Li X, Pan JW, Avdievich NI, Hetherington HP, Rispoli JV. Electromagnetic simulation of a 16-channel head transceiver at 7 T using circuit-spatial optimization.
Magn Reson Med 2021;
85:3463-3478. [PMID:
33533500 DOI:
10.1002/mrm.28672]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE
With increased interest in parallel transmission in ultrahigh-field MRI, methods are needed to correctly calculate the S-parameters and complex field maps of the parallel transmission coil. We present S-parameters paired with spatial field optimization to fully simulate a double-row 16-element transceiver array for brain MRI at 7 T.
METHODS
We implemented a closed-form equation of the coil S-parameters and overall spatial B 1 + field. We minimized a cost function, consisting of coil S-parameters and the B 1 + homogeneity in brain tissue, by optimizing transceiver components, including matching, decoupling circuits, and lumped capacitors. With this, we are able to compare the in silico results determined with and without B 1 + homogeneity weighting. Using the known voltage range from the host console, we reconstructed the B 1 + maps of the array and performed RF shimming with four realistic head models.
RESULTS
As performed with B 1 + homogeneity weighting, the optimized coil circuit components were highly consistent over the four heads, producing well-tuned, matched, and decoupled coils. The mean peak forward powers and B 1 + statistics for the head models are consistent with in vivo human results (N = 8). There are systematic differences in the transceiver components as optimized with or without B 1 + homogeneity weighting, resulting in an improvement of 28.4 ± 7.5% in B 1 + homogeneity with a small 1.9 ± 1.5% decline in power efficiency.
CONCLUSION
This co-simulation methodology accurately simulates the transceiver, predicting consistent S-parameters, component values, and B 1 + field. The RF shimming of the calculated field maps match the in vivo performance.
Collapse