1
|
Shin SH, Moazamian D, Tang Q, Jerban S, Ma Y, Du J, Chang EY. Towards assessing and improving the reliability of ultrashort echo time quantitative magnetization transfer (UTE-qMT) MRI of cortical bone: In silico and ex vivo study. MAGMA (NEW YORK, N.Y.) 2024; 37:983-992. [PMID: 39126439 PMCID: PMC11582156 DOI: 10.1007/s10334-024-01190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone. MATERIALS AND METHODS Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans. RESULTS The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR. DISCUSSION The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Qingbo Tang
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
2
|
Feuerriegel GC, Marth AA, Goller SS, Hilbe M, Sommer S, Sutter R. Quantifying Tendon Degeneration Using Magic Angle Insensitive Ultra-Short Echo Time Magnetization Transfer: A Phantom Study in Bovine Tendons. Invest Radiol 2024; 59:691-698. [PMID: 38598670 PMCID: PMC11460758 DOI: 10.1097/rli.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES The aim of this study was to qualitatively and quantitatively assess changes in bovine flexor tendons before and after collagen degradation and at different angles in relation to the static B 0 field using 3-dimensional ultra-short echo time (UTE) magnetization transfer (MT) imaging within a clinically feasible acquisition time. MATERIALS AND METHODS Eight bovine flexor tendons were examined at 3 T magnetic resonance imaging including 3-dimensional UTE MT and UTE T2* research application sequences (acquired within 4:04 and 6:38 minutes, respectively) before and after enzyme-induced degradation. The tendons were divided into 2 groups: group 1 (controls) treated with phosphate-buffered saline and group 2 treated with collagenase I to induce collagen degeneration. Magnetic resonance imaging was repeated at 0, 27, 55, and 90 degrees to the B 0 field. To calculate quantitative tissue properties, all tendons were semiautomatically segmented, and changes in quantitative UTE T2* and UTE MT ratios (MTRs) were compared at different angles and between groups. In addition to descriptive statistics, the coefficient of variation was calculated to compare UTE MT and UTE T2* imaging. RESULTS Ultra-short echo time MTR showed a significantly lower coefficient of variation compared with UTE T2* values, indicating a more robust imaging method (UTE MTR 9.64%-11.25%, UTE T2* 18.81%-24.06%, P < 0.001). Both methods showed good performance in detecting degenerated tendons using histopathology as reference standard, with UTE MT imaging having a better area under the curve than UTE T2* mapping (0.918 vs 0.865). Falsely high UTE T2* values were detected at the 55 degrees acquisition angle, whereas UTE MTR values were robust, that is, insensitive to the MAE. CONCLUSIONS Ultra-short echo time MT imaging is a reliable method for quantifying tendon degeneration that is robust to the MAE and can be acquired in a clinically reasonable time.
Collapse
|
3
|
Guo T, Song Y, Tong J, Jiao S, Shen C, Wang H, Cui J, Dai D, Ma J, Chen M. Collagen degradation assessment with an in vitro rotator cuff tendinopathy model using multiparametric ultrashort-TE magnetization transfer (UTE-MT) imaging. Magn Reson Med 2024; 92:1658-1669. [PMID: 38725197 DOI: 10.1002/mrm.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE This study aims to assess ultrashort-TE magnetization transfer (UTE-MT) imaging of collagen degradation using an in vitro model of rotator cuff tendinopathy. METHODS Thirty-six supraspinatus tendon specimens were divided into three groups and treated with 600 U collagenase (Group 1), 150 U collagenase (Group 2), and phosphate buffer saline (Group 3). UTE-MT imaging was performed to assess changes in macromolecular fraction (MMF), macromolecule transverse relaxation time (T2m), water longitudinal relaxation rate constant (R1m), the magnetization exchange rate from the macromolecular to water pool (Rm0 w) and from water to the macromolecular pool (Rm0 m), and magnetization transfer ratio (MTR) at baseline and following digestion and their differences between groups. Biochemical and histological studies were conducted to determine the extent of collagen degradation. Correlation analyses were performed with MMF, T2m, R1m, Rm0 w, Rm0 m, and MTR, respectively. Univariate and multivariate linear regression analyses were performed to evaluate combinations of UTE-MT parameters to predict collagen degradation. RESULTS MMF, T2m, R1m, Rm0 m, and MTR decreased after digestion. MMF (r = -0.842, p < 0.001), MTR (r = -0.78, p < 0.001), and Rm0 m (r = -0.662, p < 0.001) were strongly negatively correlated with collagen degradation. The linear regression model of differences in MMF and Rm0 m before and after digestion explained 68.9% of collagen degradation variation in the tendon. The model of postdigestion in MMF and T2m and the model of MTR explained 54.2% and 52.3% of collagen degradation variation, respectively. CONCLUSION This study highlighted the potential of UTE-MT parameters for evaluation of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Tan Guo
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Song
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinlian Tong
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Jiao
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Shen
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Ma
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Jerban S, Ma Y, Wei Z, Shen M, Ibrahim Z, Jang H, Lu P, Chang DG, Woods G, Chung CB, Chang EY, Du J. Ultrashort echo time MRI detects significantly lower collagen but higher pore water in the tibial cortex of female patients with osteopenia and osteoporosis. J Bone Miner Res 2024; 39:707-716. [PMID: 38591788 PMCID: PMC11523241 DOI: 10.1093/jbmr/zjae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Ultrashort echo time (UTE) MRI can quantify the major proton pool densities in cortical bone, including total (TWPD), bound (BWPD), and pore water (PWPD) proton densities, as well as the macromolecular proton density (MMPD), associated with the collagen content, which is calculated using macromolecular fraction (MMF) from UTE magnetization transfer (UTE-MT) modeling. This study aimed to investigate the differences in water and collagen contents in tibial cortical bone, between female osteopenia (OPe) patients, osteoporosis (OPo) patients, and young participants (Young). Being postmenopausal and above 55 yr old were the inclusion criteria for OPe and OPo groups. The tibial shaft of 14 OPe (72.5 ± 6.8 yr old), 31 OPo (72.0 ± 6.4 yr old), and 31 young subjects (28.0 ± 6.1 yr old) were scanned using a knee coil on a clinical 3T scanner. Basic UTE, inversion recovery UTE, and UTE-MT sequences were performed. Investigated biomarkers were compared between groups using Kruskal-Wallis test. Spearman's correlation coefficients were calculated between the TH DXA T-score and UTE-MRI results. MMF, BWPD, and MMPD were significantly lower in OPo patients than in the young group, whereas T1, TWPD, and PWPD were significantly higher in OPo patients. The largest OPo/Young average percentage differences were found in MMF (41.9%), PWPD (103.5%), and MMPD (64.0%). PWPD was significantly higher (50.7%), while BWPD was significantly lower (16.4%) in OPe than the Young group on average. MMF was found to be significantly lower (27%) in OPo patients compared with OPe group. T1, MMF, TWPD, PWPD, and MMPD values significantly correlated with the TH DXA T-scores (provided by the patients and only available for OPe and OPo patients). DXA T-score showed the highest correlations with PWPD (R = 0.55) and MMF (R = 0.56) values. TWPD, PWPD, and MMF estimated using the UTE-MRI sequences were recommended to evaluate individuals with OPe and OPo.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Meghan Shen
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Zubaid Ibrahim
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA 92093, United States
| | - Pengzhe Lu
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
- Department of Neurosciences, University of California, San Diego, CA 92093, United States
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, United States
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA 92093, United States
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
5
|
Jerban S, Barrere V, Namiranian B, Wu Y, Alenezi S, Dorthe E, Dlima D, Shah SB, Chung CB, Du J, Andre MP, Chang EY. Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties. Eur Radiol Exp 2024; 8:21. [PMID: 38316687 PMCID: PMC10844174 DOI: 10.1186/s41747-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| | - Victor Barrere
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Michael P Andre
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
6
|
Jerban S, Ma Y, Tang Q, Fu E, Szeverenyi N, Jang H, Chung CB, Du J, Chang EY. Robust Assessment of Macromolecular Fraction (MMF) in Muscle with Differing Fat Fraction Using Ultrashort Echo Time (UTE) Magnetization Transfer Modeling with Measured T1. Diagnostics (Basel) 2023; 13:876. [PMID: 36900019 PMCID: PMC10001337 DOI: 10.3390/diagnostics13050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely regarded as the most comprehensive imaging modality to assess skeletal muscle quality and quantity. Magnetization transfer (MT) imaging can be used to estimate the fraction of water and macromolecular proton pools, with the latter including the myofibrillar proteins and collagen, which are related to the muscle quality and its ability to generate force. MT modeling combined with ultrashort echo time (UTE-MT modeling) may improve the evaluation of the myotendinous junction and regions with fibrotic tissues in the skeletal muscles, which possess short T2 values and higher bound-water concentration. The fat present in muscle has always been a source of concern in macromolecular fraction (MMF) calculation. This study aimed to investigate the impact of fat fraction (FF) on the estimated MMF in bovine skeletal muscle phantoms embedded in pure fat. MMF was calculated for several regions of interest (ROIs) with differing FFs using UTE-MT modeling with and without T1 measurement and B1 correction. Calculated MMF using measured T1 showed a robust trend, particularly with a negligible error (<3%) for FF < 20%. Around 5% MMF reduction occurred for FF > 30%. However, MMF estimation using a constant T1 was robust only for regions with FF < 10%. The MTR and T1 values were also robust for only FF < 10%. This study highlights the potential of the UTE-MT modeling with accurate T1 measurement for robust muscle assessment while remaining insensitive to fat infiltration up to moderate levels.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
- Department of Orthopedic Surgery, University of California, La Jolla, San Diego, CA 92093, USA
| | - Yajun Ma
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Qingbo Tang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eddie Fu
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Nikolaus Szeverenyi
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Christine B. Chung
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, La Jolla, San Diego, CA 92093, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA 92161, USA
| |
Collapse
|
7
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
8
|
Jerban S, Ma Y, Afsahi AM, Lombardi A, Wei Z, Shen M, Wu M, Le N, Chang DG, Chung CB, Du J, Chang EY. Lower Macromolecular Content in Tendons of Female Patients with Osteoporosis versus Patients with Osteopenia Detected by Ultrashort Echo Time (UTE) MRI. Diagnostics (Basel) 2022; 12:1061. [PMID: 35626217 PMCID: PMC9140093 DOI: 10.3390/diagnostics12051061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/30/2023] Open
Abstract
Tendons and bones comprise a special interacting unit where mechanical, biochemical, and metabolic interplays are continuously in effect. Bone loss in osteoporosis (OPo) and its earlier stage disease, osteopenia (OPe), may be coupled with a reduction in tendon quality. Noninvasive means for quantitatively evaluating tendon quality during disease progression may be critically important for the improvement of characterization and treatment optimization in patients with bone mineral density disorders. Though clinical magnetic resonance imaging (MRI) sequences are not typically capable of directly visualizing tendons, ultrashort echo time MRI (UTE-MRI) is able to acquire a high signal from tendons. Magnetization transfer (MT) modeling combined with UTE-MRI (i.e., UTE-MT-modeling) can indirectly assess macromolecular proton content in tendons. This study aimed to determine whether UTE-MT-modeling could detect differences in tendon quality across a spectrum of bone health. The lower legs of 14 OPe (72 ± 6 years) and 31 OPo (73 ± 6 years) female patients, as well as 30 female participants with normal bone (Normal-Bone, 36 ± 19 years), are imaged using UTE sequences on a 3T MRI scanner. Institutional review board approval is obtained for the study, and all recruited subjects provided written informed consent. A T1 measurement and UTE-MT-modeling are performed on the anterior tibialis tendon (ATT), posterior tibialis tendon (PTT), and the proximal Achilles tendon (PAT) of all subjects. The macromolecular fraction (MMF) is estimated as the main measure from UTE-MT-modeling. The mean MMF in all the investigated tendons was significantly lower in OPo patients compared with the Normal-Bone cohort (mean difference of 24.2%, p < 0.01), with the largest Normal-Bone vs. OPo difference observed in the ATT (mean difference of 32.1%, p < 0.01). Average MMF values of all the studied tendons are significantly lower in the OPo cohort compared with the OPe cohort (mean difference 16.8%, p = 0.02). Only the PPT shows significantly higher T1 values in OPo patients compared with the Normal-Bone cohort (mean difference 17.6%, p < 0.01). Considering the differences between OPo and OPe groups with similar age ranges, tendon deterioration associated with declining bone health was found to be larger than a priori detected differences caused purely by aging, highlighting UTE-MT MRI techniques as useful methods in assessing tendon quality over the course of progressive bone weakening.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Alecio Lombardi
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Meghan Shen
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
| | - Nicole Le
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas G. Chang
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (Y.M.); (A.M.A.); (A.L.); (Z.W.); (M.S.); (M.W.); (N.L.); (C.B.C.); (J.D.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
9
|
Cao X, Liao C, Iyer SS, Wang Z, Zhou Z, Dai E, Liberman G, Dong Z, Gong T, He H, Zhong J, Bilgic B, Setsompop K. Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging. Magn Reson Med 2022; 88:133-150. [PMID: 35199877 DOI: 10.1002/mrm.29194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, California, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhixing Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gilad Liberman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ting Gong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Liu J, Liao JW, Li W, Chen XJ, Feng JX, Yao L, Huang PH, Su ZH, Lu H, Liao YT, Li SL, Ma YJ. Assessment of Osteoporosis in Lumbar Spine: In Vivo Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone. Front Endocrinol (Lausanne) 2022; 13:801930. [PMID: 35250862 PMCID: PMC8888676 DOI: 10.3389/fendo.2022.801930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lin Yao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Pan-Hui Huang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | | | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Afsahi AM, Ma Y, Jang H, Jerban S, Chung CB, Chang EY, Du J. Ultrashort Echo Time Magnetic Resonance Imaging Techniques: Met and Unmet Needs in Musculoskeletal Imaging. J Magn Reson Imaging 2021; 55:1597-1612. [PMID: 34962335 DOI: 10.1002/jmri.28032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, California, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
12
|
Macromolecular fraction (MMF) from 3D ultrashort echo time cones magnetization transfer (3D UTE-Cones-MT) imaging predicts meniscal degeneration and knee osteoarthritis. Osteoarthritis Cartilage 2021; 29:1173-1180. [PMID: 33882334 PMCID: PMC8971054 DOI: 10.1016/j.joca.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscal degeneration is strongly associated with osteoarthritis (OA). We aimed to evaluate a 3D ultrashort-echo-time Cones magnetization transfer (UTE-Cones-MT) sequence for quantification of macromolecular fraction (MMF) and MT ratio (MTR) in menisci of healthy volunteers and patients with different degrees of OA. METHODS Patients with mild OA (n = 19; 37-86 years; 10 males) or advanced OA (n = 12; 52-88 years; 4 males) and healthy volunteers (n = 17; 20-49 years; 7 males) were scanned with T2-FSE and UTE-Cones-MT sequences at 3T. Morphological assessment was performed using meniscal whole-organ magnetic resonance imaging score (WORMS). MMF and MTR were calculated for menisci, and correlated with age and meniscal WORMS scores. The diagnostic efficiency was performed by using receiver operating characteristic (ROC) curve and the area under the curve (AUC) analyses. RESULTS Decreased MMF and MTR were observed in menisci of patients with mild or advanced OA compared with healthy subjects, and in menisci with tears (Grade 2-4) compared with normal menisci (Grade 0). Significant negative correlations were observed between MMF (r = -0.769, P < 0.01), MTR (r = -0.320, P < 0.01), and meniscal WORMS score. There was a mild negative correlation between MMF (r = -0.438, P < 0.01), MTR (r = -0.289, P < 0.01), and age. The AUC values of MMF and MTR in the four horns of meniscus and the posterior horn medial meniscus for differentiating OA patients from healthy volunteers were 0.762 and 0.699, and 0.835 and 0.883, respectively. CONCLUSION The 3D UTE-Cones-MT biomarkers of MTR and especially MMF can detect compositional changes in meniscus and differentiate healthy subjects from patients with mild or advanced knee OA.
Collapse
|
13
|
Afarideh M, Jiang K, Ferguson CM, Woollard JR, Glockner JF, Lerman LO. Magnetization Transfer Imaging Predicts Porcine Kidney Recovery After Revascularization of Renal Artery Stenosis. Invest Radiol 2021; 56:86-93. [PMID: 33405430 PMCID: PMC7793546 DOI: 10.1097/rli.0000000000000711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
MATERIALS AND METHODS Stenotic kidney (STK) and contralateral kidney magnetization transfer ratios (MTRs; Mt/M0) were measured at 3.0-T magnetic resonance imaging, at offset frequencies of 600 and 1000 Hz, before and 1 month post-PTRA in 7 RVD pigs. Stenotic kidney MTR was correlated to renal perfusion, renal blood flow (RBF), and glomerular filtration rate (GFR), determined using multidetector computed tomography and with ex vivo renal fibrosis (trichrome staining). Untreated RVD (n = 6) and normal pigs (n = 7) served as controls. RESULTS Renovascular disease induced hypertension and renal dysfunction. Blood pressure and renal perfusion were unchanged post-PTRA, but GFR and RBF increased. Baseline cortical STK-MTR predicted post-PTRA renal perfusion and RBF, and MTR changes associated inversely with changes in perfusion and normalized GFR. Stenotic kidney MTR at 600 Hz showed closer association with renal parameters, but both frequencies predicted post-PTRA cortical fibrosis. CONCLUSIONS Renal STK-MTR, particularly at 600 Hz offset, is sensitive to hemodynamic changes after PTRA in swine RVD and capable of noninvasively predicting post-PTRA kidney perfusion, RBF, and fibrosis. Therefore, STK-MTR may be a valuable tool to predict renal hemodynamic and functional recovery, as well as residual kidney fibrosis after revascularization in RVD.
Collapse
Affiliation(s)
| | - Kai Jiang
- From the Division of Nephrology and Hypertension
| | | | | | | | | |
Collapse
|
14
|
Wei Z, Jang H, Bydder GM, Yang W, Ma YJ. Fast T 1 measurement of cortical bone using 3D UTE actual flip angle imaging and single-TR acquisition (3D UTE-AFI-STR). Magn Reson Med 2021; 85:3290-3298. [PMID: 33404142 DOI: 10.1002/mrm.28655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To describe a new method for accurate T1 measurement of cortical bone that fits the data sets of both 3D UTE actual flip angle imaging (UTE-AFI) and UTE with a single TR (UTE-STR) simultaneously (UTE-AFI-STR). THEORY AND METHODS To make both the constant values and longitudinal mapping functions in the signal equations for UTE-AFI and UTE-STR identical, the same RF pulses and flip angles were used. Therefore, there were three unknowns in the three equations. This was sufficient to fit the data. Numerical simulation as well as ex vivo and in vivo cortical bone studies were performed to validate the T1 measurement accuracy with the UTE-AFI-STR method. The original UTE-AFI variable TR (VTR) (ie, combined UTE-AFI and UTE with VTR) and simultaneous fitting (sf) of UTE-AFI and UTE-VTR (sf-UTE-AFI-VTR) methods were performed for comparison. RESULTS The numerical simulation study showed that the UTE-AFI-STR method provided accurate value of T1 when the SNR of the UTE-STR image was higher than 40. The ex vivo study showed that the UTE-AFI-STR method measured the T1 of cortical bone accurately, with difference ratios ranging from -5.0% to 0.4%. The in vivo study showed a mean T1 of 246 ms with the UTE-AFI-STR method, and mean difference ratios of 2.4% and 5.0%, respectively, compared with the other two methods. CONCLUSION The 3D UTE-AFI-STR method provides accurate mapping of the T1 of cortical bone with improved time efficiency compared with the UTE-AFI-VTR/sf-UTE-AFI-VTR methods.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Graeme M Bydder
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Wenhui Yang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Namiranian B, Jerban S, Ma Y, Dorthe EW, Masoud-Afsahi A, Wong J, Wei Z, Chen Y, D'Lima D, Chang EY, Du J. Assessment of mechanical properties of articular cartilage with quantitative three-dimensional ultrashort echo time (UTE) cones magnetic resonance imaging. J Biomech 2020; 113:110085. [PMID: 33147490 DOI: 10.1016/j.jbiomech.2020.110085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Conventional magnetic resonance imaging (MRI) is not capable of detecting signal from the deep cartilage due to its short transverse relaxation time (T2). Moreover, several quantitative MRI techniques are significantly influenced by the magic angle effect. The combinations of ultrashort echo time (UTE) MRI with magnetization transfer (UTE-MT) and Adiabatic T1ρ (UTE-AdiabT1ρ) imaging allow magic angle-insensitive assessments of all regions of articular cartilage. The purpose of this study was to investigate the correlations between quantitative three-dimensional UTE MRI biomarkers and mechanical properties of human tibiofemoral cartilage specimens. In total, 40 human tibiofemoral cartilage specimens were harvested from three male and four female donors (64 ± 18 years old). Cartilage samples were scanned using a series of quantitative 3D UTE Cones T2* (UTE-T2*), T1 (UTE-T1), UTE-AdiabT1ρ, and UTE-MT sequences in a standard knee coil on a clinical 3T scanner. UTE-MT data were acquired with a series of MT powers and frequency offsets to calculate magnetization transfer ratio (MTR), as well as macromolecular fraction (MMF) and macromolecular T2 (T2mm) through modeling. Cartilage stiffness and Hayes elastic modulus were measured using indentation tests. Correlations of 3D UTE Cones MRI measurements in the superficial layer, deep layer, and global regions of interest (ROIs) with mechanical properties were investigated. Cartilage mechanical properties demonstrated highest correlations with UTE measures of the superficial layer of cartilage. AdiabT1ρ, MTR, and MMF in superficial layer ROIs showed significant correlations with Hayes elastic modulus (p < 0.05, R = -0.54, 0.49, and 0.66, respectively). These UTE measures in global ROIs showed significant, though slightly lower, correlations with Hayes elastic modulus (p < 0.05, R = -0.37, 0.52, and 0.60, respectively). Correlations between other UTE MRI measurements (T2*, T1, and T2mm) and mechanical properties were non-significant. The 3D UTE-AdiabT1ρ and UTE-MT sequences were highlighted as promising surrogates for non-invasive assessment of cartilage mechanical properties. MMF from UTE-MT modeling showed the highest correlations with cartilage mechanics.
Collapse
Affiliation(s)
- Behnam Namiranian
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA.
| | - Yajun Ma
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Erik W Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Amir Masoud-Afsahi
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Jonathan Wong
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Yanjun Chen
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Darryl D'Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
17
|
Wang Y, Chen JF, Li P, Gao JH. Quantifying the fractional concentrations and exchange rates of small-linewidth CEST agents using the QUCESOP method under multi-solute conditions in MRI signals. Magn Reson Med 2020; 85:268-280. [PMID: 32726502 DOI: 10.1002/mrm.28436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel method for quantifying the fractional concentration (fb ) and the exchange rate (kb ) of a specific small-linewidth chemical exchange saturation transfer (CEST) solute in the presence of other unknown CEST solutes. THEORY AND METHODS A simplified R1ρ model was proposed assuming a small linewidth of the specific solute and a linear approximation of the other solutes' contribution to R1ρ . Two modes of CEST data acquisition, using various saturation offsets and various saturation powers, were used. The fb and kb of the specific solute could be fitted using the proposed model. In MRI experiments, using either single-solute or multi-solute phantoms with various creatine concentrations and pHs, the fb and kb values of creatine were calculated for each phantom; the fb and kb values of phosphocreatine in rats' skeletal muscles were also evaluated. RESULTS The fitted fb value of creatine from the phantoms were in excellent agreement. The fitted kb value of creatine from the phantoms coincides with that from the literature, as do the fb and kb values of phosphocreatine in skeletal muscles. CONCLUSION The proposed approach enables us to quantify the fb and kb values of a specific small-linewidth solute in the presence of other unknown solutes.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Fang Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyu Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
18
|
Jerban S, Ma Y, Dorthe EW, Kakos L, Le N, Alenezi S, Sah RL, Chang EY, D'Lima D, Du J. Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling. Bone Rep 2019; 11:100220. [PMID: 31440531 PMCID: PMC6700521 DOI: 10.1016/j.bonr.2019.100220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Cortical bone shows as a signal void when using conventional clinical magnetic resonance imaging (MRI). Ultrashort echo time MRI (UTE-MRI) can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the organic matrix of bone. This study aimed to examine UTE-MT MRI techniques to estimate the mechanical properties of cortical bone. A total of 156 rectangular human cortical bone strips were harvested from the tibial and femoral midshafts of 43 donors (62 ± 22 years old, 62 specimens from females, 94 specimens from males). Bone specimens were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (400°, 600°, 800°) and frequency offsets (2, 5, 10, 20, 50 kHz) was used to measure the macromolecular fraction (MMF) utilizing a two-pool MT model. Failure mechanical properties of the bone specimens were measured using 4-point bending tests. MMF from MRI results showed significant strong correlations with cortical bone porosity (R = -0.72, P < 0.01) and bone mineral density (BMD) (R = +0.71, P < 0.01). MMF demonstrated significant moderate correlations with Young modulus, yield stress, and ultimate stress (R = 0.60-0.61, P < 0.01). These results suggest that the two-pool UTE-MT model focusing on the organic matrix of bone can potentially serve as a novel tool to detect the variations of bone mechanical properties and intracortical porosity.
Collapse
Key Words
- 3D, three-dimensional
- 3D-UTE, three-dimensional ultrashort echo time imaging
- BMD, bone mineral density
- Bone microstructure
- CT, computed tomography
- Cortical bone
- DEXA, dual-energy X-ray absorptiometry
- FA, flip angle
- FOV, field of view
- MMF, macromolecular proton fraction
- MR, magnetic resonance
- MRI
- MRI, magnetic resonance imaging
- MT, magnetization transfer
- Magnetization transfer
- Mechanical properties
- PBS, phosphate-buffered saline
- RF, radio frequency
- ROI, region of interest
- T2MM, macromolecular T2
- TE, echo time
- TR, repetition time
- Ultrashort echo time
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Erik W. Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Lena Kakos
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Nicole Le
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh 3292, Saudi Arabia
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Darryl D'Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Jerban S, Ma Y, Namiranian B, Ashir A, Shirazian H, Wei Z, Le N, Wu M, Cai Z, Du J, Chang EY. Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI). Sci Rep 2019; 9:17974. [PMID: 31784631 PMCID: PMC6884538 DOI: 10.1038/s41598-019-54559-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical magnetic resonance imaging (MRI) sequences are not often capable of directly visualizing tendons. Ultrashort echo time (UTE) MRI can acquire high signal from tendons thus enabling quantitative assessments. Magnetization transfer (MT) modeling combined with UTE-MRI-UTE-MT-modeling-can indirectly assess macromolecular protons in the tendon. This study aimed to determine if UTE-MT-modeling is a quantitative technique sensitive to the age-related changes of tendons. The legs of 26 young healthy (29 ± 6 years old) and 22 elderly (75 ± 8 years old) female subjects were imaged using UTE sequences on a 3T MRI scanner. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. T1 and UTE-MT-modeling were performed on anterior tibialis tendons (ATT) and posterior tibialis tendons (PTT) as two representative human leg tendons. A series of MT pulse saturation powers (500-1500°) and frequency offsets (2-50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM). All measurements were repeated by three independent readers for a reproducibility study. MMF demonstrated significantly lower values on average in the elderly cohort compared with the younger cohort for both ATT (decreased by 16.8%, p = 0.03) and PTT (decreased by 23.0%, p < 0.01). T2MM and T1 did not show a significant nor a consistent difference between the young and elderly cohorts. For all MRI parameters, intraclass correlation coefficient (ICC) was higher than 0.98, indicating excellent consistency between measurements performed by independent readers. MMF serving as a surrogate measure for collagen content, showed a significant decrease in elderly leg tendons. This study highlighted UTE-MRI-MT techniques as a useful quantitative method to assess the impact of aging on human tendons.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Aria Ashir
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hoda Shirazian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA, USA
| | - Nicole Le
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA, USA
| | - Zhenyu Cai
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA.
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
20
|
Jerban S, Ma Y, Li L, Jang H, Wan L, Guo T, Searleman A, Chang EY, Du J. Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques. Bone 2019; 127:120-128. [PMID: 31176044 PMCID: PMC6708764 DOI: 10.1016/j.bone.2019.05.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Cortical bone assessment using magnetic resonance imaging (MRI) has recently received great attention in an effort to avoid the potential harm associated with ionizing radiation-based techniques. Ultrashort echo time MRI (UTE-MRI) techniques can acquire signal from major hydrogen proton pools in cortical bone, including bound and pore water, as well as from the collagen matrix. This study aimed to develop and evaluate the feasibility of a technique for mapping bound water, pore water, and collagen proton densities in human cortical bone ex vivo and in vivo using three-dimensional UTE Cones (3D-UTE-Cones) MRI. Eight human tibial cortical bone specimens (63 ± 19 years old) were scanned using 3D-UTE-Cones sequences on a clinical 3 T MRI scanner and a micro-computed tomography (μCT) scanner. Total, bound, and pore water proton densities (TWPD, BWPD, and PWPD, respectively) were measured using UTE and inversion recovery UTE (IR-UTE) imaging techniques. Macromolecular proton density (MMPD), a collagen representation, was measured using TWPD and macromolecular fraction (MMF) obtained from two-pool UTE magnetization transfer (UTE-MT) modeling. The correlations between proton densities and μCT-based measures were investigated. The 3D-UTE-Cones techniques were further applied on ten young healthy (34 ± 3 years old) and five old (78 ± 6 years old) female volunteers to evaluate the techniques' feasibility for translational clinical applications. In the ex vivo study, PWPD showed the highest correlations with bone porosity and bone mineral density (BMD) (R = 0.79 and - 0.70, p < 0.01). MMPD demonstrated moderate to strong correlations with bone porosity and BMD (R = -0.67 and 0.65, p < 0.01). MMPD showed strong correlation with age in specimens from female donors (R = -0.91, p = 0.03, n = 5). The presented comprehensive 3D-UTE-Cones imaging protocol allows quantitative mapping of protons in major pools of cortical bone ex vivo and in vivo. PWPD and MMPD can serve as potential novel biomarkers to assess bone matrix and microstructure, as well as bone age- or injury-related variations.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Liang Li
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Tan Guo
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
21
|
Weiger M, Pruessmann KP. Short-T 2 MRI: Principles and recent advances. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:237-270. [PMID: 31779882 DOI: 10.1016/j.pnmrs.2019.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Among current modalities of biomedical and diagnostic imaging, MRI stands out by virtue of its versatile contrast obtained without ionizing radiation. However, in various cases, e.g., water protons in tissues such as bone, tendon, and lung, MRI performance is limited by the rapid decay of resonance signals associated with short transverse relaxation times T2 or T2*. Efforts to address this shortcoming have led to a variety of specialized short-T2 techniques. Recent progress in this field expands the choice of methods and prompts fresh considerations with regard to instrumentation, data acquisition, and signal processing. In this review, the current status of short-T2 MRI is surveyed. In an attempt to structure the growing range of techniques, the presentation highlights overarching concepts and basic methodological options. The most frequently used approaches are described in detail, including acquisition strategies, image reconstruction, hardware requirements, means of introducing contrast, sources of artifacts, limitations, and applications.
Collapse
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Bouazizi K, Guillot G. Cross-relaxation parameters in cortical bone assessed with different MR sequences. NMR IN BIOMEDICINE 2019; 32:e4098. [PMID: 30986332 DOI: 10.1002/nbm.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to show evidence of MR cross-relaxation effects in cortical bone and to compare different MR sequences for the quantification of cross-relaxation parameters. Measurements were performed on bovine diaphysis samples with spectroscopic methods (inversion-recovery, off-resonance saturation) and with a variable flip angle (VFA) UTE imaging method on a 4.7 T laboratory-assembled scanner. Cross-relaxation parameter assessment was carried out via a two-pool model simulation with a matrix algebra approach. A proton signal amplitude of 28 Mol/L was observed (equivalent water fraction of 25%). It was attributed to collagen-bound water, with T2* values of ~ 0.3 ms, a "long-T2 " proton pool, in exchange with protons from the collagen macromolecules ( T2* of 10-20 μs). Magnetization transfer (MT) effects were detected with all sequences. The best precision of model parameters was obtained with off-resonance saturation; the fraction of collagen methylene protons was found in the range of 22-28% and the transverse relaxation time for collagen methylene protons was 11 μs (1% precision). The model parameters obtained were compatible with VFA-UTE results but could not be assessed with acceptable accuracy and precision using this method. In vivo MT quantification using off-resonance saturation with a single B1 amplitude and offset frequency may provide information about the relative amount of collagen per unit volume in cortical bone.
Collapse
Affiliation(s)
- Khaoula Bouazizi
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081), CNRS, Université Paris-Saclay, Orsay, France
| | - Geneviève Guillot
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081), CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
23
|
Jerban S, Ma Y, Wong JH, Nazaran A, Searleman A, Wan L, Williams J, Du J, Chang EY. Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure. Bone 2019; 123:8-17. [PMID: 30877070 PMCID: PMC6504977 DOI: 10.1016/j.bone.2019.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Ultrashort echo time magnetic resonance imaging (UTE-MRI) techniques have been increasingly used to assess cortical bone microstructure. High resolution micro computed tomography (μCT) is routinely employed for validating the MRI-based assessments. However, water protons in cortical bone may reside in micropores smaller than the detectable size ranges by μCT. The goal of this study was to evaluate the upper limit of UTE-MRI and compare its efficacy to μCT at determining bone porosity ex vivo. This study investigated the correlations between UTE-MRI based quantifications and histomorphometric measures of bone porosity that cover all pores larger than 1 μm. Anterior tibial midshaft specimens from eleven donors (51 ± 16 years old, 6 males, 5 females) were scanned on a clinical 3 T-MRI using UTE magnetization transfer (UTE-MT, three power levels and five frequency offsets) and UTE-T2* sequences. Two-pool MT modeling and bi-component exponential T2* fitting were performed on the MRI datasets. Specimens were then scanned by μCT at 9 μm voxel size. Histomorphometry was performed on hematoxylin and eosin (H&E) stained slides imaged at submicron resolution. Macromolecular fraction from MT modeling, bi-component T2* fractions, and short component T2* showed strong correlations (R > 0.7, p < 0.01) with histomorphometric total and large-pores (>40 μm) porosities as well as with μCT-based porosity. UTE-MRI could also assess small pores variations with moderate correlations (R > 0.5, p < 0.01). The UTE-MRI techniques can detect variations of bone porosity comprised of pores below the range detectable by μCT. Such fine pore variations can contribute differently to the development of bone diseases or to the bone remodeling process, however, this needs to be investigated. In scanned specimens, major porosity changes were from large pores, therefore the μCT employment was likely adequate to validate UTE-MRI biomarkers.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jonathan H Wong
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Amin Nazaran
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Judith Williams
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
24
|
Abstract
OBJECTIVE. For many years, MRI of the musculoskeletal system has relied mostly on conventional sequences with qualitative analysis. More recently, using quantitative MRI applications to complement qualitative imaging has gained increasing interest in the MRI community, providing more detailed physiologic or anatomic information. CONCLUSION. In this article, we review the current state of quantitative MRI, technical and software advances, and the most relevant clinical and research musculoskeletal applications of quantitative MRI.
Collapse
|
25
|
Magnetic resonance imaging of the zone of calcified cartilage in the knee joint using 3-dimensional ultrashort echo time cones sequences. Chin Med J (Engl) 2019; 132:562-568. [PMID: 30807355 PMCID: PMC6416089 DOI: 10.1097/cm9.0000000000000103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The zone of calcified cartilage (ZCC) plays an important role in the pathogenesis of osteoarthritis (OA) but has never been imaged in vivo with magnetic resonance (MR) imaging techniques. We investigated the feasibility of direct imaging of the ZCC in both cadaveric whole knee specimens and in vivo healthy knees using a 3-dimensional ultrashort echo time cones (3D UTE-Cones) sequence on a clinical 3T scanner. Methods: In all, 12 cadaveric knee joints and 10 in vivo healthy were collected. At a 3T MR scanner with an 8-channel knee coil, a fat-saturated 3D dual-echo UTE-Cones sequence was used to image the ZCC, following with a short rectangular pulse excitation and 3D spiral sampling with conical view ordering. The regions of interests (ROIs) were delineated by a blinded observer. Single-component T2∗ and T2 values were calculated from fat-saturated 3D dual-echo UTE-Cones and a Carr-Purcell-Meiboom-Gill (T2 CPMG) data using a semi-automated MATLAB code. Results: The single-exponential fitting curve of ZCC was accurately obtained with R2 of 0.989. For keen joint samples, the ZCC has a short T2∗ ranging from 0.62 to 2.55 ms, with the mean ± standard deviation (SD) of 1.49 ± 0.66 ms, and with 95% confidence intervals (CI) of 1.20–1.78 ms. For volunteers, the short T2∗ ranges from 0.93 to 3.52 ms, with the mean ± SD of 2.09 ± 0.56 ms, and the 95% CI is 1.43 to 2.74 ms in ZCC. Conclusions: The high-resolution 3D UTE-Cones sequence might be used to directly image ZCC in the human knee joint on a clinical 3T scanner with a scan time of more than 10 min. Using this non-invasive technique, the T2∗ relaxation time of the ZCC can be further detected.
Collapse
|
26
|
Wan L, Zhao W, Ma Y, Jerban S, Searleman AC, Carl M, Chang EY, Tang G, Du J. Fast quantitative 3D ultrashort echo time MRI of cortical bone using extended cones sampling. Magn Reson Med 2019; 82:225-236. [PMID: 30821032 DOI: 10.1002/mrm.27715] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the effect of stretching sampling window on quantitative 3D ultrashort TE (UTE) imaging of cortical bone at 3 T. METHODS Ten bovine cortical bone and 17 human tibial midshaft samples were imaged with a 3T clinical MRI scanner using an 8-channel knee coil. Quantitative 3D UTE imaging biomarkers, including T1 , T 2 ∗ , magnetization transfer ratio and magnetization transfer modeling, were performed using radial or spiral Cones sampling trajectories with various durations. Errors in UTE-MRI biomarkers as a function of sampling time were evaluated using radial sampling as a reference standard. RESULTS For both bovine and human cortical bone samples, no significant differences were observed for all UTE biomarkers (single-component T 2 ∗ , bicomponent T 2 ∗ and relative fractions, T1 , magnetization transfer ratio, and magnetization transfer modeling of macromolecular fraction) for spiral sampling windows of 992 µs to 1600 µs compared with a radial sampling window of 688 µs. CONCLUSION The total scan time can be reduced by 76% with quantification errors less than 5%. Quantitative UTE-MRI techniques can be greatly accelerated using longer sampling windows without significant quantification errors.
Collapse
Affiliation(s)
- Lidi Wan
- Department of Radiology, University of California, San Diego, California.,Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Wei Zhao
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Adam C Searleman
- Department of Radiology, University of California, San Diego, California
| | | | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Radiology Service, VA San Diego Healthcare System, San Diego, California
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
27
|
Jerban S, Ma Y, Wan L, Searleman AC, Jang H, Sah RL, Chang EY, Du J. Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (μCT). NMR IN BIOMEDICINE 2019; 32:e4045. [PMID: 30549338 PMCID: PMC6324959 DOI: 10.1002/nbm.4045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/08/2023]
Abstract
Intracortical bone porosity is a key microstructural parameter that determines bone mechanical properties. While clinical MRI visualizes the cortical bone with a signal void, ultrashort echo time (UTE) MRI can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the bone collagenous matrix, which are inversely related to porosity. This study aimed to examine UTE-MT MRI techniques to evaluate intracortical bone porosity. Eighteen human cortical bone specimens from the tibial and fibular midshafts were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a high-resolution micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (500°, 1000°, 1500°) and frequency offsets (2, 5, 10, 20, 50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM ) using a two-pool MT model. The measurements were made on 136 different regions of interest (ROIs). ROIs were selected at three cortical bone layers (from endosteum to periosteum) and four anatomical sites (anterior, mid-medial, mid-lateral, and posterior) to provide a wide range of porosity. MMF showed moderate to strong correlations with intracortical bone porosity (R = -0.67 to -0.73, p < 0.01) and bone mineral density (BMD) (R = +0.46 to +0.70, p < 0.01). Comparing the average MMF between cortical bone layers revealed a significant increase from the endosteum towards the periosteum. Such a pattern was in agreement with porosity reduction and BMD increase towards the periosteum. These results suggest that the two-pool UTE-MT technique can potentially serve as a novel and accurate tool to assess intracortical bone porosity.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Adam C. Searleman
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
28
|
Jerban S, Szeverenyi N, Ma Y, Guo T, Namiranian B, To S, Jang H, Chang EY, Du J. Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.13104/imri.2019.23.3.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, United States
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, United States
| | - Tan Guo
- Department of Radiology, University of California, San Diego, United States
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, United States
| | - Sarah To
- Radiology Service, VA San Diego Healthcare System, San Diego, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, United States
| |
Collapse
|
29
|
Jerban S, Ma Y, Nazaran A, Dorthe EW, Cory E, Carl M, D’Lima D, Sah RL, Chang EY, Du J. Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): An ex vivo study. NMR IN BIOMEDICINE 2018; 31:e3994. [PMID: 30059184 PMCID: PMC6553877 DOI: 10.1002/nbm.3994] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/03/2018] [Accepted: 06/11/2018] [Indexed: 05/24/2023]
Abstract
Bone stress injury (BSI) incidents have been increasing amongst athletes in recent years as a result of more intense sporting activities. Cortical bone in the tibia and fibula is one of the most common BSI sites. Nowadays, clinical magnetic resonance imaging (MRI) is the recommended technique for BSI diagnosis at an early stage. However, clinical MRI focuses on edema observations in surrounding soft tissues, rather than the injured components of the bone. Specifically, both normal and injured bone are invisible in conventional clinical MRI. In contrast, ultrashort echo time (UTE)-MRI is able to detect the rapidly decaying signal from the bone. This study aimed to employ UTE-MRI for fatigue fracture detection in fibula cortical bone through an ex vivo investigation. Fourteen human fibular samples (47 ± 20 years old, four women) were subjected to cyclic loading on a four-point bending setup. The loading was displacement controlled to induce -5000 ± 1500 μ-strain at 4 Hz. Loading was stopped when bone stiffness was reduced by 20%. Fibula samples were imaged twice, using UTE-MRI and micro-computed tomography (μCT), first pre-loading and second post-loading. After loading, the macromolecular fraction (MMF) from UTE-MT modeling demonstrated a significant decrease (12% ± 20%, P = 0.02) on average. Single-component T2 * also decreased significantly by BSI (12% ± 11%, P = 0.01) on average. MMF reduction is hypothesized to be a result of collagenous matrix rupture and water increase. However, faster T2 * decay might be a result of water shifts towards newly developed microcracks with higher susceptibility. Despite this good sensitivity level of the UTE-MRI technique, the μCT-based porosity at a voxel size of 9 μm was not affected by loading. UTE-MRI shows promise as a new quantitative technique to detect BSI.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Amin Nazaran
- Department of Radiology, University of California, San Diego, CA, USA
| | - Erik W. Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Esther Cory
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Darryl D’Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|