1
|
Kundu S, Barsoum S, Ariza J, Nolan AL, Latimer CS, Keene CD, Basser PJ, Benjamini D. Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun 2023; 5:fcad258. [PMID: 37953850 PMCID: PMC10638106 DOI: 10.1093/braincomms/fcad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
Collapse
Affiliation(s)
- Shinjini Kundu
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
2
|
Zhang W, Liu N, Zhao Y, Yao C, Yang D, Yang C, Sun H, Wei X, Sweeney JA, Liang H, Zhang M, Gong Q, Lui S. The acute effects of repetitive transcranial magnetic stimulation on laminar diffusion anisotropy of neocortical gray matter. MedComm (Beijing) 2023; 4:e335. [PMID: 37560755 PMCID: PMC10407029 DOI: 10.1002/mco2.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to treat neuropsychiatric disorders. Inhibitory and excitatory regimens have been both adopted but the exact mechanism of action remains unclear, and investigating their differential effects on laminar diffusion profiles of neocortex may add important evidence. Twenty healthy participants were randomly assigned to receive a low-frequency/inhibitory or high-frequency/excitatory rTMS targeting the left dorsolateral prefrontal cortex (DLPFC). With the brand-new submillimeter diffusion tensor imaging of whole brain and specialized surface-based laminar analysis, fractional anisotropy (FA) and mean diffusion (MD) profiles of cortical layers at different cortical depths were characterized before/after rTMS. Inhibitory and excitatory rTMS both showed impacts on diffusion metrics of somatosensory, limbic, and sensory regions, but different patterns of changes were observed-increased FA with inhibitory rTMS, whereas decreased FA with excitatory rTMS. More importantly, laminar analysis indicated laminar specificity of changes in somatosensory regions during different rTMS patterns-inhibitory rTMS affected the superficial layers contralateral to the DLPFC, while excitatory rTMS led to changes in the intermediate/deep layers bilateral to the DLPFC. These findings provide novel insights into acute neurobiological effects on diffusion profiles of rTMS that may add critical evidence relevant to different protocols of rTMS on neocortex.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Naici Liu
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Youjin Zhao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Chenyang Yao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Dan Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Chengmin Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Hui Sun
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Xia Wei
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | | | - Qiyong Gong
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| | - Su Lui
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
3
|
Lv J, Zeng R, Ho MP, D'Souza A, Calamante F. Building a tissue-unbiased brain template of fiber orientation distribution and tractography with multimodal registration. Magn Reson Med 2023; 89:1207-1220. [PMID: 36299169 PMCID: PMC10952616 DOI: 10.1002/mrm.29496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Brain templates provide an essential standard space for statistical analysis of brain structure and function. Despite recent advances, diffusion MRI still lacks a template of fiber orientation distribution (FOD) and tractography that is unbiased for both white and gray matter. Therefore, we aim to build up a set of such templates for better white-matter analysis and joint structural and functional analysis. METHODS We have developed a multimodal registration method to leverage the complementary information captured by T1 -weighted, T2 -weighted, and diffusion MRI, so that a coherent transformation is generated to register FODs into a common space and average them into a template. Consequently, the anatomically constrained fiber-tracking method was applied to the FOD template to generate a tractography template. Fiber-centered functional connectivity analysis was then performed as an example of the benefits of such an unbiased template. RESULTS Our FOD template preserves fine structural details in white matter and also, importantly, clear folding patterns in the cortex and good contrast in the subcortex. Quantitatively, our templates show better individual-template agreement at the whole-brain scale and segmentation scale. The tractography template aligns well with the gray matter, which led to fiber-centered functional connectivity showing high cross-group consistency. CONCLUSION We have proposed a novel methodology for building a tissue-unbiased FOD and anatomically constrained tractography template based on multimodal registration. Our templates provide a standard space and statistical platform for not only white-matter analysis but also joint structural and functional analysis, therefore filling an important gap in multimodal neuroimage analysis.
Collapse
Affiliation(s)
- Jinglei Lv
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Rui Zeng
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Mai Phuong Ho
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
| | - Arkiev D'Souza
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Translational Research Collective, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Fernando Calamante
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Reveley C, Ye FQ, Mars RB, Matrov D, Chudasama Y, Leopold DA. Diffusion MRI anisotropy in the cerebral cortex is determined by unmyelinated tissue features. Nat Commun 2022; 13:6702. [PMID: 36335105 PMCID: PMC9637141 DOI: 10.1038/s41467-022-34328-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is commonly used to assess the tissue and cellular substructure of the human brain. In the white matter, myelinated axons are the principal neural elements that shape dMRI through the restriction of water diffusion; however, in the gray matter the relative contributions of myelinated axons and other tissue features to dMRI are poorly understood. Here we investigate the determinants of diffusion in the cerebral cortex. Specifically, we ask whether myelinated axons significantly shape dMRI fractional anisotropy (dMRI-FA), a measure commonly used to characterize tissue properties in humans. We compared ultra-high resolution ex vivo dMRI data from the brain of a marmoset monkey with both myelin- and Nissl-stained histological sections obtained from the same brain after scanning. We found that the dMRI-FA did not match the spatial distribution of myelin in the gray matter. Instead dMRI-FA was more closely related to the anisotropy of stained tissue features, most prominently those revealed by Nissl staining and to a lesser extent those revealed by myelin staining. Our results suggest that unmyelinated neurites such as large caliber apical dendrites are the primary features shaping dMRI measures in the cerebral cortex.
Collapse
Affiliation(s)
- Colin Reveley
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ UK
| | - Frank Q. Ye
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Rogier B. Mars
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Denis Matrov
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yogita Chudasama
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - David A. Leopold
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
5
|
Zeng R, Lv J, Wang H, Zhou L, Barnett M, Calamante F, Wang C. FOD-Net: A deep learning method for fiber orientation distribution angular super resolution. Med Image Anal 2022; 79:102431. [PMID: 35397471 DOI: 10.1016/j.media.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Mapping the human connectome using fiber-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fiber orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner as well as with another public available multicenter-multiscanner dataset. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FODs achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3.0T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments. Our code is freely available at https://github.com/ruizengalways/FOD-Net.
Collapse
Affiliation(s)
- Rui Zeng
- School of Biomedical Engineering, The University of Sydney, Sydney 2050, Australia; Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney 2050, Australia; Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China
| | - Luping Zhou
- School of Computer Science, The University of Sydney, Sydney 2050, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia; Sydney Neuroimaging Analysis Centre, Sydney 2050, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney 2050, Australia; Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia; Sydney Imaging, The University of Sydney, Sydney 2050, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia; Sydney Neuroimaging Analysis Centre, Sydney 2050, Australia.
| |
Collapse
|
6
|
Kurokawa R, Kamiya K, Inui S, Kato S, Suzuki F, Amemiya S, Shinozaki T, Takanezawa D, Kohashi R, Abe O. Structural connectivity changes in the cerebral pain matrix in burning mouth syndrome: a multi-shell, multi-tissue-constrained spherical deconvolution model analysis. Neuroradiology 2021; 63:2005-2012. [PMID: 34142212 DOI: 10.1007/s00234-021-02732-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome. Previous studies have attempted to determine the brain connectivity features in BMS using functional and structural magnetic resonance imaging. However, no study has investigated the structural connectivity using multi-shell, multi-tissue-constrained spherical deconvolution (MSMT-CSD), anatomically constrained tractography (ACT), and spherical deconvolution informed filtering of tractograms (SIFT). Therefore, this study aimed to assess the differences in brain structural connectivity of patients with BMS and healthy controls using probabilistic tractography with these methods, and graph analysis. METHODS Fourteen patients with BMS and 11 age- and sex-matched healthy volunteers underwent 3-T magnetic resonance imaging. MSMT-CSD-based probabilistic structural connectivity was computed using the second-order integration over fiber orientation distributions algorithm based on nodes set in 84 anatomical cortical regions with ACT and SIFT. A t-test was performed for comparisons between the BMS and healthy control brain networks. RESULTS The betweenness centrality was significantly higher in the left insula, right amygdala, and right lateral orbitofrontal cortex and significantly lower in the right inferotemporal cortex in the BMS group than that in healthy controls. However, no significant difference was found in the clustering coefficient, node degree, and small-worldness between the two groups. CONCLUSION Graph analysis of brain probabilistic structural connectivity, based on diffusion imaging using an MSMT-CSD model with ACT and SIFT, revealed alterations in the regions comprising the pain matrix and medial pain ascending pathway. These results highlight the emotional-affective profile of BMS, which is a type of chronic pain syndrome.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shimpei Kato
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutarou Kohashi
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Little G, Beaulieu C. Automated cerebral cortex segmentation based solely on diffusion tensor imaging for investigating cortical anisotropy. Neuroimage 2021; 237:118105. [PMID: 33933593 DOI: 10.1016/j.neuroimage.2021.118105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
To extract Diffusion Tensor Imaging (DTI) parameters from the human cortex, the inner and outer boundaries of the cortex are usually defined on 3D-T1-weighted images and then applied to the co-registered DTI. However, this analysis requires the acquisition of an additional high-resolution structural image that may not be practical in various imaging studies. Here an automatic cortical boundary segmentation method was developed to work directly only on the native DTI images by using fractional anisotropy (FA) maps and mean diffusion weighted images (DWI), the latter with acceptable gray-white matter image contrast. This new method was compared to the conventional cortical segmentations generated from high-resolution T1 structural images in 5 participants. In addition, the proposed method was applied to 15 healthy young adults (10 cross-sectional, 5 test-retest) to measure FA, MD, and radiality of the primary eigenvector across the cortex on whole-brain 1.5 mm isotropic images acquired in 3.5 min at 3T. The proposed method generated reasonable segmentations of the cortical boundaries for all individuals and large proportions of the proposed method segmentations (more than 85%) were within ±1 mm from those generated with the conventional approach on higher resolution T1 structural images. Both FA (~0.15) and MD (~0.77 × 10-3 mm2/s) extracted halfway between the cortical boundaries were relatively stable across the cortex, although focal regions such as the posterior bank of the central sulcus, anterior insula, and medial temporal lobe showed higher FA. The primary eigenvectors were primarily oriented radially to the middle cortical surface, but there were tangential orientations in the sulcal fundi as well as in the posterior bank of the central sulcus. The proposed method demonstrates the feasibility and accuracy of cortical analysis in native DTI space while avoiding the acquisition of other imaging contrasts like 3D T1-weighted scans.
Collapse
Affiliation(s)
- Graham Little
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, Alberta T6G 2V2, Canada.
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, 1098 Research Transition Facility, 8308-114 Street, Edmonton, Alberta T6G 2V2, Canada.
| |
Collapse
|
8
|
Brain tissues have single-voxel signatures in multi-spectral MRI. Neuroimage 2021; 234:117986. [PMID: 33757906 DOI: 10.1016/j.neuroimage.2021.117986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints.
Collapse
|
9
|
Tian Q, Zaretskaya N, Fan Q, Ngamsombat C, Bilgic B, Polimeni JR, Huang SY. Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising. Neuroimage 2021; 233:117946. [PMID: 33711484 PMCID: PMC8421085 DOI: 10.1016/j.neuroimage.2021.117946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Automatic cerebral cortical surface reconstruction is a useful tool for cortical anatomy quantification, analysis and visualization. Recently, the Human Connectome Project and several studies have shown the advantages of using T1-weighted magnetic resonance (MR) images with sub-millimeter isotropic spatial resolution instead of the standard 1-mm isotropic resolution for improved accuracy of cortical surface positioning and thickness estimation. Nonetheless, sub-millimeter resolution images are noisy by nature and require averaging multiple repetitions to increase the signal-to-noise ratio for precisely delineating the cortical boundary. The prolonged acquisition time and potential motion artifacts pose significant barriers to the wide adoption of cortical surface reconstruction at sub-millimeter resolution for a broad range of neuroscientific and clinical applications. We address this challenge by evaluating the cortical surface reconstruction resulting from denoised single-repetition sub-millimeter T1-weighted images. We systematically characterized the effects of image denoising on empirical data acquired at 0.6 mm isotropic resolution using three classical denoising methods, including denoising convolutional neural network (DnCNN), block-matching and 4-dimensional filtering (BM4D) and adaptive optimized non-local means (AONLM). The denoised single-repetition images were found to be highly similar to 6-repetition averaged images, with a low whole-brain averaged mean absolute difference of ~0.016, high whole-brain averaged peak signal-to-noise ratio of ~33.5 dB and structural similarity index of ~0.92, and minimal gray matter–white matter contrast loss (2% to 9%). The whole-brain mean absolute discrepancies in gray matter–white matter surface placement, gray matter–cerebrospinal fluid surface placement and cortical thickness estimation were lower than 165 μm, 155 μm and 145 μm—sufficiently accurate for most applications. These discrepancies were approximately one third to half of those from 1-mm isotropic resolution data. The denoising performance was equivalent to averaging ~2.5 repetitions of the data in terms of image similarity, and 1.6–2.2 repetitions in terms of the cortical surface placement accuracy. The scan-rescan variability of the cortical surface positioning and thickness estimation was lower than 170 μm. Our unique dataset and systematic characterization support the use of denoising methods for improved cortical surface reconstruction at sub-millimeter resolution.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Natalia Zaretskaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Austria
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
10
|
Tian Q, Bilgic B, Fan Q, Ngamsombat C, Zaretskaya N, Fultz NE, Ohringer NA, Chaudhari AS, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution. Cereb Cortex 2021; 31:463-482. [PMID: 32887984 PMCID: PMC7727379 DOI: 10.1093/cercor/bhaa237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/14/2022] Open
Abstract
Accurate and automated reconstruction of the in vivo human cerebral cortical surface from anatomical magnetic resonance (MR) images facilitates the quantitative analysis of cortical structure. Anatomical MR images with sub-millimeter isotropic spatial resolution improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Nonetheless, sub-millimeter resolution acquisitions require averaging multiple repetitions to achieve sufficient signal-to-noise ratio and are therefore long and potentially vulnerable to subject motion. We address this challenge by synthesizing sub-millimeter resolution images from standard 1-millimeter isotropic resolution images using a data-driven supervised machine learning-based super-resolution approach achieved via a deep convolutional neural network. We systematically characterize our approach using a large-scale simulated dataset and demonstrate its efficacy in empirical data. The super-resolution data provide improved cortical surfaces similar to those obtained from native sub-millimeter resolution data. The whole-brain mean absolute discrepancy in cortical surface positioning and thickness estimation is below 100 μm at the single-subject level and below 50 μm at the group level for the simulated data, and below 200 μm at the single-subject level and below 100 μm at the group level for the empirical data, making the accuracy of cortical surfaces derived from super-resolution sufficient for most applications.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Natalia Zaretskaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Experimental Psychology and Cognitive Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Austria
| | - Nina E Fultz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Akshay S Chaudhari
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yuxin Hu
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Morez J, Sijbers J, Vanhevel F, Jeurissen B. Constrained spherical deconvolution of nonspherically sampled diffusion MRI data. Hum Brain Mapp 2020; 42:521-538. [PMID: 33169880 PMCID: PMC7776001 DOI: 10.1002/hbm.25241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Constrained spherical deconvolution (CSD) of diffusion-weighted MRI (DW-MRI) is a popular analysis method that extracts the full white matter (WM) fiber orientation density function (fODF) in the living human brain, noninvasively. It assumes that the DW-MRI signal on the sphere can be represented as the spherical convolution of a single-fiber response function (RF) and the fODF, and recovers the fODF through the inverse operation. CSD approaches typically require that the DW-MRI data is sampled shell-wise, and estimate the RF in a purely spherical manner using spherical basis functions, such as spherical harmonics (SH), disregarding any radial dependencies. This precludes analysis of data acquired with nonspherical sampling schemes, for example, Cartesian sampling. Additionally, nonspherical sampling can also arise due to technical issues, for example, gradient nonlinearities, resulting in a spatially dependent bias of the apparent tissue densities and connectivity information. Here, we adopt a compact model for the RFs that also describes their radial dependency. We demonstrate that the proposed model can accurately predict the tissue response for a wide range of b-values. On shell-wise data, our approach provides fODFs and tissue densities indistinguishable from those estimated using SH. On Cartesian data, fODF estimates and apparent tissue densities are on par with those obtained from shell-wise data, significantly broadening the range of data sets that can be analyzed using CSD. In addition, gradient nonlinearities can be accounted for using the proposed model, resulting in much more accurate apparent tissue densities and connectivity metrics.
Collapse
Affiliation(s)
- Jan Morez
- Imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Floris Vanhevel
- Department of Radiology, University Hospital Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- Imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Tian Q, Bilgic B, Fan Q, Liao C, Ngamsombat C, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning. Neuroimage 2020; 219:117017. [PMID: 32504817 PMCID: PMC7646449 DOI: 10.1016/j.neuroimage.2020.117017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b = 0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b = 0 images and 21 DWIs for the primary eigenvector derived from DTI and two b = 0 images and 26-30 DWIs for various scalar metrics derived from DTI, achieving 3.3-4.6 × acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 b = 0 images and 90 DWIs measures around 1-1.5 mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Balasubramanian M, Mulkern RV, Neil JJ, Maier SE, Polimeni JR. Probing in vivo cortical myeloarchitecture in humans via line-scan diffusion acquisitions at 7 T with 250-500 micron radial resolution. Magn Reson Med 2020; 85:390-403. [PMID: 32738088 DOI: 10.1002/mrm.28419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE The goal of this study was to measure diffusion signals within the cerebral cortex using the line-scan technique to achieve extremely high resolution in the radial direction (ie, perpendicular to the cortical surface) and to demonstrate the utility of these measurements for investigating laminar architecture in the living human brain. METHODS Line-scan diffusion data with 250-500 micron radial resolution were acquired at 7 T on 8 healthy volunteers, with each line prescribed perpendicularly to primary somatosensory cortex (S1) and primary motor cortex (M1). Apparent diffusion coefficients, fractional anisotropy values, and radiality indices were measured as a function of cortical depth. RESULTS In the deep layers of S1, we found evidence for high anisotropy and predominantly tangential diffusion, with low anisotropy observed in superficial S1. In M1, moderate anisotropy and predominantly radial diffusion was seen at almost all cortical depths. These patterns were consistent across subjects and were conspicuous without averaging data across different locations on the cortical sheet. CONCLUSION Our results are in accord with the myeloarchitecture of S1 and M1, known from prior histology studies: in S1, dense bands of tangential myelinated fibers run through the deep layers but not the superficial ones, and in M1, radial myelinated fibers are prominent at most cortical depths. This work therefore provides support for the idea that high-resolution diffusion signals, measured with the line-scan technique and receiving a boost in SNR at 7 T, may serve as a sensitive probe of in vivo laminar architecture.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Robert V Mulkern
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Stephan E Maier
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Institute of Clinical Sciences, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonathan R Polimeni
- Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Menon V, Gallardo G, Pinsk MA, Nguyen VD, Li JR, Cai W, Wassermann D. Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. eLife 2020; 9:e53470. [PMID: 32496190 PMCID: PMC7308087 DOI: 10.7554/elife.53470] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
The human insular cortex is a heterogeneous brain structure which plays an integrative role in guiding behavior. The cytoarchitectonic organization of the human insula has been investigated over the last century using postmortem brains but there has been little progress in noninvasive in vivo mapping of its microstructure and large-scale functional circuitry. Quantitative modeling of multi-shell diffusion MRI data from 413 participants revealed that human insula microstructure differs significantly across subdivisions that serve distinct cognitive and affective functions. Insular microstructural organization was mirrored in its functionally interconnected circuits with the anterior cingulate cortex that anchors the salience network, a system important for adaptive switching of cognitive control systems. Furthermore, insular microstructural features, confirmed in Macaca mulatta, were linked to behavior and predicted individual differences in cognitive control ability. Our findings open new possibilities for probing psychiatric and neurological disorders impacted by insular cortex dysfunction, including autism, schizophrenia, and fronto-temporal dementia.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, StanfordStanfordUnited States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, StanfordStanfordUnited States
- Stanford Neurosciences Institute, Stanford University School of Medicine, StanfordStanfordUnited States
| | - Guillermo Gallardo
- Athena, Inria Sophia Antipolis, Université Côte d’AzurSophia AntipolisFrance
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Van-Dang Nguyen
- Department of Computational Science and Technology Royal Institute of Technology in StockholmStockholmSweden
| | - Jing-Rebecca Li
- Defi, Inria Saclay Île-de-France, École Polytechnique Université Paris SudPalaiseauFrance
| | - Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, StanfordStanfordUnited States
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, CEA Université Paris SudPalaiseauFrance
| |
Collapse
|
15
|
Tournier JD. Diffusion MRI in the brain - Theory and concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:1-16. [PMID: 31481155 DOI: 10.1016/j.pnmrs.2019.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/10/2023]
Abstract
Over the past two decades, diffusion MRI has become an essential tool in neuroimaging investigations. This is due to its sensitivity to the motion of water molecules as they diffuse through the microstructural environment, allowing diffusion MRI to be used as a 'probe' of tissue microstructure. Furthermore, this sensitivity is strongly direction-dependent, notably in brain white matter, due to the alignment of structures that restrict or hinder the motion of water molecules, notably axonal membranes. This provides a means of inferring the orientation of fibres in vivo, and by use of appropriate fibre-tracking algorithms, of delineating the path of white matter tracts in the brain. The ability to perform so-called tractography in humans in vivo non-invasively is unique to diffusion MRI, and is now used in applications such as neurosurgery planning and more broadly within investigations of brain connectomics. This review describes the theory and concepts of diffusion MRI and describes its most important areas of application in the brain, with a strong focus on tractography.
Collapse
Affiliation(s)
- J-Donald Tournier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, UK; Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
16
|
Sehmbi M, Rowley CD, Minuzzi L, Kapczinski F, Kwiecien JM, Bock NA, Frey BN. Age-related deficits in intracortical myelination in young adults with bipolar disorder type I. J Psychiatry Neurosci 2019; 44:79-88. [PMID: 30525334 PMCID: PMC6397039 DOI: 10.1503/jpn.170220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have implicated white-matter-related changes in the pathophysiology of bipolar disorder. However, most of what is known is derived from in vivo subcortical white-matter imaging or postmortem studies. In this study, we investigated whole-brain intracortical myelin (ICM) content in people with bipolar disorder type I and controls. METHODS Between Sept. 1, 2014, and Jan. 31, 2017, we used a 3 T General Electric scanner to collect T1-weighted images in 45 people with bipolar disorder type I and 60 controls aged 17 to 45 years using an optimized sequence that was sensitive to ICM content. We analyzed images using a surfacebased approach. We used general linear models with quadratic age terms to examine the signal trajectory of ICM across the age range. RESULTS In healthy controls, the T1-weighted signal followed an inverted-U trajectory over age; in people with bipolar disorder type I, the association between ICM and age followed a flat trajectory (p < 0.05, Bonferroni corrected). Exploratory analyses showed that ICM signal intensity was associated with duration of illness, age of onset, and anticonvulsant and antipsychotic use in people with bipolar disorder type I (p < 0.05, uncorrected). LIMITATIONS Because of the cross-sectional nature of the study, we were unable to comment on whether the effects were due to dysmyelination or demyelination in bipolar disorder. CONCLUSION This foundational study is, to our knowledge, the first to show global age-related deficits in ICM maturation throughout the cortex in bipolar disorder. Considering the impact of myelination on the maintenance of neural synchrony and the integrity of neural connections, this work may help us better understand the cognitive and behavioural deficits seen in bipolar disorder.
Collapse
Affiliation(s)
- Manpreet Sehmbi
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Christopher D. Rowley
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Luciano Minuzzi
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Flavio Kapczinski
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Jacek M. Kwiecien
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Nicholas A. Bock
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| | - Benicio N. Frey
- From the Graduate Student, MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON (Sehmbi, Rowley); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON (Minuzzi, Kapczinski, Frey); the Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON (Minuzzi, Frey); the Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, ON (Kwiecien); the Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON (Bock); and the Department of Clinical Pathomorphology, Medical University of Lublin, Poland (Kwiecien)
| |
Collapse
|
17
|
Lützkendorf R, Heidemann RM, Feiweier T, Luchtmann M, Baecke S, Kaufmann J, Stadler J, Budinger E, Bernarding J. Mapping fine-scale anatomy of gray matter, white matter, and trigeminal-root region applying spherical deconvolution to high-resolution 7-T diffusion MRI. MAGMA (NEW YORK, N.Y.) 2018; 31:701-713. [PMID: 30225801 DOI: 10.1007/s10334-018-0705-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region. MATERIALS AND METHODS We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution. RESULTS High-resolution fODFs enabled a detailed view of the intravoxel distributions of fiber populations in the whole brain. In the brainstem region, the fODF of the extra- and intrapontine parts of the trigeminus could be resolved. Intrapontine trigeminal fiber populations were crossed in a network-like fashion by fiber populations of the surrounding cerebellopontine tracts. In cortical GM, additional evidence was found that in parts of primary somatosensory cortex, fODFs seem to be oriented less perpendicular to the cortical surface than in GM of motor, premotor, and secondary somatosensory cortices. CONCLUSION With 7-T MRI being introduced into clinical routine, high-resolution dMRI and derived measures such as fODFs can serve to characterize fine-scale anatomic structures as a prerequisite to detecting pathologies in GM and small or intertwined WM tracts.
Collapse
Affiliation(s)
- Ralf Lützkendorf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | - Michael Luchtmann
- Department of Neurosurgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sebastian Baecke
- Institute for Biometry and Medical Informatics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jörg Stadler
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Eike Budinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Magdeburg, Germany
| | - Johannes Bernarding
- Institute for Biometry and Medical Informatics, Otto-von-Guericke-University, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
18
|
Li H, Chow HM, Chugani DC, Chugani HT. Linking spherical mean diffusion weighted signal with intra-axonal volume fraction. Magn Reson Imaging 2018; 57:75-82. [PMID: 30439515 DOI: 10.1016/j.mri.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Diffusion MRI has been widely used to assess brain tissue microstructure. However, the conventional diffusion tensor imaging (DTI) is inadequate for characterizing fiber direction or fiber density in voxels with crossing fibers in brain white matter. The constrained spherical deconvolution (CSD) technique has been proposed to measure the complex fiber orientation distribution (FOD) using a single high b-value (b ≥ 3000 s/mm2) to derive the intra-axonal volume fraction (Vin) from the calculated FOD. Recently, the spherical mean technique (SMT) was developed to fit Vin directly from a multi-compartment model with multi-shell b-values. Although different numbers of b-values are needed in the two techniques, both methods have been suggested to be related to the spherical mean diffusion weighted signal (S¯). The current study compared the two techniques on the same high-quality Human Connectome Project diffusion data and investigated the relation between S¯ and Vin systematically. At high b-values (b ≥ 3000 s/mm2), S¯ is linearly related to Vin, and S¯ provides similar contrast with Vin in white matter. At low b-values (b ~ 1000 s/mm2), the linear relation between S¯ and Vin is sensitive to the variations of intrinsic diffusivity. These results demonstrate that S¯ measured with the typical b-value of 1000 s/mm2 is not an indicator of Vin, and previous DTI studies acquired with b = 1000 s/mm2 cannot be re-analyzed to provide Vin-weighted contrast.
Collapse
Affiliation(s)
- Hua Li
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Ho Ming Chow
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Diane C Chugani
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; College of Health Sciences, University of Delaware, Newark, DE 19716, USA
| | - Harry T Chugani
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Rowley CD, Tabrizi SJ, Scahill RI, Leavitt BR, Roos RAC, Durr A, Bock NA. Altered Intracortical T 1-Weighted/T 2-Weighted Ratio Signal in Huntington's Disease. Front Neurosci 2018; 12:805. [PMID: 30455625 PMCID: PMC6230564 DOI: 10.3389/fnins.2018.00805] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression.
Collapse
Affiliation(s)
- Christopher D. Rowley
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University, Hamilton, ON, Canada
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Rachael I. Scahill
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Blair R. Leavitt
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Raymund A. C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Durr
- INSERM U1127, CNRS UMR7225, UMR_S1127, UPMC Université Paris VI, Institut du Cerveau et de la Moelle Epinière, Sorbonne University, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Nicholas A. Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
21
|
Li H, Chow HM, Chugani DC, Chugani HT. Minimal number of gradient directions for robust measurement of spherical mean diffusion weighted signal. Magn Reson Imaging 2018; 54:148-152. [PMID: 30171997 DOI: 10.1016/j.mri.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Determination of the minimum number of gradient directions (Nmin) for robust measurement of spherical mean diffusion weighted signal (S¯). METHODS Computer simulations were employed to characterize the relative standard deviation (RSD) of the measured spherical mean signal as a function of the number of gradient directions (N). The effects of diffusion weighting b-value and signal-to-noise ratio (SNR) were investigated. Multi-shell high angular resolution Human Connectome Project diffusion data were analyzed to support the simulation results. RESULTS RSD decreases with increasing N, and the minimum number of N needed for RSD ≤ 5% is referred to as Nmin. At high SNRs, Nmin increases with increasing b-value to achieve sufficient sampling. Simulations showed that Nmin is linearly dependent on the b-value. At low SNRs, Nmin increases with increasing b-value to reduce the noise. RSD can be estimated as σS¯N, where σ = 1/SNR is the noise level. The experimental results were in good agreement with the simulation results. The spherical mean signal can be measured accurately with a subset of gradient directions. CONCLUSION As Nmin is affected by b-value and SNR, we recommend using 10 × b / b1 (b1 = 1 ms/μm2) uniformly distributed gradient directions for typical human diffusion studies with SNR ~ 20 for robust spherical mean signal measurement.
Collapse
Affiliation(s)
- Hua Li
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Ho Ming Chow
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Diane C Chugani
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; College of Health Sciences, University of Delaware, Newark, DE 19716, USA
| | - Harry T Chugani
- Katzin Diagnostic & Research PET/MR Center, Nemours - Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Gulban OF, De Martino F, Vu AT, Yacoub E, Uğurbil K, Lenglet C. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI. Neuroimage 2018; 178:104-118. [PMID: 29753105 DOI: 10.1016/j.neuroimage.2018.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results.
Collapse
Affiliation(s)
- Omer F Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - An T Vu
- Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Cottaar M, Bastiani M, Chen C, Dikranian K, Van Essen D, Behrens TE, Sotiropoulos SN, Jbabdi S. A gyral coordinate system predictive of fibre orientations. Neuroimage 2018; 176:417-430. [PMID: 29684644 DOI: 10.1016/j.neuroimage.2018.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
When axonal fibres approach or leave the cortex, their trajectories tend to closely follow the cortical convolutions. To quantify this tendency, we propose a three-dimensional coordinate system based on the gyral geometry. For every voxel in the brain, we define a "radial" axis orthogonal to nearby surfaces, a "sulcal" axis along the sulcal depth gradient that preferentially points from deep white matter to the gyral crown, and a "gyral" axis aligned with the long axis of the gyrus. When compared with high-resolution, in-vivo diffusion MRI data from the Human Connectome Project, we find that in superficial white matter the apparent diffusion coefficient (at b = 1000) along the sulcal axis is on average 16% larger than along the gyral axis and twice as large as along the radial axis. This is reflected in the vast majority of observed fibre orientations lying close to the tangential plane (median angular offset < 7°), with the dominant fibre orientation typically aligning with the sulcal axis. In cortical grey matter, fibre orientations transition to a predominantly radial orientation. We quantify the width and location of this transition and find strong reproducibility in test-retest data, but also a clear dependence on the resolution of the diffusion data. The ratio of radial to tangential diffusion is fairly constant throughout most of the cortex, except for a decrease of the diffusivitiy ratio in the sulcal fundi and the primary somatosensory cortex (Brodmann area 3) and an increase in the primary motor cortex (Brodmann area 4). Although only constrained by cortical folds, the proposed gyral coordinate system provides a simple and intuitive representation of white and grey matter fibre orientations near the cortex, and may be useful for future studies of white matter development and organisation.
Collapse
Affiliation(s)
- Michiel Cottaar
- Wellcome Centre for Integrative Neuroscience - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, UK.
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroscience - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, UK
| | - Charles Chen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Krikor Dikranian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - David Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy E Behrens
- Wellcome Centre for Integrative Neuroscience - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, UK
| | - Stamatios N Sotiropoulos
- Wellcome Centre for Integrative Neuroscience - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroscience - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
24
|
Fischl B, Sereno MI. Microstructural parcellation of the human brain. Neuroimage 2018; 182:219-231. [PMID: 29496612 DOI: 10.1016/j.neuroimage.2018.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.
Collapse
Affiliation(s)
- Bruce Fischl
- Department of Radiology, Harvard Medical School, United States; Athinoula A. Martinos Center for Biomedical Imaging Mass, General Hospital, United States; Division of Health Sciences and Technology and Engineering and Computer Science MIT, Cambridge, MA, United States.
| | - Martin I Sereno
- Department of Psychology, SDSU Imaging Center, San Diego State University, San Diego, CA 92182, United States.
| |
Collapse
|
25
|
Ganepola T, Nagy Z, Ghosh A, Papadopoulo T, Alexander DC, Sereno MI. Using diffusion MRI to discriminate areas of cortical grey matter. Neuroimage 2017; 182:456-468. [PMID: 29274501 PMCID: PMC6189525 DOI: 10.1016/j.neuroimage.2017.12.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
Cortical area parcellation is a challenging problem that is often approached by combining structural imaging (e.g., quantitative T1, diffusion-based connectivity) with functional imaging (e.g., task activations, topological mapping, resting state correlations). Diffusion MRI (dMRI) has been widely adopted to analyse white matter microstructure, but scarcely used to distinguish grey matter regions because of the reduced anisotropy there. Nevertheless, differences in the texture of the cortical 'fabric' have long been mapped by histologists to distinguish cortical areas. Reliable area-specific contrast in the dMRI signal has previously been demonstrated in selected occipital and sensorimotor areas. We expand upon these findings by testing several diffusion-based feature sets in a series of classification tasks. Using Human Connectome Project (HCP) 3T datasets and a supervised learning approach, we demonstrate that diffusion MRI is sensitive to architectonic differences between a large number of different cortical areas defined in the HCP parcellation. By employing a surface-based cortical imaging pipeline, which defines diffusion features relative to local cortical surface orientation, we show that we can differentiate areas from their neighbours with higher accuracy than when using only fractional anisotropy or mean diffusivity. The results suggest that grey matter diffusion may provide a new, independent source of information for dividing up the cortex. Diffusion MRI provides architectonic contrast between a variety of cortical areas. dMRI provides complementary information in areas of low myelin content. High order rotational invariants provide more reliable parcellation results.
Collapse
Affiliation(s)
- Tharindu Ganepola
- Department of Cognitive, Perceptual and Brain Sciences, UCL, London, UK; Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK.
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research, UZH, Zurich, Switzerland
| | - Aurobrata Ghosh
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | | | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Martin I Sereno
- Department of Psychology and Neuroimaging Centre, SDSU, San Diego, USA
| |
Collapse
|