic organ of the heart, research into the application of AI in the prenatal diagnosis of congenital heart disease (CHD) is particularly active. In this review, we discuss the clinical questions and research methods involved in using AI to address prenatal diagnosis of CHD, including imaging, genetic diagnosis, and risk prediction. Representative examples are provided for each method discussed. Finally, we discuss the current limitations of AI in prenatal diagnosis of CHD, namely Volatility, Insufficiency and Independence (VII), and propose possible solutions.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Data Science and Intelligent Computing, International Innovation Institute, Beihang University, Hangzhou, China
| | - Yingying Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Data Science and Intelligent Computing, International Innovation Institute, Beihang University, Hangzhou, China
| | - Haogang Zhu
- Key Laboratory of Data Science and Intelligent Computing, International Innovation Institute, Beihang University, Hangzhou, China
- State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Bosen Jia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jingyi Wang
- Echocardiography Medical Center Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Beijing, China
| | - Yihua He
- Echocardiography Medical Center Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Beijing, China
| | - Hongjia Zhang
- Key Laboratory of Data Science and Intelligent Computing, International Innovation Institute, Beihang University, Hangzhou, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
3
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Sprinkart AM, Isaak A, Attenberger U, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI. Front Cardiovasc Med 2024; 11:1323443. [PMID: 38410246 PMCID: PMC10894983 DOI: 10.3389/fcvm.2024.1323443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose This study aims to evaluate deep learning (DL) denoising reconstructions for image quality improvement of Doppler ultrasound (DUS)-gated fetal cardiac MRI in congenital heart disease (CHD). Methods Twenty-five fetuses with CHD (mean gestational age: 35 ± 1 weeks) underwent fetal cardiac MRI at 3T. Cine imaging was acquired using a balanced steady-state free precession (bSSFP) sequence with Doppler ultrasound gating. Images were reconstructed using both compressed sensing (bSSFP CS) and a pre-trained convolutional neural network trained for DL denoising (bSSFP DL). Images were compared qualitatively based on a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent) and quantitatively by calculating the apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR). Diagnostic confidence was assessed for the atria, ventricles, foramen ovale, valves, great vessels, aortic arch, and pulmonary veins. Results Fetal cardiac cine MRI was successful in 23 fetuses (92%), with two studies excluded due to extensive fetal motion. The image quality of bSSFP DL cine reconstructions was rated superior to standard bSSFP CS cine images in terms of contrast [3 (interquartile range: 2-4) vs. 5 (4-5), P < 0.001] and endocardial edge definition [3 (2-4) vs. 4 (4-5), P < 0.001], while the extent of artifacts was found to be comparable [4 (3-4.75) vs. 4 (3-4), P = 0.40]. bSSFP DL images had higher aSNR and aCNR compared with the bSSFP CS images (aSNR: 13.4 ± 6.9 vs. 8.3 ± 3.6, P < 0.001; aCNR: 26.6 ± 15.8 vs. 14.4 ± 6.8, P < 0.001). Diagnostic confidence of the bSSFP DL images was superior for the evaluation of cardiovascular structures (e.g., atria and ventricles: P = 0.003). Conclusion DL image denoising provides superior quality for DUS-gated fetal cardiac cine imaging of CHD compared to standard CS image reconstruction.
Collapse
Affiliation(s)
- Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, PD Clinical Science, Hamburg, Germany
| | | | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| |
Collapse
|
4
|
Uus AU, Egloff Collado A, Roberts TA, Hajnal JV, Rutherford MA, Deprez M. Retrospective motion correction in foetal MRI for clinical applications: existing methods, applications and integration into clinical practice. Br J Radiol 2023; 96:20220071. [PMID: 35834425 PMCID: PMC7614695 DOI: 10.1259/bjr.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
Foetal MRI is a complementary imaging method to antenatal ultrasound. It provides advanced information for detection and characterisation of foetal brain and body anomalies. Even though modern single shot sequences allow fast acquisition of 2D slices with high in-plane image quality, foetal MRI is intrinsically corrupted by motion. Foetal motion leads to loss of structural continuity and corrupted 3D volumetric information in stacks of slices. Furthermore, the arbitrary and constantly changing position of the foetus requires dynamic readjustment of acquisition planes during scanning.
Collapse
Affiliation(s)
- Alena U. Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | - Alexia Egloff Collado
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | | | | | - Mary A. Rutherford
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | - Maria Deprez
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
5
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
6
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Isaak A, Pieper CC, Kuetting D, Faridi B, Strizek B, Attenberger U, Kipfmueller F, Herberg U, Geipel A, Luetkens JA. Fetal Cardiac Cine MRI with Doppler US Gating in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220129. [PMID: 36860838 PMCID: PMC9969216 DOI: 10.1148/ryct.220129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023]
Abstract
Purpose To apply Doppler US (DUS)-gated fetal cardiac cine MRI in clinical routine and investigate diagnostic performance in complex congenital heart disease (CHD) compared with that of fetal echocardiography. Materials and Methods In this prospective study (May 2021 to March 2022), women with fetuses with CHD underwent fetal echocardiography and DUS-gated fetal cardiac MRI on the same day. For MRI, balanced steady-state free precession cine images were acquired in the axial and optional sagittal and/or coronal orientations. Overall image quality was assessed on a four-point Likert scale (from 1 = nondiagnostic to 4 = good image quality). The presence of abnormalities in 20 fetal cardiovascular features was independently assessed by using both modalities. The reference standard was postnatal examination results. Differences in sensitivities and specificities were determined by using a random-effects model. Results The study included 23 participants (mean age, 32 years ± 5 [SD]; mean gestational age, 36 weeks ± 1). Fetal cardiac MRI was completed in all participants. The median overall image quality of DUS-gated cine images was 3 (IQR, 2.5-4). In 21 of 23 participants (91%), underlying CHD was correctly assessed by using fetal cardiac MRI. In one case, the correct diagnosis was made by using MRI only (situs inversus and congenitally corrected transposition of the great arteries). Sensitivities (91.8% [95% CI: 85.7, 95.1] vs 93.6% [95% CI: 88.8, 96.2]; P = .53) and specificities (99.9% [95% CI: 99.2, 100] vs 99.9% [95% CI: 99.5, 100]; P > .99) for the detection of abnormal cardiovascular features were comparable between MRI and echocardiography, respectively. Conclusion Using DUS-gated fetal cine cardiac MRI resulted in performance comparable with that of using fetal echocardiography for diagnosing complex fetal CHD.Keywords: Pediatrics, MR-Fetal (Fetal MRI), Cardiac, Heart, Congenital, Fetal Imaging, Cardiac MRI, Prenatal, Congenital Heart DiseaseClinical trial registration no. NCT05066399 Supplemental material is available for this article. © RSNA, 2023See also the commentary by Biko and Fogel in this issue.
Collapse
|
7
|
Piek M, Ryd D, Töger J, Testud F, Hedström E, Aletras AH. Fetal 3D cardiovascular cine image acquisition using radial sampling and compressed sensing. Magn Reson Med 2023; 89:594-604. [PMID: 36156292 PMCID: PMC10087603 DOI: 10.1002/mrm.29467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.
Collapse
Affiliation(s)
- Marjolein Piek
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Szabo A, Sun L, Seed M. Fetal Cardiovascular Magnetic Resonance. MAGNETIC RESONANCE IMAGING OF CONGENITAL HEART DISEASE 2023:361-382. [DOI: 10.1007/978-3-031-29235-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Han G, Jin T, Zhang L, Guo C, Gui H, Na R, Wang X, Bai H. Adoption of Compound Echocardiography under Artificial Intelligence Algorithm in Fetal Congenial Heart Disease Screening during Gestation. Appl Bionics Biomech 2022; 2022:6410103. [PMID: 35694277 PMCID: PMC9177317 DOI: 10.1155/2022/6410103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
This research was aimed at exploring the diagnostic and screening effect of composite echocardiography based on the artificial intelligence (AI) segmentation algorithm on fetal congenital heart disease (CHD) during pregnancy, so as to reduce the birth rate of newborns with CHD. A total of 204 fetuses with abnormal heart conditions were divided into group II, group C (optimized with the AI algorithm), and group W (not optimized with the AI algorithm). In addition, 9,453 fetuses with normal heart conditions were included in group I. The abnormal distribution of fetal heart and the difference of cardiac Z score between group II and group I were analyzed, and the diagnostic value of group C and group W for CHD was compared. The results showed that the segmentation details of the proposed algorithm were better than those of the convolutional neural network (CNN), and the Dice coefficient, precision, and recall values were higher than those of the CNN. In fetal CHD, the incidence of abnormal ultrasonic manifestations was ventricular septal defect (98/48.04%), abnormal right subclavian artery (29/14.22%), and persistent left superior vena cava (25/12.25%). The diagnostic sensitivity (75.0% vs. 51.5%), specificity (99.6% vs. 99.2%), accuracy (99.0% vs. 98.2%), negative predictive value (88.5% vs. 78.5%), and positive predictive value (99% vs. 57.7%) of echocardiography segmentation in group C were significantly higher than those in group W. To sum up, echocardiography segmented by the AI algorithm could obviously improve the diagnostic efficiency of fetal CHD during gestation. Cardiac ultrasound parameters of children with CHD changed greatly.
Collapse
Affiliation(s)
- Guowei Han
- Department of Ultrasonography, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
- Inner Mongolia Engineering and Technical Research Center for Personalized Medicine, Tongliao, 028000 Inner Mongolia, China
| | - Tianliang Jin
- Department of Ultrasonography, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Li Zhang
- Department of Ultrasonography, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Chen Guo
- Department of Obstetrics, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Hua Gui
- Genetic Testing Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Risu Na
- Genetic Testing Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Xuesong Wang
- Genetic Testing Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| | - Haihua Bai
- Inner Mongolia Engineering and Technical Research Center for Personalized Medicine, Tongliao, 028000 Inner Mongolia, China
- College of Life Sciences and Food Engineering of Inner Mongolia Minzu University, Tongliao, 028000 Inner Mongolia, China
| |
Collapse
|
12
|
Schulz A, Lloyd DFA, van Poppel MPM, Roberts TA, Steinweg JK, Pushparajah K, Hajnal JV, Razavi R. Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Sci Rep 2022; 12:5395. [PMID: 35354868 PMCID: PMC8967860 DOI: 10.1038/s41598-022-09327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 01/19/2023] Open
Abstract
The impact of fetal motion on phase contrast magnetic resonance imaging (PC-MRI) with metric optimized gating (MOG) remains unknown, despite being a known limitation to prenatal MRI. This study aims to describe the effect of motion on fetal flow-measurements using PC-MRI with MOG and to generate a scoring-system that could be used to predict motion-corrupted datasets at the time of acquisition. Ten adult volunteers underwent PC-MRI with MOG using a motion-device to simulate reproducible in-plane motion encountered in fetuses. PC-MRI data were acquired on ten fetuses. All ungated images were rated on their quality from 0 (no motion) to 2 (severe motion). There was no significant difference in measured flows with in-plane motion during the first and last third of sequence acquisition. Movement in the middle section of acquisition produced a significant difference while all referring ungated images were rated with a score of 2. Intra-Class-Correlation (ICC) for flow-measurements in adult and fetal datasets was lower for datasets with scores of 2. For fetal applications, the use of a simple three-point scoring system reliably identifies motion-corrupted sequences from unprocessed data at the time of acquisition, with a high score corresponding to significant underestimation of flow values and increased interobserver variability.
Collapse
Affiliation(s)
- Alexander Schulz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| | - David F A Lloyd
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Thomas A Roberts
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Johannes K Steinweg
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Berggren K, Ryd D, Heiberg E, Aletras AH, Hedström E. Super-Resolution Cine Image Enhancement for Fetal Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 56:223-231. [PMID: 34652860 DOI: 10.1002/jmri.27956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images. PURPOSE To combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time. STUDY TYPE Prospective. SUBJECTS Twenty-eight fetuses (gestational week 36 [interquartile range 33-38 weeks]). FIELD STRENGTH/SEQUENCE 1.5 T, balanced steady-state free precession (bSSFP) cine sequence. ASSESSMENT Images were acquired using fully sampled Doppler ultrasound-gated clinical bSSFP cine as reference, with equivalent cine sequences with decreased phase-encoding resolution (25%, 33%, and 50% of clinical standard). Two super-resolution methods based on convolutional neural networks were proposed and evaluated (phasrGAN and phasrresnet). Data were partitioned into training (36 cine slices), validation (3 cine slices), and test sets (67 cine slices) without overlap. Conventional reconstruction methods using bicubic interpolation and k-space zeropadding were used for comparison. Three blinded observers scored image quality between 1 and 10. STATISTICAL TESTS Image scores are reported as median [interquartile range] and were compared using Mann-Whitney's nonparametric test with P < 0.05 showing statistically significant differences. RESULTS Both proposed methods showed no significant difference in image quality compared to clinical images (8 [7-8.5]) down to 33% (phasrGAN 8 [6.5-8]; phasrresnet 8 [7-8], all P ≥ 0.19) phase-encoding resolution, i.e., up to three times faster image acquisition, whereas bicubic interpolation and k-space zeropadding showed significantly lower quality for 33% phase-encoding resolution (both 7 [6-8]). DATA CONCLUSION Super-resolution enhancement can be used for fetal cine cardiac MRI to reduce image acquisition time while maintaining image quality. This may lead to an improved success rate for fetal cine MR imaging, as the impact of fetal motion is lessened by shortened acquisitions. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Klas Berggren
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
15
|
Fetal cardiovascular magnetic resonance imaging. Pediatr Radiol 2020; 50:1881-1894. [PMID: 33252756 DOI: 10.1007/s00247-020-04902-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Fetal cardiovascular MRI is showing promise as a clinical diagnostic tool in the setting of congenital heart disease when the cardiac anatomy is unresolved by US or when complementary quantitative data on blood flow, oxygen saturation and hematocrit are required to aid in management. Compared with postnatal cardiovascular MRI, prenatal cardiovascular MRI still has some technical limitations. However, ongoing technical advances continue to improve the robustness and usability of fetal cardiovascular MRI. In this review, we provide an overview of the state of the art of fetal cardiovascular MRI and summarize the current focus of clinical application for this versatile technique.
Collapse
|
16
|
Roberts TA, van Amerom JFP, Uus A, Lloyd DFA, van Poppel MPM, Price AN, Tournier JD, Mohanadass CA, Jackson LH, Malik SJ, Pushparajah K, Rutherford MA, Razavi R, Deprez M, Hajnal JV. Fetal whole heart blood flow imaging using 4D cine MRI. Nat Commun 2020; 11:4992. [PMID: 33020487 PMCID: PMC7536221 DOI: 10.1038/s41467-020-18790-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Prenatal detection of congenital heart disease facilitates the opportunity for potentially life-saving care immediately after the baby is born. Echocardiography is routinely used for screening of morphological malformations, but functional measurements of blood flow are scarcely used in fetal echocardiography due to technical assumptions and issues of reliability. Magnetic resonance imaging (MRI) is readily used for quantification of abnormal blood flow in adult hearts, however, existing in utero approaches are compromised by spontaneous fetal motion. Here, we present and validate a novel method of MRI velocity-encoding combined with a motion-robust reconstruction framework for four-dimensional visualization and quantification of blood flow in the human fetal heart and major vessels. We demonstrate simultaneous 4D visualization of the anatomy and circulation, which we use to quantify flow rates through various major vessels. The framework introduced here could enable new clinical opportunities for assessment of the fetal cardiovascular system in both health and disease.
Collapse
Affiliation(s)
- Thomas A Roberts
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Alena Uus
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Anthony N Price
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jacques-Donald Tournier
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chloe A Mohanadass
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Laurence H Jackson
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Mary A Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| |
Collapse
|
17
|
Uus A, Zhang T, Jackson LH, Roberts TA, Rutherford MA, Hajnal JV, Deprez M. Deformable Slice-to-Volume Registration for Motion Correction of Fetal Body and Placenta MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2750-2759. [PMID: 32086200 PMCID: PMC7116020 DOI: 10.1109/tmi.2020.2974844] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruction methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.
Collapse
|
18
|
Goolaub DS, Xu J, Schrauben E, Sun L, Roy CW, Marini D, Seed M, Macgowan CK. Fetal Flow Quantification in Great Vessels Using Motion-Corrected Radial Phase Contrast MRI: Comparison With Cartesian. J Magn Reson Imaging 2020; 53:540-551. [PMID: 32815242 DOI: 10.1002/jmri.27334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phase contrast MRI in the great vessels is a potential clinical tool for managing fetal pathologies. One challenge is the uncontrollable fetal motion, potentially corrupting flow quantifications. PURPOSE To demonstrate improvements in fetal blood flow quantification in great vessels using retrospectively motion-corrected golden-angle radial phase contrast MRI relative to Cartesian phase contrast MRI. STUDY TYPE Method comparison. PHANTOM/SUBJECTS Computer simulation. Seventeen pregnant volunteers. FIELD STRENGTH/SEQUENCE 1.5T and 3T. Cartesian and golden-angle radial phase contrast MRI. ASSESSMENT Through computer simulations, radial (with and without retrospective motion correction) and Cartesian phase contrast MRI were compared using flow deviations. in vivo Cartesian and radial phase contrast MRI measurements and reconstruction qualities were compared in pregnancies. Cartesian data were reconstructed into gated reconstructions (CINEs) after cardiac gating with metric optimized gating (MOG). For radial data, real-time reconstructions were performed for motion correction and MOG followed by CINE reconstructions. STATISTICAL TESTS Wilcoxon signed-rank test. Linear regression. Bland-Altman plots. Student's t-test. RESULTS Simulations showed significant improvements (P < 0.05) in flow accuracy and reconstruction quality with motion correction ([mean/peak] flow errors with ±5 mm motion corruption: Cartesian [35 ± 1/115 ± 7] mL/s, motion uncorrected radial [25 ± 1/75 ± 2] mL/s and motion-corrected radial [1.0 ± 0.5/-5 ± 1] mL/s). in vivo Cartesian reconstructions without motion correction had lower quality than the motion-corrected radial reconstructions (P < 0.05). Across all fetal mean flow measurements, the bias [limits of agreement] between the two measurements were -0.2 [-76, 75] mL/min/kg, while the linear regression coefficients were (Mradial = 0.81 × MCartesian + 29.8 [mL/min/kg], r2 = 0.67). The corresponding measures for the peak fetal flows were -23 [-214, 167] mL/min/kg and (Pradial = 0.95 × PCartesian -1.2 [mL/min/kg], r2 = 0.80). Cartesian reconstructions of low quality showed significantly higher estimated mean and peak (P < 0.05) flows than the corresponding radial reconstructions. DATA CONCLUSION Simulations showed that radial phase contrast MRI with motion compensation improved flow accuracy. For fetal measurements, motion-corrected radial reconstructions showed better image quality than, and different flow values from, Cartesian reconstructions. Level of Evidence 1. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:540-551.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiawei Xu
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Schrauben
- Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher W Roy
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Marini
- Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Dong SZ, Zhu M, Ji H, Ren JY, Liu K. Fetal cardiac MRI: a single center experience over 14-years on the potential utility as an adjunct to fetal technically inadequate echocardiography. Sci Rep 2020; 10:12373. [PMID: 32704065 PMCID: PMC7378840 DOI: 10.1038/s41598-020-69375-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Unlike ultrasound (US) imaging, foetal magnetic resonance imaging (MRI) is not significantly limited by maternal obesity, oligohydramnios, uterine myoma, twins, and foetal lie, which impair US visualization of the foetus. The present study aimed to introduce our foetal cardiac MRI scanning technology and over 14-years of experience on the potential utility of foetal cardiac MRI examination as an adjunct to foetal technically inadequate echocardiography (Echo). This retrospective review included 1,573 pregnant women [1,619 foetuses (46 twins)] referred for a foetal cardiac MRI because of technically limited Echo. Foetal cardiac MRI was performed using two 1.5 T units. Among the 1,619 foetuses referred for cardiac MRI, 1,379 (85.2%) cases were followed up using postnatal imaging and/or surgery, 240 (14.8%), including three twins, had no follow-up confirmation because of pregnancy termination without autopsy or loss to follow-up. The results of the present study indicated that foetal cardiac MRI examinations can be a useful adjunct to foetal echocardiography when the technical limitations of echocardiography make it inadequate for diagnosis.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Hui Ji
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jing-Ya Ren
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Ke Liu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
20
|
Cho SKS, Darby JRT, Saini BS, Lock MC, Holman SL, Lim JM, Perumal SR, Macgowan CK, Morrison JL, Seed M. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol 2020; 598:2557-2573. [PMID: 32378201 DOI: 10.1113/jp279054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2 = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1 kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1 kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jessie Mei Lim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Advances in fetal echocardiography: myocardial deformation analysis, cardiac MRI and three-dimensional printing. Curr Opin Cardiol 2020; 34:35-40. [PMID: 30444761 DOI: 10.1097/hco.0000000000000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Advances in ultrasound technology have led to new ways of evaluating cardiac function and structure, including myocardial deformation imaging (strain and strain rate), cardiac MRI and three-dimensional (3D) printing. As ultrasound technology has improved, it has become possible to use these modalities to evaluate the fetal heart. This article will review some of the more recent developments in applying these techniques to the evaluation of fetal cardiac structure and function. RECENT FINDINGS Myocardial deformation analyses have led to the establishment of normative values for strain and strain rate in the fetal heart and have also been used to evaluate fetal heart function in both fetal disease states and maternal disease states. Technological advances in MRI technology, 3D imaging and 3D printing have opened up new methods of evaluating fetal structural heart disease. SUMMARY A deeper understanding of the subtleties of myocardial dysfunction in various fetal and maternal disease states may elucidate the pathophysiology involved and lead to new treatment and/or counseling paradigms that may ultimately affect outcome. Similarly, the ability to image the fetal heart in new ways, including fetal MRI and 3D printing, could potentially change fetal counseling techniques and prenatal planning.
Collapse
|
22
|
Abstract
Magnetic resonance imaging (MRI) is an appealing technology for fetal cardiovascular assessment. It can be used to visualize fetal cardiac and vascular anatomy, to quantify fetal blood flow, and to quantify fetal blood oxygen saturation and hematocrit. However, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the human fetus, the lack of conventional cardiac gating methods to synchronize data acquisition, and the potential corruption of MRI data due to maternal respiration and unpredictable fetal movements. In this review, we discuss recent technical advances in accelerated imaging, image reconstruction, cardiac gating, and motion compensation that have enabled dynamic MRI of the fetal heart.
Collapse
|
23
|
Shulman M, Cho E, Aasi B, Cheng J, Nithiyanantham S, Waddell N, Sussman D. Quantitative analysis of fetal magnetic resonance phantoms and recommendations for an anthropomorphic motion phantom. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:257-272. [PMID: 31487004 DOI: 10.1007/s10334-019-00775-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To provide a review and quantitative analysis of the available fetal MR imaging phantoms. MATERIALS AND METHODS A literature search was conducted across Pubmed, Google Scholar, and Ryerson University Library databases to identify fetal MR imaging phantoms. Phantoms were graded on a semi-quantitative scale in regards to four evaluation categories: (1) anatomical accuracy in size and shape, (2) dielectric conductivity similar to the simulated tissue, (3) relaxation times similar to simulated tissue, and (4) physiological motion similar to fetal gross body, cardiovascular, and breathing motion. This was followed by statistical analysis to identify significant findings. RESULTS Seventeen fetal phantoms were identified and had an average overall percentage accuracy of 26%, with anatomical accuracy being satisfied the most (56%) and physiological motion the least (7%). Phantoms constructed using 3D printing were significantly more accurate than conventionally constructed phantoms. DISCUSSION Currently available fetal phantoms lack accuracy and motion simulation. 3D printing may lead to higher accuracy compared with traditional manufacturing. Future research needs to focus on properly simulating both fetal anatomy and physiological motion to produce a phantom that is appropriate for fetal MRI sequence development and optimization.
Collapse
Affiliation(s)
- Michael Shulman
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Eunyoung Cho
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Bipin Aasi
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Jin Cheng
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Saiee Nithiyanantham
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Nicole Waddell
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Dafna Sussman
- Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada. .,The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada. .,Department of Biomedical Physics, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
24
|
Roy CW, Marini D, Lloyd DFA, Mawad W, Yoo SJ, Schrauben EM, Jaeggi E, Seed M, Macgowan CK. Preliminary Experience Using Motion Compensated CINE Magnetic Resonance Imaging to Visualise Fetal Congenital Heart Disease. Circ Cardiovasc Imaging 2019; 11:e007745. [PMID: 30558501 DOI: 10.1161/circimaging.118.007745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent advances in cardiovascular magnetic resonance (CMR) imaging have facilitated CINE imaging of the fetal heart. In this work, a preliminary investigation of the utility of multislice CINE CMR for assessing fetal congenital heart disease is performed and compared with echocardiography. METHODS AND RESULTS Multislice CINE CMR and echocardiography images were acquired in 25 pregnant women wherein the fetus had a suspected congenital heart defect based on routine obstetric ultrasound. Pathognomonic images were identified for each subject for qualitative comparison of CMR and echocardiography. Quantitative comparison of CMR and echocardiography was then performed by 2 reviewers using a binary scoring of 9 fetal cardiac anatomic features (identifiable/not-identifiable). Pathognomonic images demonstrated the ability of CMR to visualize a variety of congenital heart defects. Overall CMR was able to identify the majority of the 9 assessed fetal cardiac anatomic features (reviewer 1, 7.1±2.1; reviewer 2, 6.7±2.3). Although both reviewers identified more anatomic features with echocardiography (reviewer 1, 7.8±2.3; reviewer 2, 7.5±2.4; P=0.01), combining information from both modalities enabled identification of additional anatomic features across subjects (reviewer 1, 8.4±1.3; reviewer 2, 8.4±1.2). The primary limiting factor for CMR was inadequate coverage of the fetal cardiac anatomy or noncontiguous slices because of gross fetal movement. CONCLUSIONS CINE CMR enables visualization of fetal congenital heart disease. This work demonstrates the potential of CMR for diagnosing congenital heart disease in utero in conjunction with echocardiography during late gestation.
Collapse
Affiliation(s)
- Christopher W Roy
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Davide Marini
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - David F A Lloyd
- Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (D.F.A.L.).,Departments of Paediatric and Fetal Cardiology, Evelina Children's Hospital, London, United Kingdom (D.F.A.L.)
| | - Wadi Mawad
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Shi-Joon Yoo
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Eric M Schrauben
- Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| | - Edgar Jaeggi
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Mike Seed
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Canada (S.-J.Y., E.J., M.S.).,Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Canada (D.M., W.M., S.-J.Y., E.J., M.S.)
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Canada (C.W.R., C.K.M.).,Division of Translational Medicine (C.W.R., E.M.S., E.J., C.K.M)
| |
Collapse
|
25
|
Haris K, Hedström E, Kording F, Bidhult S, Steding-Ehrenborg K, Ruprecht C, Heiberg E, Arheden H, Aletras AH. Free-breathing fetal cardiac MRI with doppler ultrasound gating, compressed sensing, and motion compensation. J Magn Reson Imaging 2019; 51:260-272. [PMID: 31228302 PMCID: PMC6916642 DOI: 10.1002/jmri.26842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Fetal cardiovascular MRI complements ultrasound to assess fetal cardiovascular pathophysiology. Purpose To develop a free‐breathing method for retrospective fetal cine MRI using Doppler ultrasound (DUS) cardiac gating and tiny golden angle radial sampling (tyGRASP) for accelerated acquisition capable of detecting fetal movements for motion compensation. Study Type Feasibility study. Subjects Nine volunteers (gestational week 34–40). Short‐axis and four‐chamber views were acquired during maternal free‐breathing and breath‐hold. Field Strength/Sequence 1.5T cine balanced steady‐state free precession. Assessment A self‐gated reconstruction method was improved for clinical application by using 1) retrospective DUS gating, and 2) motion detection and rejection/correction algorithms for compensating for fetal motion. The free‐breathing reconstructions were qualitatively and quantitatively assessed, and DUS‐gating was compared with self‐gating in breath‐hold reconstructions. A scoring of 1–4 for overall image quality, cardiac, and extracardiac diagnostic quality was used. Statistical Tests Friedman's test was used to assess differences in qualitative scoring between observers. A Wilcoxon matched‐pairs signed rank test was used to assess differences between breath‐hold and free‐breathing acquisitions and between observers' quantitative measurements. Results In all cases, 111 free‐breathing and 145 breath‐hold acquisitions, the automatically calculated DUS‐based cardiac gating signal provided reconstructions of diagnostic quality (median score 4, range 1–4). Free‐breathing did not affect the DUS‐based cardiac gated retrospective radial reconstruction with respect to image or diagnostic quality (all P > 0.06). Motion detection with rejection/correction in k‐space produced high‐quality free‐breathing DUS‐based reconstructions [median 3, range (2–4)], whereas free‐breathing self‐gated methods failed in 80 out of 88 cases to produce a stable gating signal. Data Conclusion Free‐breathing fetal cine cardiac MRI based on DUS gating and tyGRASP with motion compensation yields diagnostic images. This simplifies acquisition for the pregnant woman and thus could help increase fetal cardiac MRI acceptance in the clinic. Level of Evidence: 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:260–272.
Collapse
Affiliation(s)
- Kostas Haris
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Bidhult
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Health Sciences, Physiotherapy, Lund University, Lund, Sweden
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Einar Heiberg
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Marini D, van Amerom J, Saini BS, Sun L, Seed M. MR imaging of the fetal heart. J Magn Reson Imaging 2019; 51:1030-1044. [PMID: 31190452 DOI: 10.1002/jmri.26815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, technological advances have enabled the acquisition of high spatial and temporal resolution cardiac magnetic resonance imaging (MRI) in the fetus. Fetal cardiac MRI has emerged as an alternative to ultrasound, which may be helpful to confirm a diagnosis of congenital heart disease when ultrasound assessment is hampered, for example in late gestation or in the setting of oligohydramnios. MRI also provides unique physiologic information, including vessel blood flow, oxygen saturation and hematocrit, which may be helpful to investigate cardiac and placental diseases. In this review, we summarize some of the main techniques and significant advances in the field to date. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:1030-1044.
Collapse
Affiliation(s)
- Davide Marini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua van Amerom
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Brahmdeep S Saini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Liqun Sun
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
27
|
Roy CW, Marini D, Segars WP, Seed M, Macgowan CK. Fetal XCMR: a numerical phantom for fetal cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2019; 21:29. [PMID: 31118056 PMCID: PMC6532268 DOI: 10.1186/s12968-019-0539-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Validating new techniques for fetal cardiovascular magnetic resonance (CMR) is challenging due to random fetal movement that precludes repeat measurements. Consequently, fetal CMR development has been largely performed using physical phantoms or postnatal volunteers. In this work, we present an open-source simulation designed to aid in the development and validation of new approaches for fetal CMR. Our approach, fetal extended Cardiac-Torso cardiovascular magnetic resonance imaging (Fetal XCMR), builds on established methods for simulating CMR acquisitions but is tailored toward the dynamic physiology of the fetal heart and body. We present comparisons between the Fetal XCMR phantom and data acquired in utero, resulting in image quality, anatomy, tissue signals and contrast. METHODS Existing extended Cardiac-Torso models are modified to create maternal and fetal anatomy, combined according to simulated motion, mapped to CMR contrast, and converted to CMR data. To provide a comparison between the proposed simulation and experimental fetal CMR images acquired in utero, images from a typical scan of a pregnant woman are included and simulated acquisitions were generated using matching CMR parameters, motion and noise levels. Three reconstruction (static, real-time, and CINE), and two motion estimation methods (translational motion, fetal heart rate) from data acquired in transverse, sagittal, coronal, and short-axis planes of the fetal heart were performed to compare to in utero acquisitions and demonstrate feasibility of the proposed simulation framework. RESULTS Overall, CMR contrast, morphologies, and relative proportions of the maternal and fetal anatomy are well represented by the Fetal XCMR images when comparing the simulation to static images acquired in utero. Additionally, visualization of maternal respiratory and fetal cardiac motion is comparable between Fetal XCMR and in utero real-time images. Finally, high quality CINE image reconstructions provide excellent delineation of fetal cardiac anatomy and temporal dynamics for both data types. CONCLUSION The fetal CMR phantom provides a new method for evaluating fetal CMR acquisition and reconstruction methods by simulating the underlying anatomy and physiology. As the field of fetal CMR continues to grow, new methods will become available and require careful validation. The fetal CMR phantom is therefore a powerful and convenient tool in the continued development of fetal cardiac imaging.
Collapse
Affiliation(s)
- Christopher W. Roy
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Vaud Switzerland
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
- Division of Translational Medicine, Peter Gilgan Centre for Research & Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Davide Marini
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - William Paul Segars
- Department of Radiology, Duke University Medical Center, Durham, North Carolina USA
| | - Mike Seed
- Division of Pediatric Cardiology, The Hospital for Sick Children, Toronto, Ontario Canada
- Departments of Pediatrics and Diagnostic Imaging, University of Toronto, Toronto, Ontario Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
- Division of Translational Medicine, Peter Gilgan Centre for Research & Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| |
Collapse
|
28
|
van Amerom JFP, Lloyd DFA, Deprez M, Price AN, Malik SJ, Pushparajah K, van Poppel MPM, Rutherford MA, Razavi R, Hajnal JV. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn Reson Med 2019; 82:1055-1072. [PMID: 31081250 PMCID: PMC6617816 DOI: 10.1002/mrm.27798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/24/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
Purpose To develop an MRI acquisition and reconstruction framework for volumetric cine visualization of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods Four‐dimensional (4D) depiction was achieved using a highly‐accelerated multi‐planar real‐time balanced steady‐state free precession acquisition combined with retrospective image‐domain techniques for motion correction, cardiac synchronization and outlier rejection. The framework was validated using a numerical phantom and evaluated in a study of 20 mid‐ to late‐gestational age human fetal subjects (23‐33 weeks gestational age). Reconstructed MR data were compared with matched ultrasound. A preliminary assessment of flow‐sensitive reconstruction using the velocity information encoded in the phase of real‐time images is included. Results Reconstructed 4D data could be visualized in any two‐dimensional plane without the need for highly specific scan plane prescription prior to acquisition or for maternal breath hold to minimize motion. Reconstruction was fully automated aside from user‐specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Evaluation suggested the reconstructed framework has the potential to be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusions The proposed methods show promise as a framework for motion‐compensated 4D assessment of the fetal heart and great vessels.
Collapse
Affiliation(s)
- Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, Kainz B, Deprez M, Lohezic M, Allsop J, Mathur S, Bellsham-Revell H, Vigneswaran T, Charakida M, Miller O, Zidere V, Sharland G, Rutherford M, Hajnal JV, Razavi R. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 2019; 393:1619-1627. [PMID: 30910324 PMCID: PMC6484696 DOI: 10.1016/s0140-6736(18)32490-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Two-dimensional (2D) ultrasound echocardiography is the primary technique used to diagnose congenital heart disease before birth. There is, however, a longstanding need for a reliable form of secondary imaging, particularly in cases when more detailed three-dimensional (3D) vascular imaging is required, or when ultrasound windows are of poor diagnostic quality. Fetal MRI, which is well established for other organ systems, is highly susceptible to fetal movement, particularly for 3D imaging. The objective of this study was to investigate the combination of prenatal MRI with novel, motion-corrected 3D image registration software, as an adjunct to fetal echocardiography in the diagnosis of congenital heart disease. METHODS Pregnant women carrying a fetus with known or suspected congenital heart disease were recruited via a tertiary fetal cardiology unit. After initial validation experiments to assess the general reliability of the approach, MRI data were acquired in 85 consecutive fetuses, as overlapping stacks of 2D images. These images were then processed with a bespoke open-source reconstruction algorithm to produce a super-resolution 3D volume of the fetal thorax. These datasets were assessed with measurement comparison with paired 2D ultrasound, structured anatomical assessment of the 2D and 3D data, and contemporaneous, archived clinical fetal MRI reports, which were compared with postnatal findings after delivery. FINDINGS Between Oct 8, 2015, and June 30, 2017, 101 patients were referred for MRI, of whom 85 were eligible and had fetal MRI. The mean gestational age at the time of MRI was 32 weeks (range 24-36). High-resolution (0·50-0·75 mm isotropic) 3D datasets of the fetal thorax were generated in all 85 cases. Vascular measurements showed good overall agreement with 2D echocardiography in 51 cases with paired data (intra-class correlation coefficient 0·78, 95% CI 0·68-0·84), with fetal vascular structures more effectively visualised with 3D MRI than with uncorrected 2D MRI (657 [97%] of 680 anatomical areas identified vs 358 [53%] of 680 areas; p<0·0001). When a structure of interest was visualised in both 2D and 3D data (n=358), observers gave a higher diagnostic quality score for 3D data in 321 (90%) of cases, with 37 (10%) scores tied with 2D data, and no lower scores than for 2D data (Wilcoxon signed rank test p<0·0001). Additional anatomical features were described in ten cases, of which all were confirmed postnatally. INTERPRETATION Standard fetal MRI with open-source image processing software is a reliable method of generating high-resolution 3D imaging of the fetal vasculature. The 3D volumes produced show good spatial agreement with ultrasound, and significantly improved visualisation and diagnostic quality compared with source 2D MRI data. This freely available combination requires minimal infrastructure, and provides safe, powerful, and highly complementary imaging of the fetal cardiovascular system. FUNDING Wellcome Trust/EPSRC Centre for Medical Engineering, National Institute for Health Research.
Collapse
Affiliation(s)
- David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Alexander Schulz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Bernard Kainz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Computing (BioMedIA), Imperial College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Maelene Lohezic
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joanna Allsop
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Sujeev Mathur
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Hannah Bellsham-Revell
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Trisha Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marietta Charakida
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gurleen Sharland
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mary Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
30
|
Takeshima H, Saitoh K, Nitta S, Shiodera T, Takeguchi T, Bannae S, Kuhara S. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging. Magn Reson Med Sci 2019. [PMID: 29540620 PMCID: PMC6326766 DOI: 10.2463/mrms.mp.2017-0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k – t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. Methods: The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x – f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k – t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x – f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. Results: For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k – t SENSE. The processing time is reduced from 4.1 s for k – t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k – t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. Conclusion: In the present study, k – t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x – f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k – t SENSE method.
Collapse
Affiliation(s)
- Hidenori Takeshima
- Clinical Application Research Department, Research and Development Center, Canon Medical Systems Corporation.,Analytics AI Laboratory, Corporate Research & Development Center, Toshiba Corporation
| | - Kanako Saitoh
- Analytics AI Laboratory, Corporate Research & Development Center, Toshiba Corporation
| | - Shuhei Nitta
- Analytics AI Laboratory, Corporate Research & Development Center, Toshiba Corporation
| | - Taichiro Shiodera
- Analytics AI Laboratory, Corporate Research & Development Center, Toshiba Corporation
| | - Tomoyuki Takeguchi
- Analytics AI Laboratory, Corporate Research & Development Center, Toshiba Corporation
| | - Shuhei Bannae
- Healthcare ICT Clinical Application Development Department, Healthcare ICT Development Center, Healthcare ICT Division, Canon Medical Systems Corporation
| | - Shigehide Kuhara
- Application Research Group, Clinical Application Research and Development Department, Center for Medical Research and Development, Toshiba Medical.,Department of Medical Radiological Technology, Faculty of Health Sciences, Kyorin University
| |
Collapse
|
31
|
Goolaub DS, Roy CW, Schrauben E, Sussman D, Marini D, Seed M, Macgowan CK. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson 2018; 20:77. [PMID: 30486832 PMCID: PMC6264058 DOI: 10.1186/s12968-018-0498-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To image multidimensional flow in fetuses using golden-angle radial phase contrast cardiovascular magnetic resonance (PC-CMR) with motion correction and retrospective gating. METHODS A novel PC-CMR method was developed using an ungated golden-angle radial acquisition with continuously incremented velocity encoding. Healthy subjects (n = 5, 27 ± 3 years, males) and pregnant females (n = 5, 34 ± 2 weeks gestation) were imaged at 3 T using the proposed sequence. Real-time reconstructions were first performed for retrospective motion correction and cardiac gating (using metric optimized gating, MOG). CINE reconstructions of multidimensional flow were then performed using the corrected and gated data. RESULTS In adults, flows obtained using the proposed method agreed strongly with those obtained using a conventionally gated Cartesian acquisition. Across the five adults, bias and limits of agreement were - 1.0 cm/s and [- 5.1, 3.2] cm/s for mean velocities and - 1.1 cm/s and [- 6.5, 4.3] cm/s for peak velocities. Temporal correlation between corresponding waveforms was also high (R~ 0.98). Calculated timing errors between MOG and pulse-gating RR intervals were low (~ 20 ms). First insights into multidimensional fetal blood flows were achieved. Inter-subject consistency in fetal descending aortic flows (n = 3) was strong with an average velocity of 27.1 ± 0.4 cm/s, peak systolic velocity of 70.0 ± 1.8 cm/s and an intra-class correlation coefficient of 0.95 between the velocity waveforms. In one fetal case, high flow waveform reproducibility was demonstrated in the ascending aorta (R = 0.97) and main pulmonary artery (R = 0.99). CONCLUSION Multidimensional PC-CMR of fetal flow was developed and validated, incorporating retrospective motion compensation and cardiac gating. Using this method, the first quantification and visualization of multidimensional fetal blood flow was achieved using CMR.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Medical Biophysics, University of Toronto, Toronto, ON Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| | | | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| | - Dafna Sussman
- Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael’s Hospital, Toronto, ON Canada
| | - Davide Marini
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON Canada
- Paediatrics, University of Toronto, Toronto, ON Canada
| | - Christopher K. Macgowan
- Medical Biophysics, University of Toronto, Toronto, ON Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
32
|
Dong SZ, Zhu M. MR imaging of subaortic and retroesophageal anomalous courses of the left brachiocephalic vein in the fetus. Sci Rep 2018; 8:14781. [PMID: 30283087 PMCID: PMC6170443 DOI: 10.1038/s41598-018-33033-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to report fetal cases of subaortic and retroesophageal anomalous courses of the left brachiocephalic vein (LBCV) evaluated by fetal cardiac magnetic resonance imaging (MRI). A retrospective review of 7282 fetal cardiac MRI from June 2006 to March 2017, nine cases of anomalous courses of the LBCV were correctly diagnosed by fetal cardiac MRI, one case of abnormal subaortic left brachiocephalic vein (ASLBV) missed by fetal MRI was identified postnatally during further imaging of the TOF. The diagnosis was confirmed postnatally by cardiac CT/MRI. An ASLBV was found in 8 cases, a retroesophageal LBCV was found in 2 additional cases with right aortic arch and aberrant left subclavian artery. 3 of 8 ASLBV cases were with a right aortic arch, 4 ASLBV cases had additional cardiovascular anomalies with one case isolated. 7 of 8 ASLBV and 2 retroesophageal LBCV were correctly diagnosed by fetal cardiac MRI; however fetal cardiac MRI missed 2 cases of associated pulmonary atresia (PA). Prenatal echocardiography (echo) correctly diagnosed five ASLBV and one retroesophageal LBCV as well as associated intracardiac anomalies. Fetal cardiac MRI can be a useful adjunct in the identification of subaortic and retroesophageal anomalous courses of the LBCV prenatally.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
33
|
Chen Q, Xie G, Luo C, Yang X, Zhu J, Lee J, Su S, Liang D, Zhang X, Liu X, Li Y, Zheng H. A Dedicated 36-Channel Receive Array for Fetal MRI at 3T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2290-2297. [PMID: 29994303 PMCID: PMC6312740 DOI: 10.1109/tmi.2018.2839191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to a lack of fetal imaging coils, the standard commercial abdominal coil is often used for fetal imaging, the performance of which is limited by its insufficient coverage, element number, and Signal-to-noise ratio (SNR). In this paper, a dedicated 36-channel coil array, of which size can best fit the body sizes of pregnancy gestation from 20 to 37+ weeks, was designed for fetal imaging at 3T. SNR with full phase encoding and G-factor denoted as noise amplification for parallel imaging were quantitatively evaluated by phantom studies. Compared with a commercial abdominal coil array, the proposed 36-channel fetal array provides not only SNR improvements in full phase encoding (with 10% in the region where the whole fetal body was located, and up to 40% in the edge region where the fetal brain and heart may appear) but also an augmented parallel imaging capability and remarkable SNR improvements at high acceleration factors.
Collapse
Affiliation(s)
- Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Guoxi Xie
- School of Basic Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Luo
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xing Yang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Chengdu 610054, China
| | - Jin Zhu
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Jo Lee
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Shi Su
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Dong Liang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158 USA, and also with the UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA 94158 USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, and also with Shenzhen Key Laboratory for MRI, Shenzhen 518055, China
| | - Ye Li
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| | - Hairong Zheng
- Corresponding authors: Ye Li, and Hairong Zheng. ; .
| |
Collapse
|
34
|
Antoni ST, Lehmann S, Neidhardt M, Fehrs K, Ruprecht C, Kording F, Adam G, Schupp S, Schlaefer A. Model checking for trigger loss detection during Doppler ultrasound-guided fetal cardiovascular MRI. Int J Comput Assist Radiol Surg 2018; 13:1755-1766. [PMID: 30078152 DOI: 10.1007/s11548-018-1832-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Ultrasound (US) is the state of the art in prenatal diagnosis to depict fetal heart diseases. Cardiovascular magnetic resonance imaging (CMRI) has been proposed as a complementary diagnostic tool. Currently, only trigger-based methods allow the temporal and spatial resolutions necessary to depict the heart over time. Of these methods, only Doppler US (DUS)-based triggering is usable with higher field strengths. DUS is sensitive to motion. This may lead to signal and, ultimately, trigger loss. If too many triggers are lost, the image acquisition is stopped, resulting in a failed imaging sequence. Moreover, losing triggers may prolong image acquisition. Hence, if no actual trigger can be found, injected triggers are added to the signal based on the trigger history. METHOD We use model checking, a technique originating from the computer science domain that formally checks if a model satisfies given requirements, to simultaneously model heart and respiratory motion and to decide whether respiration has a prominent effect on the signal. Using bounds on the physiological parameters and their variability, the method detects when changes in the signal are due to respiration. We use this to decide when to inject a trigger. RESULTS In a real-world scenario, we can reduce the number of falsely injected triggers by 94% from more than 87% to less than 5%. On a subset of motion that would allow CMRI, the number can be further reduced to below 0.2%. In a study using simulations with a robot, we show that our method works for different types of motions, motion ranges, starting positions and heartbeat traces. CONCLUSION While DUS is a promising approach for fetal CMRI, correct trigger injection is critical. Our model checking method can reduce the number of wrongly injected triggers substantially, providing a key prerequisite for fast and artifact free CMRI.
Collapse
Affiliation(s)
- Sven-Thomas Antoni
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.
| | - Sascha Lehmann
- Institute for Software Systems, Hamburg University of Technology, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| | - Kai Fehrs
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ruprecht
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Kording
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Center for Radiology and Endoscopy, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle Schupp
- Institute for Software Systems, Hamburg University of Technology, Hamburg, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
35
|
Chaptinel J, Yerly J, Mivelaz Y, Prsa M, Alamo L, Vial Y, Berchier G, Rohner C, Gudinchet F, Stuber M. Author Correction: Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep 2018; 8:7886. [PMID: 29760513 PMCID: PMC5951820 DOI: 10.1038/s41598-018-25806-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jerome Chaptinel
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jerome Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Yvan Mivelaz
- Division of Pediatric Cardiology, Department Woman-Mother-Child, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prsa
- Division of Pediatric Cardiology, Department Woman-Mother-Child, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Leonor Alamo
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Yvan Vial
- Division of Obstetrics and Gynecology, Department Woman-Mother-Child, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Gregoire Berchier
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Chantal Rohner
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - François Gudinchet
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.
| |
Collapse
|
36
|
Kording F, Schoennagel BP, de Sousa MT, Fehrs K, Adam G, Yamamura J, Ruprecht C. Evaluation of a Portable Doppler Ultrasound Gating Device for Fetal Cardiac MR Imaging: Initial Results at 1.5T and 3T. Magn Reson Med Sci 2018; 17:308-317. [PMID: 29467359 PMCID: PMC6196307 DOI: 10.2463/mrms.mp.2017-0100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: Fetal cardiac MRI has the potential to play an important role in the assessment of fetal cardiac pathologies, but it is up to now not feasible due to a missing gating method. The purpose of this work was the evaluation of Doppler ultrasound (DUS) for external fetal cardiac gating with regard to compatibility, functionality, and reliability. Preliminary results were assessed performing fetal cardiac MRI. Methods: An MRI conditional DUS device was developed to obtain a gating signal from the fetal heart. The MRI compatibility was evaluated at 1.5T and 3T using B1 field maps and gradient echo images. The quality and sensitivity of the DUS device to detect the fetal heart motion for cardiac gating were evaluated outside the MRI room in 15 fetuses. A dynamic fetal cardiac phantom was employed to evaluate distortions of the DUS device and gating signal due to electromagnetic interferences at 1.5T and 3T. In the first in vivo experience, dynamic fetal cardiac images were acquired in four-chamber view at 1.5T and 3T in two fetuses. Results: The maximum change in the B1 field and signal intensity with and without the DUS device was <6.5% for 1.5T and 3T. The sensitivity of the DUS device to detect the fetal heartbeat was 99.1%. Validation of the DUS device using the fetal cardiac phantom revealed no electromagnetic interferences at 1.5T or 3T and a high correlation to the simulated heart frequencies. Fetal cardiac cine images were successfully applied and showed good image quality. Conclusion: An MR conditional DUS gating device was developed and evaluated revealing safety, compatibility, and reliability for different field strengths. In a preliminary experience, the DUS device was successfully applied for in vivo fetal cardiac imaging at 1.5T and 3T.
Collapse
Affiliation(s)
- Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| | - Bjoern P Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | | | - Kai Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf
| | - Christian Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf.,northh medical GmbH
| |
Collapse
|
37
|
Crowe LA, Manasseh G, Chmielewski A, Hachulla AL, Speicher D, Greiser A, Muller H, de Perrot T, Vallee JP, Salomir R. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T. IEEE Trans Biomed Eng 2017; 65:294-306. [PMID: 29053451 DOI: 10.1109/tbme.2017.2764111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. METHODS A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. RESULTS Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. CONCLUSION We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. SIGNIFICANCE The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.
Collapse
|