1
|
Lashgari M, Yang Z, Bernabeu MO, Li JR, Frangi AF. SpinDoctor-IVIM: A virtual imaging framework for intravoxel incoherent motion MRI. Med Image Anal 2025; 99:103369. [PMID: 39454311 DOI: 10.1016/j.media.2024.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Intravoxel incoherent motion (IVIM) imaging is increasingly recognised as an important tool in clinical MRI, where tissue perfusion and diffusion information can aid disease diagnosis, monitoring of patient recovery, and treatment outcome assessment. Currently, the discovery of biomarkers based on IVIM imaging, similar to other medical imaging modalities, is dependent on long preclinical and clinical validation pathways to link observable markers derived from images with the underlying pathophysiological mechanisms. To speed up this process, virtual IVIM imaging is proposed. This approach provides an efficient virtual imaging tool to design, evaluate, and optimise novel approaches for IVIM imaging. In this work, virtual IVIM imaging is developed through a new finite element solver, SpinDoctor-IVIM, which extends SpinDoctor, a diffusion MRI simulation toolbox. SpinDoctor-IVIM simulates IVIM imaging signals by solving the generalised Bloch-Torrey partial differential equation. The input velocity to SpinDoctor-IVIM is computed using HemeLB, an established Lattice Boltzmann blood flow simulator. Contrary to previous approaches, SpinDoctor-IVIM accounts for volumetric microvasculature during blood flow simulations, incorporates diffusion phenomena in the intravascular space, and accounts for the permeability between the intravascular and extravascular spaces. The above-mentioned features of the proposed framework are illustrated with simulations on a realistic microvasculature model.
Collapse
Affiliation(s)
- Mojtaba Lashgari
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK.
| | - Zheyi Yang
- Inria-Saclay, Equipe Idefix, ENSTA Paris, Unite de Mathematiques Appliquees (UMA), 91762 Palaiseau, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Jing-Rebecca Li
- Inria-Saclay, Equipe Idefix, ENSTA Paris, Unite de Mathematiques Appliquees (UMA), 91762 Palaiseau, France
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Christabel Pankhurst Institute, Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, UK; Christabel Pankhurst Institute, Department of Computer Science, School of Engineering, University of Manchester, UK; Medical Imaging Research Centre (MIRC), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Medical Imaging Research Centre (MIRC), Department of Electrical Engineering, KU Leuven, Leuven, Belgium; Alan Turing Institute, London, UK.
| |
Collapse
|
2
|
Gilani N, Mikheev A, Brinkmann IM, Kumbella M, Babb JS, Basukala D, Wetscherek A, Benkert T, Chandarana H, Sigmund EE. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. MAGMA (NEW YORK, N.Y.) 2024; 37:671-680. [PMID: 38703246 DOI: 10.1007/s10334-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Collapse
Affiliation(s)
- Nima Gilani
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
| | - Artem Mikheev
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | | | - Malika Kumbella
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Dibash Basukala
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Eric E Sigmund
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| |
Collapse
|
3
|
Bäuchle TA, Stuprich CM, Loh M, Nagel AM, Uder M, Laun FB. Influence of Magnetic Field Strength on Intravoxel Incoherent Motion Parameters in Diffusion MRI of the Calf. Tomography 2024; 10:773-788. [PMID: 38787019 PMCID: PMC11126135 DOI: 10.3390/tomography10050059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.
Collapse
Affiliation(s)
- Tamara Alice Bäuchle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Martin Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Führes T, Saake M, Szczepankiewicz F, Bickelhaupt S, Uder M, Laun FB. Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs. PLoS One 2023; 18:e0291273. [PMID: 37796773 PMCID: PMC10553293 DOI: 10.1371/journal.pone.0291273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. METHODS Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1-M2-compensated, 67%-M1-M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. RESULTS Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1-M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 μm2/ms for monopolar vs. < 0.12 μm2/ms for the other encodings). CONCLUSION All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1-M2-compensation does not exist. However, among the examined encodings, the 84%-M1-M2-compensated encodings provided a suitable tradeoff.
Collapse
Affiliation(s)
- Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Maiti S, Shaw S, Shit GC. Reply to the Comments on the article "Fractional order model of thermo-solutal and magnetic nanoparticles transport for drug delivery applications" published in Colloids and Surfaces B: Biointerfaces, 203(2021)111754. Colloids Surf B Biointerfaces 2023; 222:113107. [PMID: 36565494 DOI: 10.1016/j.colsurfb.2022.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Subrata Maiti
- Department of Mathematics, Jadavpur University, Kolkata-700032, India
| | - Sachin Shaw
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - G C Shit
- Department of Mathematics, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
6
|
Krzyżak AT, Habina‐Skrzyniarz I, Mazur W, Sułkowski M, Kot M, Majka M. Nuclear magnetic resonance footprint of Wharton Jelly mesenchymal stem cells death mechanisms and distinctive in‐cell biophysical properties in vitro. J Cell Mol Med 2022; 26:1501-1514. [PMID: 35076984 PMCID: PMC8899161 DOI: 10.1111/jcmm.17178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 01/29/2023] Open
Abstract
The importance of the biophysical characterization of mesenchymal stem cells (MSCs) was recently pointed out for supporting the development of MSC‐based therapies. Among others, tracking MSCs in vivo and a quantitative characterization of their regenerative impact by nuclear magnetic resonance (NMR) demands a full description of MSCs’ MR properties. In the work, Wharton Jelly MSCs are characterized in a low magnetic field (LF) in vitro by using different approaches. They encompass various settings: MSCs cultured in a Petri dish and cell suspensions; experiments‐ 1D‐T1, 1D‐T2, 1D diffusion, 2D T1‐T2 and D‐T2; devices‐ with a bore aperture and single‐sided one. Complex NMR analysis with the aid of random walk simulations allows the determination of MSCs T1 and T2 relaxation times, cells and nuclei sizes, self‐diffusion coefficients of the nucleus and cytoplasm. In addition, the influence of a single layer of cells on the effective diffusion coefficient of water is detected with the application of a single‐sided NMR device. It also enables the identification of apoptotic and necrotic cell death and changed diffusional properties of cells suspension caused by compressing forces induced by the subsequent cell layers. The study delivers MSCs‐specific MR parameters that may help tracking MSCs in vivo.
Collapse
Affiliation(s)
- Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
| | - Iwona Habina‐Skrzyniarz
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
| | - Weronika Mazur
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
- Faculty of Physics and Applied Computer Science AGH University of Science and Technology Cracow Poland
| | - Maciej Sułkowski
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| | - Marta Kot
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| |
Collapse
|
7
|
Non-Invasive Blood Flow Speed Measurement Using Optics. SENSORS 2022; 22:s22030897. [PMID: 35161643 PMCID: PMC8838687 DOI: 10.3390/s22030897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Non-invasive measurement of the arterial blood speed gives important health information such as cardio output and blood supplies to vital organs. The magnitude and change in arterial blood speed are key indicators of the health conditions and development and progression of diseases. We demonstrated a simple technique to directly measure the blood flow speed in main arteries based on the diffused light model. The concept is demonstrated with a phantom that uses intralipid hydrogel to model the biological tissue and an embedded glass tube with flowing human blood to model the blood vessel. The correlation function of the measured photocurrent was used to find the electrical field correlation function via the Siegert relation. We have shown that the characteristic decorrelation rate (i.e., the inverse of the decoherent time) is linearly proportional to the blood speed and independent of the tube diameter. This striking property can be explained by an approximate analytic solution for the diffused light equation in the regime where the convective flow is the dominating factor for decorrelation. As a result, we have demonstrated a non-invasive method of measuring arterial blood speed without any prior knowledge or assumption about the geometric or mechanic properties of the blood vessels.
Collapse
|
8
|
Morón M. Protein hydration shell formation: Dynamics of water in biological systems exhibiting nanoscopic cavities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Estimation of the Morphofunctional Status of the Brain in Hypertensive Wistar Rats Using Diffusion-Weighted MRI. Bull Exp Biol Med 2021; 171:276-280. [PMID: 34173109 DOI: 10.1007/s10517-021-05211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 10/21/2022]
Abstract
Morphofunctional changes of the brain tissues of Wistar rats were studied based on the development of a multifactor cardiovasorenal model of arterial hypertension using MRI. An increase of the signal on the diffusion brain maps was recorded in 3 months, which indicated fluid accumulation in the intra- and extracellular space of the brain tissue. The data characterize the development of the pathogenetic mechanism of the hypervolemic variant of experimental arterial hypertension. The development of endothelial dysfunction in the brain vessels was manifested by predominance of abnormal constrictor reactions. In 6 months after arterial hypertension simulation, structural changes in the brain developed, such as leukoareosis, cystic encephalomalacia with dilated cerebrospinal fluid spaces and limited blood supply to brain tissue in the basins of the large cerebral arteries.
Collapse
|
10
|
Riexinger A, Laun FB, Höger SA, Wiesmueller M, Uder M, Hensel B, Forst R, Hotfiel T, Heiss R. Effect of compression garments on muscle perfusion in delayed-onset muscle soreness: A quantitative analysis using intravoxel incoherent motion MR perfusion imaging. NMR IN BIOMEDICINE 2021; 34:e4487. [PMID: 33594766 DOI: 10.1002/nbm.4487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The aim of this prospective cohort study was to evaluate the effect of compression garments under resting conditions and after the induction of delayed-onset muscle soreness (DOMS) by MR perfusion imaging using intravoxel incoherent motion (IVIM). Magnetic resonance imaging of both lower legs of 16 volunteers was performed before and after standardized eccentric exercises that induced DOMS. A compression garment (21-22 mmHg) was worn during and for 6 h after exercise on one randomly selected leg. IVIM MR imaging, represented as total muscle perfusion D*f, perfusion fraction f and tissue diffusivity D, were compared between baseline and directly, 30 min, 6 h and 48 h after exhausting exercise with and without compression. Creatine kinase levels and T2-weighted images were acquired at baseline and after 48 h. DOMS was induced in the medial head of the gastrocnemius muscle (MGM) in all volunteers. Compression garments did not show any significant effect on IVIM perfusion parameters at any time point in the MGM or the tibialis anterior muscle (p > 0.05). Microvascular perfusion in the MGM increased significantly in both the compressed and noncompressed leg between baseline measurements and those taken directly after and 30 min after the exercise: the relative median f increased by 31.5% and 24.7% in the compressed and noncompressed leg, respectively, directly after the exercise compared with the baseline value. No significant change in tissue perfusion occurred 48 h after the induction of DOMS compared with baseline. It was concluded that compression garments (21-22 mmHg) do not alter microvascular muscle perfusion at rest, nor do they have any significant effect during the regeneration phase of DOMS. In DOMS, only a short-term effect of increased muscle perfusion (30 min after exercise) was observed, with normalization occurring during regeneration after 6-48 h. The normalization of perfusion independently of compression after 6 h may have implications for diagnostic and therapeutic strategies and for the better understanding of pathophysiological pathways in DOMS.
Collapse
Affiliation(s)
- Andreas Riexinger
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | | | | - Marco Wiesmueller
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raimund Forst
- Department of Orthopedic Surgery, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Thilo Hotfiel
- Department of Orthopedic Surgery, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
- Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
MR cell size imaging with temporal diffusion spectroscopy. Magn Reson Imaging 2021; 77:109-123. [PMID: 33338562 PMCID: PMC7878439 DOI: 10.1016/j.mri.2020.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Cytological features such as cell size and intracellular morphology provide fundamental information on cell status and hence may provide specific information on changes that arise within biological tissues. Such information is usually obtained by invasive biopsy in current clinical practice, which suffers several well-known disadvantages. Recently, novel MRI methods such as IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) have been developed for direct measurements of mean cell size non-invasively. The IMPULSED protocol is based on using temporal diffusion spectroscopy (TDS) to combine measurements of water diffusion over a wide range of diffusion times to probe cellular microstructure over varying length scales. IMPULSED has been shown to provide rapid, robust, and reliable mapping of mean cell size and is suitable for clinical imaging. More recently, cell size distributions have also been derived by appropriate analyses of data acquired with IMPULSED or similar sequences, which thus provides MRI-cytometry. This review summarizes the basic principles, practical implementations, validations, and example applications of MR cell size imaging based on TDS and demonstrates how cytometric information can be used in various applications. In addition, the limitations and potential future directions of MR cytometry are identified including the diagnosis of nonalcoholic steatohepatitis of the liver and the assessment of treatment response of cancers.
Collapse
|
12
|
Hu H, Jiang H, Wang S, Jiang H, Zhao S, Pan W. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer. Abdom Radiol (NY) 2021; 46:134-143. [PMID: 32462386 PMCID: PMC7864832 DOI: 10.1007/s00261-020-02594-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of this study was to determine the diagnostic performance of intravoxel incoherent motion (IVIM) on assessing response to neoadjuvant chemoradiation (nCRT) in patients with Locally Advanced Rectal Cancer (LARC). Methods 50 patients with rectal cancer who underwent magnetic resonance (MR) imaging before and after nCRT, the values of pre-nCRT and post-nCRT IVIM-DWI parameters apparent diffusion coefficient (ADC), diffusion coefficient (D), false diffusion coefficient (D*), and perfusion fraction (f), together with the percentage changes (∆% parametric value) induced by nCRT were calculated. According to the patient's response to nCRT, the patients were divided into pathological complete response (pCR) and non-pCR groups, Good Response (GR) group and Poor Response (PR) group, and the above values were compared between different groups. Univariate and multiple logistic regression analysis were done to investigate the relation between different parameters and patient nCRT. Draw ROC curve according to sensitivity and specificity, and compare its diagnostic efficacy. Results There were no significant differences in the baseline data of 50 patients. After nCRT, the ADC and D values for LARC increased significantly (all p < 0.05). The pCR group (n = 9) had higher preD*, pref, postD*, ∆%ADC and ∆%D values than the non-pCR group (n = 41) (all p < 0.05). The GR group (n = 17) exhibited higher post D, ∆%ADC and ∆%D values than the PR group (n = 33) (all p < 0.05). From the results of Logistic regression analysis found that ∆%ADC and ∆%D were significantly correlated with patients' response to nCRT. Based on ROC analysis, ∆%D had a higher area under the curve value than ∆%ADC (p = 0.009) in discriminating the pCR from non-pCR groups. Conclusions IVIM-DWI technology may be helpful in identifying the pCR and GR patients to nCRT for LARC.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032, China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
13
|
Dellschaft NS, Hutchinson G, Shah S, Jones NW, Bradley C, Leach L, Platt C, Bowtell R, Gowland PA. The haemodynamics of the human placenta in utero. PLoS Biol 2020; 18:e3000676. [PMID: 32463837 PMCID: PMC7255609 DOI: 10.1371/journal.pbio.3000676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the ‘utero-placental pump’, by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space. MRI provides important new insights into the function of the human placenta, revealing slow net flow and high, uniform oxygenation in healthy pregnancies, detecting changes that will lead to compromised oxygen delivery to the fetus in preeclampsia, and identifying a new physiological phenomenon, the ‘utero-placental pump’.
Collapse
Affiliation(s)
- Neele S. Dellschaft
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - George Hutchinson
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Simon Shah
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Nia W. Jones
- Department of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Bradley
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Lopa Leach
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Craig Platt
- Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Jiang X, Xu J, Gore JC. Mapping hepatocyte size in vivo using temporal diffusion spectroscopy MRI. Magn Reson Med 2020; 84:2671-2683. [PMID: 32333469 DOI: 10.1002/mrm.28299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this study is to implement a noninvasive method for in vivo mapping of hepatocyte size. This method will have a broad range of clinical and preclinical applications, as pathological changes in hepatocyte sizes are relevant for the accurate diagnosis and assessments of treatment response of liver diseases. METHODS Building on the concepts of temporal diffusion spectroscopy in MRI, a clinically feasible imaging protocol named IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) has been developed, which is able to report measurements of cell sizes noninvasively. This protocol acquires a selected set of diffusion imaging data and fits them to a model of water compartments in tissues to derive robust estimates of the cellular structures that restrict free diffusion. Here, we adapt and further develop this approach to measure hepatocyte sizes in vivo. We validated IMPULSED in livers of mice and rats and implemented it to image healthy human subjects using a clinical 3T MRI scanner. RESULTS The IMPULSED-derived mean hepatocyte sizes for rats and mice are about 15-20 µm and agree well with histological findings. Maps of mean hepatocyte size for humans can be achieved in less than 15 minutes, a clinically feasible scan time. CONCLUSION Our results suggest that this method has potential to overcome major limitations of liver biopsy and provide noninvasive mapping of hepatocyte sizes in clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Gurney‐Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A. Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol. Magn Reson Med 2020; 83:1003-1015. [PMID: 31566262 PMCID: PMC6899942 DOI: 10.1002/mrm.27990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time. METHODS Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys. RESULTS Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively. CONCLUSIONS We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min).
Collapse
Affiliation(s)
- Oliver J. Gurney‐Champion
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Susanne S. Rauh
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Kevin Harrington
- Targeted Therapy teamThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Frederik B. Laun
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Andreas Wetscherek
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| |
Collapse
|
16
|
Gao P, Liu Y, Shi C, Liu Y, Luo L. Performing IVIM-DWI using the multifunctional nanosystem for the evaluation of the antitumor microcirculation changes. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:517-526. [PMID: 31897903 DOI: 10.1007/s10334-019-00814-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/16/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES There is a controversy about the D* and f values of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for mid- and long-term efficacy monitoring of tumor blood perfusion. To monitor the antitumor efficacy of the F/A-PLGA@DOX/SPIO nanosystem via IVIM-DWI and to explore the value of parameters pseudo-diffusion (D*) and fraction of pseudo-diffusion (f) for evaluating therapeutic effect in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Thirty-six A549 tumor-bearing mice were divided randomly into three groups (each n = 12). Group 1 (G1) was injected with saline (the control group). Group 2 (G2) and group 3(G3) were injected with DOX and F/A-PLGA@DOX/SPIO, respectively. Each group underwent IVIM-DWI scanning at baseline and 3, 14, 21, and 28 days after treatment. D* and f values were derived using GE AW 4.5 post-processing station. All mice were sacrificed for pathological examination. RESULTS The D* value of all three groups showed an upward trend, with the highest increase in G1 and the lowest in G3. Conversely, the f value of all groups trended to decrease within 7 days, of which G3 showed the most significant decline. Immunohistochemical staining revealed that vascular endothelial growth factor (VEGF)-positive staining rate and the microvessel density (MVD) of the tumors in G3 were significantly lower than those of the other groups (P < 0.05). The D* and f values were significantly and positively correlated to CD31 (r = 0.654, P < 0.001; r = 0.712, P < 0.001) and VEGF (r = 0.694, P < 0.001; r = 0.664, P < 0.001). CONCLUSION IVIM-DWI-derived parameters D* and f are valuable indicators for the evaluation of the antitumor microcirculation changes of multifunctional nanosystem.
Collapse
Affiliation(s)
- Peng Gao
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Yiyong Liu
- Department of Radiology and Nuclear Medicine, People's Hospital of Yichun, Yichun, 336000, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yubao Liu
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China.
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
17
|
Baek S, Choi J, Son SY, Kim J, Hong S, Kim HC, Chae JH, Lee H, Kim SJ. Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion. LAB ON A CHIP 2019; 19:3190-3199. [PMID: 31475274 DOI: 10.1039/c9lc00508k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past several decades, separation and preconcentration methods of (bio)molecules have been actively developed for various biomedical and chemical processes such as disease diagnostics, point of care test and environmental monitoring. Among the great developments of the electrokinetic method in a micro/nanofluidic platform is the ion concentration polarization (ICP) phenomenon, in which a target molecule is accumulated near a permselective nanoporous membrane under an applied electric field. ICP method has been actively studied due to its easy implementation and high preconcentration/separation efficiency. However, the dynamic behavior of preconcentrated analytes has not yet been fully studied, especially driftless migration, where the applied electric field is orthogonal to the direction of the drift migration. Here, we demonstrate anomalous shapes of preconcentrated analytes (either plug or dumbbell shape) and the morphologies were analytically modeled by the leverage of convection and diffusion migration. This model was experimentally verified with various lengths of DNA and the limiting cases (convection-free environment in paper-based microfluidic device and extremely low diffusivity of red blood cells) were also shown to confirm the model. Thus, this study not only provides an insight into the fundamental electrokinetic dynamics of molecules in an ICP platform but also plays a guiding role for the design of a nanofluidic preconcentrator for a lab on a chip application.
Collapse
Affiliation(s)
- Seongho Baek
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jihye Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Seok Young Son
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Junsuk Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Seongjun Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Chan Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea. and Nano Systems Institute, Seoul National University, Seoul, 08826, South Korea and Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
18
|
Wu D, Zhang J. Evidence of the diffusion time dependence of intravoxel incoherent motion in the brain. Magn Reson Med 2019; 82:2225-2235. [PMID: 31267578 DOI: 10.1002/mrm.27879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the diffusion time (TD ) dependence of intravoxel incoherent motion (IVIM) signals in the brain. METHODS A 3-compartment IVIM model was proposed to characterize 2 types of microcirculatory flows in addition to tissue water in the brain: flows that cross multiple vascular segments (pseudo-diffusive) and flows that stay in 1 segment (ballistic) within TD . The model was first evaluated using simulated flow signals. Experimentally, flow-compensated (FC) pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences were tested using a flow phantom and then used to examine IVIM signals in the mouse brain with TD ranging from ~2.5 ms to 40 ms on an 11.7T scanner. RESULTS By fitting the model to simulated flow signals, we demonstrated the TD dependency of the estimated fraction of pseudo-diffusive flow and the pseudo-diffusion coefficient (D*), which were dictated by the characteristic timescale of microcirculatory flow (τ). Flow phantom experiments validated that the OGSE and FC-PGSE sequences were not susceptible to the change in flow velocity. In vivo mouse brain data showed that both the estimated fraction of pseudo-diffusive flow and D* increased significantly as TD increased. CONCLUSION We demonstrated that IVIM signals measured in the brain are TD -dependent, potentially because more microcirculatory flows approach the pseudo-diffusive limit as TD increases with respect to τ. Measuring the TD dependency of IVIM signals may provide additional information on microvascular flows in the brain.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
19
|
Stoeck CT, Scott AD, Ferreira PF, Tunnicliffe EM, Teh I, Nielles-Vallespin S, Moulin K, Sosnovik DE, Viallon M, Croisille P, Kozerke S, Firmin DN, Ennis DB, Schneider JE. Motion-Induced Signal Loss in In Vivo Cardiac Diffusion-Weighted Imaging. J Magn Reson Imaging 2019; 51:319-320. [PMID: 31034705 DOI: 10.1002/jmri.26767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:319-320.
Collapse
Affiliation(s)
- Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Elizabeth M Tunnicliffe
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Irvin Teh
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Kevin Moulin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - David E Sosnovik
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France.,CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France.,CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Spinner GR, Stoeck CT, Mathez L, von Deuster C, Federau C, Kozerke S. On probing intravoxel incoherent motion in the heart‐spin‐echo versus stimulated‐echo DWI. Magn Reson Med 2019; 82:1150-1163. [DOI: 10.1002/mrm.27777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Georg R. Spinner
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Linda Mathez
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | | | - Christian Federau
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| |
Collapse
|
21
|
Milani B, Ledoux JB, Rotzinger DC, Kanemitsu M, Vallée JP, Burnier M, Pruijm M. Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments. Magn Reson Med 2018; 81:583-593. [DOI: 10.1002/mrm.27393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Bastien Milani
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Center for Biomedical Imaging; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Jean-Baptiste Ledoux
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
- Center for Biomedical Imaging; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - David C. Rotzinger
- Département de Radiologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Michiko Kanemitsu
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Jean-Paul Vallée
- Département d'Imagerie et des Sciences de l'information Médicale; Hôpitaux Universitaires de Genève; Genève Switzerland
| | - Michel Burnier
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| | - Menno Pruijm
- Département de Medecine, Service de Néphrologie; Centre Hospitalier Universitaire Vaudois; Vaud Switzerland
| |
Collapse
|