1
|
Montón Quesada I, Ogier AC, Ishida M, Takafuji M, Ito H, Sakuma H, Romanin L, Roy CW, Prša M, Richiardi J, Yerly J, Stuber M, van Heeswijk RB. Self-gated free-running 5D whole-heart MRI using blind source separation for automated cardiac motion extraction. Magn Reson Med 2024. [PMID: 39385391 DOI: 10.1002/mrm.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE To compare two blind source separation (BSS) techniques to principal component analysis and the electrocardiogram for the identification of cardiac triggers in self-gated free-running 5D whole-heart MRI. To ascertain the precision and robustness of the techniques, they were compared in three different noise and contrast regimes. METHODS The repeated superior-inferior (SI) projections of a 3D radial trajectory were used to extract the physiological signals in three cardiac MRI cohorts: (1) 9 healthy volunteers without contrast agent injection at 1.5T, (2) 30 ferumoxytol-injected congenital heart disease patients at 1.5T, and (3) 12 gadobutrol-injected patients with suspected coronary artery disease at 3T. Self-gated cardiac triggers were extracted with the three algorithms (principal component analysis [PCA], second-order blind identification [SOBI], and independent component analysis [ICA]) and the difference with the electrocardiogram triggers was calculated. PCA and SOBI triggers were retained for image reconstruction. The image sharpness was ascertained on whole-heart 5D images obtained with PCA and SOBI and compared among the three cohorts. RESULTS SOBI resulted in smaller trigger differences in Cohorts 1 and 3 compared to PCA (p < 0.01) and in all cohorts compared to ICA (p < 0.04). In Cohorts 1 and 3, the sharpness increased significantly in the reconstructed images when using SOBI instead of PCA (p < 0.03), but not in Cohort 2 (p = 0.4). CONCLUSION We have shown that SOBI results in more precisely extracted self-gated triggers than PCA and ICA. The validation across three diverse cohorts demonstrates the robustness of the method against acquisition variability.
Collapse
Affiliation(s)
- Isabel Montón Quesada
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Augustin C Ogier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | | | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Japan
| | - Ludovica Romanin
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman-Mother-Child Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
2
|
Phair A, Cruz G, Qi H, Botnar RM, Prieto C. Free-running 3D whole-heart T 1 and T 2 mapping and cine MRI using low-rank reconstruction with non-rigid cardiac motion correction. Magn Reson Med 2023; 89:217-232. [PMID: 36198014 PMCID: PMC9828568 DOI: 10.1002/mrm.29449] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE To introduce non-rigid cardiac motion correction into a novel free-running framework for the simultaneous acquisition of 3D whole-heart myocardial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images, enabling a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mo>∼</mml:mo></mml:mrow> <mml:annotation>$$ \sim $$</mml:annotation></mml:semantics> </mml:math> 3-min scan. METHODS Data were acquired using a free-running 3D golden-angle radial readout interleaved with inversion recovery and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> -preparation pulses. After correction for translational respiratory motion, non-rigid cardiac-motion-corrected reconstruction with dictionary-based low-rank compression and patch-based regularization enabled 3D whole-heart <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> mapping at any given cardiac phase as well as whole-heart cardiac cine imaging. The framework was validated and compared with established methods in 11 healthy subjects. RESULTS Good quality 3D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images were reconstructed for all subjects. Septal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> values using the proposed approach ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>1200</mml:mn> <mml:mo>±</mml:mo> <mml:mn>50</mml:mn></mml:mrow> <mml:annotation>$$ 1200\pm 50 $$</mml:annotation></mml:semantics> </mml:math> ms) were higher than those from a 2D MOLLI sequence ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>1063</mml:mn> <mml:mo>±</mml:mo> <mml:mn>33</mml:mn></mml:mrow> <mml:annotation>$$ 1063\pm 33 $$</mml:annotation></mml:semantics> </mml:math> ms), which is known to underestimate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> , while <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> values from the proposed approach ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>51</mml:mn> <mml:mo>±</mml:mo> <mml:mn>4</mml:mn></mml:mrow> <mml:annotation>$$ 51\pm 4 $$</mml:annotation></mml:semantics> </mml:math> ms) were in good agreement with those from a 2D GraSE sequence ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>51</mml:mn> <mml:mo>±</mml:mo> <mml:mn>2</mml:mn></mml:mrow> <mml:annotation>$$ 51\pm 2 $$</mml:annotation></mml:semantics> </mml:math> ms). CONCLUSION The proposed technique provides 3D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images with isotropic spatial resolution in a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mo>∼</mml:mo></mml:mrow> <mml:annotation>$$ \sim $$</mml:annotation></mml:semantics> </mml:math> 3.3-min scan.
Collapse
Affiliation(s)
- Andrew Phair
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Haikun Qi
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK,Instituto de Ingeniería Biológica y MédicaPontificia Universidad Católica de ChileSantiagoChile,Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile,Millennium Institute for Intelligent Healthcare EngineeringSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK,Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile,Millennium Institute for Intelligent Healthcare EngineeringSantiagoChile
| |
Collapse
|
3
|
Bonanno G, Weiss RG, Piccini D, Yerly J, Soleimani S, Pan L, Bi X, Hays AG, Stuber M, Schär M. Volumetric coronary endothelial function assessment: a feasibility study exploiting stack-of-stars 3D cine MRI and image-based respiratory self-gating. NMR IN BIOMEDICINE 2021; 34:e4589. [PMID: 34291517 PMCID: PMC8969584 DOI: 10.1002/nbm.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Abnormal coronary endothelial function (CEF), manifesting as depressed vasoreactive responses to endothelial-specific stressors, occurs early in atherosclerosis, independently predicts cardiovascular events, and responds to cardioprotective interventions. CEF is spatially heterogeneous along a coronary artery in patients with atherosclerosis, and thus recently developed and tested non-invasive 2D MRI techniques to measure CEF may not capture the extent of changes in CEF in a given coronary artery. The purpose of this study was to develop and test the first volumetric coronary 3D MRI cine method for assessing CEF along the proximal and mid-coronary arteries with isotropic spatial resolution and in free-breathing. This approach, called 3D-Stars, combines a 6 min continuous, untriggered golden-angle stack-of-stars acquisition with a novel image-based respiratory self-gating method and cardiac and respiratory motion-resolved reconstruction. The proposed respiratory self-gating method agreed well with respiratory bellows and center-of-k-space methods. In healthy subjects, 3D-Stars vessel sharpness was non-significantly different from that by conventional 2D radial in proximal segments, albeit lower in mid-portions. Importantly, 3D-Stars detected normal vasodilatation of the right coronary artery in response to endothelial-dependent isometric handgrip stress in healthy subjects. Coronary artery cross-sectional areas measured using 3D-Stars were similar to those from 2D radial MRI when similar thresholding was used. In conclusion, 3D-Stars offers good image quality and shows feasibility for non-invasively studying vasoreactivity-related lumen area changes along the proximal coronary artery in 3D during free-breathing.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), University Hospital of Lausanne, Lausanne, Switzerland
| | - Sahar Soleimani
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Li Pan
- Siemens Medical Solutions USA, Inc, Baltimore, MD, USA
| | - Xiaoming Bi
- Siemens Medical Solutions USA, Inc, Los Angeles, CA, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Stuber
- Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), University Hospital of Lausanne, Lausanne, Switzerland
| | - Michael Schär
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Zhu D, Bonanno G, Hays AG, Weiss RG, Schär M. Phase contrast coronary blood velocity mapping with both high temporal and spatial resolution using triggered Golden Angle rotated Spiral k-t Sparse Parallel imaging (GASSP) with shifted binning. Magn Reson Med 2021; 86:1929-1943. [PMID: 33977581 DOI: 10.1002/mrm.28837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE High temporal and spatial resolutions are required for coronary blood flow measures. Current spiral breath-hold phase contrast (PC) MRI at 3T focus on either high spatial or high temporal resolution. We propose a golden angle (GA) rotated Spiral k-t Sparse Parallel imaging (GASSP) sequence for both high spatial (0.8 mm) and high temporal (<21 ms) resolutions. METHODS GASSP PC data are acquired in left anterior descending and right coronary arteries of eight healthy subjects. Binning of GA rotated spiral data into cardiac frames may lead to large k-space gaps. To reduce those gaps, the binning window is shifted and a triggered GA scheme that resets the rotation angle every heartbeat is proposed. The gap reductions are evaluated in simulations and all subjects. Peak systolic velocity (PSV), peak diastolic velocity (PDV), coronary blood flow rate, and vessel area are validated against two reference scans, and repeatability/reproducibility are determined. RESULTS Shifted binning reduced the mean k-space gaps of the triggered GA scheme by 14°-22° in simulations and about 20° in vivo. The k-space gap across three cardiac frames was reduced with the triggered GA scheme compared to the standard GA scheme (35.3°± 3.6° vs. 43°± 13.7°, t-test P = .04). PSV, PDV, flow rate, and area had high intra-scan repeatability (0.92 ≤ intraclass correlation coefficient [ICC] ≤ 0.99), and inter-scan (0.78 ≤ ICC ≤ 0.91) and intra-observer (0.91 ≤ ICC ≤ 0.98) reproducibility. CONCLUSION GASSP enables single breath-hold coronary PC MRI with high temporal and spatial resolutions. Shifted binning and a triggered GA scheme reduce k-space gaps. Quantitative coronary flow metrics are highly reproducible, especially within the same scanning session.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele Bonanno
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison G Hays
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
von Kleist H, Buehrer M, Kozerke S, Saengsin K, Harrington JK, Powell AJ, Moghari MH. Cardiac self-gating using blind source separation for 2D cine cardiovascular magnetic resonance imaging. Magn Reson Imaging 2021; 81:42-52. [PMID: 33905835 DOI: 10.1016/j.mri.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop and validate a new cardiac self-gating algorithm using blind source separation for 2D cine steady-state free precession (SSFP) imaging. METHODS A standard cine SSFP sequence was modified so that the center point of k-space was sampled with each excitation. The center points of k-space were processed by 4 blind source separation methods, and used to detect heartbeats and assign k-space data to appropriate time points in the cardiac cycle. The proposed self-gating technique was prospectively validated in 8 patients against the standard electrocardiogram (ECG)-gating method by comparing the cardiac cycle lengths, image quality metrics, and ventricular volume measurements. RESULTS There was close agreement between the cardiac cycle length using the ECG- and self-gating methods (bias 0.0 bpm, 95% limits of agreement ±2.1 bpm). The image quality metrics were not significantly different between the ECG- and self-gated images. The ventricular volumes, stroke volumes, and mass measured from self-gated images were all comparable with those from ECG-gated images (all biases <5%). CONCLUSION The self-gating method yielded comparable cardiac cycle length, image quality, and ventricular measurements compared with standard ECG-gated cine imaging. It may simplify patient preparation, be more robust when there is arrhythmia, and allow cardiac gating at higher field strengths.
Collapse
Affiliation(s)
- Henrik von Kleist
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Informatics, Technical University of Munich, Garching, Germany.
| | - Martin Buehrer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Kwannapas Saengsin
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jamie K Harrington
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Bongers-Karmaoui MN, Jaddoe VWV, Roest AAW, Gaillard R. The Cardiovascular Stress Response as Early Life Marker of Cardiovascular Health: Applications in Population-Based Pediatric Studies-A Narrative Review. Pediatr Cardiol 2020; 41:1739-1755. [PMID: 32879997 PMCID: PMC7695663 DOI: 10.1007/s00246-020-02436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Stress inducement by physical exercise requires major cardiovascular adaptations in both adults and children to maintain an adequate perfusion of the body. As physical exercise causes a stress situation for the cardiovascular system, cardiovascular exercise stress tests are widely used in clinical practice to reveal subtle cardiovascular pathology in adult and childhood populations with cardiac and cardiovascular diseases. Recently, evidence from small studies suggests that the cardiovascular stress response can also be used within research settings to provide novel insights on subtle differences in cardiovascular health in non-diseased adults and children, as even among healthy populations an abnormal response to physical exercise is associated with an increased risk of cardiovascular diseases. This narrative review is specifically focused on the possibilities of using the cardiovascular stress response to exercise combined with advanced imaging techniques in pediatric population-based studies focused on the early origins of cardiovascular diseases. We discuss the physiology of the cardiovascular stress response to exercise, the type of physical exercise used to induce the cardiovascular stress response in combination with advanced imaging techniques, the obtained measurements with advanced imaging techniques during the cardiovascular exercise stress test and their associations with cardiovascular health outcomes. Finally, we discuss the potential for cardiovascular exercise stress tests to use in pediatric population-based studies focused on the early origins of cardiovascular diseases.
Collapse
Affiliation(s)
- Meddy N Bongers-Karmaoui
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arno A W Roest
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Aizaz M, Moonen RPM, van der Pol JAJ, Prieto C, Botnar RM, Kooi ME. PET/MRI of atherosclerosis. Cardiovasc Diagn Ther 2020; 10:1120-1139. [PMID: 32968664 DOI: 10.21037/cdt.2020.02.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial infarction and stroke are the most prevalent global causes of death. Each year 15 million people worldwide die due to myocardial infarction or stroke. Rupture of a vulnerable atherosclerotic plaque is the main underlying cause of stroke and myocardial infarction. Key features of a vulnerable plaque are inflammation, a large lipid-rich necrotic core (LRNC) with a thin or ruptured overlying fibrous cap, and intraplaque hemorrhage (IPH). Noninvasive imaging of these features could have a role in risk stratification of myocardial infarction and stroke and can potentially be utilized for treatment guidance and monitoring. The recent development of hybrid PET/MRI combining the superior soft tissue contrast of MRI with the opportunity to visualize specific plaque features using various radioactive tracers, paves the way for comprehensive plaque imaging. In this review, the use of hybrid PET/MRI for atherosclerotic plaque imaging in carotid and coronary arteries is discussed. The pros and cons of different hybrid PET/MRI systems are reviewed. The challenges in the development of PET/MRI and potential solutions are described. An overview of PET and MRI acquisition techniques for imaging of atherosclerosis including motion correction is provided, followed by a summary of vessel wall imaging PET/MRI studies in patients with carotid and coronary artery disease. Finally, the future of imaging of atherosclerosis with PET/MRI is discussed.
Collapse
Affiliation(s)
- Mueez Aizaz
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Rik P M Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jochem A J van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Qi H, Jaubert O, Bustin A, Cruz G, Chen H, Botnar R, Prieto C. Free-running 3D whole heart myocardial T 1 mapping with isotropic spatial resolution. Magn Reson Med 2019; 82:1331-1342. [PMID: 31099442 PMCID: PMC6851769 DOI: 10.1002/mrm.27811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE To develop a free-running (free-breathing, retrospective cardiac gating) 3D myocardial T1 mapping with isotropic spatial resolution. METHODS The free-running sequence is inversion recovery (IR)-prepared followed by continuous 3D golden angle radial data acquisition. 1D respiratory motion signal is extracted from the k-space center of all spokes and used to bin the k-space data into different respiratory states, enabling estimation and correction of 3D translational respiratory motion, whereas cardiac motion is recorded using electrocardiography and synchronized with data acquisition. 3D translational respiratory motion compensated T1 maps at diastole and systole were generated with 1.5 mm isotropic spatial resolution with low-rank inversion and high-dimensionality patch-based undersampled reconstruction. The technique was validated against conventional methods in phantom and 9 healthy subjects. RESULTS Phantom results demonstrated good agreement (R2 = 0.99) of T1 estimation with reference method. Homogeneous systolic and diastolic 3D T1 maps were reconstructed from the proposed technique. Diastolic septal T1 estimated with the proposed method (1140 ± 36 ms) was comparable to the saturation recovery single-shot acquisition (SASHA) sequence (1153 ± 49 ms), but was higher than the modified Look-Locker inversion recovery (MOLLI) sequence (1037 ± 33 ms). Precision of the proposed method (42 ± 8 ms) was comparable to MOLLI (41 ± 7 ms) and improved with respect to SASHA (87 ± 19 ms). CONCLUSIONS The proposed free-running whole heart T1 mapping method allows for reconstruction of isotropic resolution 3D T1 maps at different cardiac phases, serving as a promising tool for whole heart myocardial tissue characterization.
Collapse
Affiliation(s)
- Haikun Qi
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Olivier Jaubert
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - René Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
9
|
Zhou R, Yang Y, Mathew RC, Mugler JP, Weller DS, Kramer CM, Ahmed AH, Jacob M, Salerno M. Free-breathing cine imaging with motion-corrected reconstruction at 3T using SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS). Magn Reson Med 2019; 82:706-720. [PMID: 31006916 DOI: 10.1002/mrm.27763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a continuous-acquisition cardiac self-gated spiral pulse sequence and a respiratory motion-compensated reconstruction strategy for free-breathing cine imaging. METHODS Cine data were acquired continuously on a 3T scanner for 8 seconds per slice without ECG gating or breath-holding, using a golden-angle gradient echo spiral pulse sequence. Cardiac motion information was extracted by applying principal component analysis on the gridded 8 × 8 k-space center data. Respiratory motion was corrected by rigid registration on each heartbeat. Images were reconstructed using a low-rank and sparse (L+S) technique. This strategy was evaluated in 37 healthy subjects and 8 subjects undergoing clinical cardiac MR studies. Image quality was scored (1-5 scale) in a blinded fashion by 2 experienced cardiologists. In 13 subjects with whole-heart coverage, left ventricular ejection fraction (LVEF) from SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS) was compared to that from a standard ECG-gated breath-hold balanced steady-state free precession (bSSFP) cine sequence. RESULTS The self-gated signal was successfully extracted in all cases and demonstrated close agreement with the acquired ECG signal (mean bias, -0.22 ms). The mean image score across all subjects was 4.0 for reconstruction using the L+S model. There was good agreement between the LVEF derived from SPARCS and the gold-standard bSSFP technique. CONCLUSION SPARCS successfully images cardiac function without the need for ECG gating or breath-holding. With an 8-second data acquisition per slice, whole-heart cine images with clinically acceptable spatial and temporal resolution and image quality can be acquired in <90 seconds of free-breathing acquisition.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Yang Yang
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roshin C Mathew
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - John P Mugler
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel S Weller
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Abdul Haseeb Ahmed
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Michael Salerno
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
10
|
Chen L, Wei Z, Chan K, Cai S, Liu G, Lu H, Wong PC, van Zijl PCM, Li T, Xu J. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 2019; 188:380-390. [PMID: 30553917 PMCID: PMC6401270 DOI: 10.1016/j.neuroimage.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to develop a molecular biomarker for the detection of protein aggregation involved in Alzheimer's disease (AD) by exploiting the features of the water saturation transfer spectrum (Z-spectrum), the CEST signal of which is sensitive to the molecular configuration of proteins. A radial-sampling steady-state sequence based ultrashort echo time (UTE) readout was implemented to image the Z-spectrum in the mouse brain, especially the contributions from mobile proteins at the frequency offsets for the composite protein amide proton (+3.6 ppm) and aliphatic proton (-3.6 ppm) signals. Using a relatively weak radiofrequency (RF) saturation amplitude, contributions due to strong magnetization transfer contrast (MTC) from solid-like macromolecules and direct water saturation (DS) were minimized. For practical measure of the changes in the mobile protein configuration, we defined a saturation transfer difference (ΔST) by subtracting the Z-spectral signals at ±3.6 ppm from a control signal at 8 ppm. Phantom studies of glutamate solution, protein (egg white) and hair conditioner show the capability of the proposed scheme to minimize the contributions from amine protons, DS, and MTC, respectively. The ST signal at ±3.6 ppm of the cross-linked bovine serum albumin (BSA) solutions demonstrated that the ΔST signal can be used to monitor the aggregation process of the mobile proteins. High-resolution ΔST images of AD mouse brains at ±3.6 ppm of mouse brains showed significantly reduced ΔST (-3.6) signal compared to the age-matched wild-type (WT) mice. Thus, this signal has potential to serve as a molecular biomarker for monitoring protein aggregation in AD.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Schär M, Soleimanifard S, Bonanno G, Yerly J, Hays AG, Weiss RG. Precision and accuracy of cross-sectional area measurements used to measure coronary endothelial function with spiral MRI. Magn Reson Med 2019; 81:291-302. [PMID: 30024061 PMCID: PMC6258280 DOI: 10.1002/mrm.27384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Coronary endothelial function (CEF) reflects vascular health and conventional invasive CEF measures predict cardiovascular events. MRI can now noninvasively measure CEF by quantifying coronary artery cross-sectional area changes in response to isometric handgrip exercise, an endothelial-dependent stressor. Area changes (10 to 20% in healthy; 2 to -12% in impaired vessels) are only a few imaging voxels because of MRI's limited spatial resolution. Here, with numerical simulations and phantom studies, we test whether Fourier interpolation enables sub-pixel area measurement precision and determine the smallest detectable area change using spiral MRI. METHODS In vivo coronary SNR with the currently used CEF protocol at 3T was measured in 7 subjects for subsequent in vitro work. Area measurements of circular vessels were simulated by varying partial volume, vessel diameter, voxel size, SNR, and Fourier interpolation factor. A phantom with precision-drilled holes (diameters 3-3.42 mm) was imaged 10 times with the current CEF protocol (voxel size, Δx = 0.89 mm) and a high-resolution protocol (Δx = 0.6 mm) to determine precision, accuracy, and the smallest detectable area changes. RESULTS In vivo coronary SNR ranged from 30-76. Eight-fold Fourier interpolation improved area measurement precision by a factor 6.5 and 4.9 in the simulations and phantom scans, respectively. The current CEF protocol can detect mean area changes of 4-5% for SNR above 30, and 3-3.5% for SNR above 40 with a higher-resolution protocol. CONCLUSION Current CEF spiral MRI with in vivo SNR allows detection of a 4-5% area change and Fourier interpolation improves precision several-fold to sub-voxel dimensions.
Collapse
Affiliation(s)
- Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sahar Soleimanifard
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gabriele Bonanno
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Bonanno G, Hays AG, Weiss RG, Schär M. Self-gated golden angle spiral cine MRI for coronary endothelial function assessment. Magn Reson Med 2018; 80:560-570. [PMID: 29282752 PMCID: PMC5910207 DOI: 10.1002/mrm.27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. METHODS SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. RESULTS Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CONCLUSION CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Michael Schär
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|