1
|
Jiang Y, Ji Y, Zhou IY, Liu N, Sun PZ, Ning M, Dumont AS, Wang X. Effects of the New Thrombolytic Compound LT3001 on Acute Brain Tissue Damage After Focal Embolic Stroke in Rats. Transl Stroke Res 2024; 15:30-40. [PMID: 36445611 DOI: 10.1007/s12975-022-01107-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
LT3001 is a novel synthetic small molecule with thrombolytic and free radical scavenging activities. In this study, we tested the effects of LT3001 as a potential alternative thrombolytic in focal embolic ischemic stroke rat model. Stroked rats received intravenous injection of 10 mg/kg LT3001 or tPA at 1.5, 3, or 4.5 h after stroke, respectively, and the outcomes were measured at different time points after stroke by performing multi-parametric MRI, 2,3,5-triphenyltetrazolium chloride (TTC) staining, and modified neurological severity score. Lastly, we assessed the effect of LT3001 on the tPA activity in vitro, the international normalized ratio (INR), and the serum levels of active tPA and plasminogen activator inhibitor-1 (PAI-1). LT3001 treated at 1.5 h after stroke is neuroprotective by reducing the CBF lesion size and lowering diffusion and T2 lesion size measured by MRI, which is consistent with the reduction in TTC-stained infarction. When treated at 3 h after stroke, LT3001 had significantly better therapeutic effects regarding reduction of infarct size, swelling rate, and hemorrhagic transformation compared to tPA. When treated at 4.5 h after stroke, tPA, but not LT3001, significantly increased brain swelling and intracerebral hemorrhagic transformation. Lastly, LT3001 did not interfere with tPA activity in vitro, or significantly alter the INR and serum levels of active tPA and PAI-1 in vivo. Our data suggests that LT3001 is neuroprotective in focal embolic stroke rat model. It might have thrombolytic property, not interfere with tPA/PAI-1 activity, and cause less risk of hemorrhagic transformation compared to the conventional tPA. Taken together, LT3001 might be developed as a novel therapy for treating thrombotic ischemic stroke.
Collapse
Affiliation(s)
- Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA.
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA.
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingming Ning
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA, USA.
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ji Y, Hoge WS, Gagoski B, Westin CF, Rathi Y, Ning L. Accelerating joint relaxation-diffusion MRI by integrating time division multiplexing and simultaneous multi-slice (TDM-SMS) strategies. Magn Reson Med 2022; 87:2697-2709. [PMID: 35092081 DOI: 10.1002/mrm.29160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Henriques RN, Jespersen SN, Shemesh N. Evidence for microscopic kurtosis in neural tissue revealed by correlation tensor MRI. Magn Reson Med 2021; 86:3111-3130. [PMID: 34329509 PMCID: PMC9290035 DOI: 10.1002/mrm.28938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The impact of microscopic diffusional kurtosis (µK), arising from restricted diffusion and/or structural disorder, remains a controversial issue in contemporary diffusion MRI (dMRI). Recently, correlation tensor imaging (CTI) was introduced to disentangle the sources contributing to diffusional kurtosis, without relying on a-priori multi-gaussian component (MGC) or other microstructural assumptions. Here, we investigated µK in in vivo rat brains and assessed its impact on state-of-the-art methods ignoring µK. THEORY AND METHODS CTI harnesses double diffusion encoding (DDE) experiments, which were here improved for speed and minimal bias using four different sets of acquisition parameters. The robustness of the improved CTI protocol was assessed via simulations. In vivo CTI acquisitions were performed in healthy rat brains using a 9.4T pre-clinical scanner equipped with a cryogenic coil, and targeted the estimation of µK, anisotropic kurtosis, and isotropic kurtosis. RESULTS The improved CTI acquisition scheme substantially reduces scan time and importantly, also minimizes higher-order-term biases, thus enabling robust µK estimation, alongside Kaniso and Kiso metrics. Our CTI experiments revealed positive µK both in white and gray matter of the rat brain in vivo; µK is the dominant kurtosis source in healthy gray matter tissue. The non-negligible µK substantially were found to bias prior MGC analyses of Kiso and Kaniso . CONCLUSIONS Correlation Tensor MRI offers a more accurate and robust characterization of kurtosis sources than its predecessors. µK is non-negligible in vivo in healthy white and gray matter tissues and could be an important biomarker for future studies. Our findings thus have both theoretical and practical implications for future dMRI research.
Collapse
Affiliation(s)
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
4
|
Ji Y, Gagoski B, Hoge WS, Rathi Y, Ning L. Accelerated diffusion and relaxation-diffusion MRI using time-division multiplexing EPI. Magn Reson Med 2021; 86:2528-2541. [PMID: 34196032 DOI: 10.1002/mrm.28894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a time-division multiplexing echo-planar imaging (TDM-EPI) sequence for approximately two- to threefold acceleration when acquiring joint relaxation-diffusion MRI data with multiple TEs. METHODS The proposed TDM-EPI sequence interleaves excitation and data collection for up to 3 separate slices at different TEs and uses echo-shifting gradients to disentangle the overlapping echo signals during the readout period. By properly arranging the sequence event blocks for each slice and adjusting the echo-shifting gradients, diffusion-weighted images from separate slices can be acquired. Therefore, we present 2 variants of the sequence. A single-TE TDM-EPI is presented to demonstrate the concept. Next, a multi-TE TDM-EPI is presented to highlight the advantages of the TDM approach for relaxation-diffusion imaging. These sequences were evaluated on a 3 Tesla scanner with a water phantom and in vivo human brain data. RESULTS The single-TE TDM-EPI sequence can simultaneously acquire 2 slices with a maximum b value of 3000 s/mm2 and 2.5 mm isotropic resolution using interleaved readout windows with TE ≈ 78 ms. With the same b value and resolution, the multi-TE TDM-EPI sequence can simultaneously acquire 2 or 3 separate slices using interleaved readout sections with shortest TE ≈ 70 ms and ΔTE ≈ 30 ms. Phantom and in vivo experiments have shown that the proposed TDM-EPI sequences can provide similar image quality and diffusion measures as conventional EPI readouts with multiple echoes but can reduce the overall relaxation-diffusion protocol scan time by approximately two- to threefold. CONCLUSION TDM-EPI is a novel approach to acquire diffusion imaging data at multiple TEs. This enables a significant reduction in acquisition time for relaxation-diffusion MRI experiments but without compromising image quality and diffusion measurements, thus removing a significant barrier to the adoption of relaxation-diffusion MRI in clinical research studies of neurological and mental disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Wereszczyńska B, Szcześniak K. MRI phantom for tissue simulation with respect to diffusion coefficient and kurtosis - Validation with injection of liposomal theranostics. Magn Reson Imaging 2021; 82:18-23. [PMID: 34147600 DOI: 10.1016/j.mri.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
This study presents gelatine-based and agar-based phantoms with an addition of glycerol, safflower oil, silicone oil and cellulose microcrystalline with a potential to cover the entire range of tissue diffusion coefficients and kurtosis values. Forty types of phantoms were prepared and examined for NMR relaxation times T1 and T2 and diffusional metrics D, K and ADC. Wide ranges of values of D (0.0003-0.0031 mm2s-1), K (0.00-7.24) and ADC (0.0002-0.0031 mm2s-1) were observed. Two of the phantoms closely mimic muscle and cortical gray matter with respect to water diffusion parameters. Although many of the presented phantoms display both D and K values within the range of human tissues, they match different tissues with respect to D and K. The imaging results for the gray matter simulating phantom injected with the liposomal solution, bear a resemblance to the particle size effect described in the literature. The phantoms presented in this work are simple in preparation and affordable tissue-simulating materials to be used primarily in development of diffusion kurtosis-based MRI methods and possibly in a preliminary assessment of MRI contrast agents. Further adjustments of the chemical compositions could potentially lead to development of new types of phantoms mimicking diffusional properties of more kinds of soft tissues.
Collapse
Affiliation(s)
- B Wereszczyńska
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland; Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland.
| | - K Szcześniak
- Department of Polymers, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
6
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
7
|
Henriques RN, Jespersen SN, Shemesh N. Correlation tensor magnetic resonance imaging. Neuroimage 2020; 211:116605. [DOI: 10.1016/j.neuroimage.2020.116605] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022] Open
|
8
|
MATSUMAE M, KURODA K, YATSUSHIRO S, HIRAYAMA A, HAYASHI N, TAKIZAWA K, ATSUMI H, SORIMACHI T. Changing the Currently Held Concept of Cerebrospinal Fluid Dynamics Based on Shared Findings of Cerebrospinal Fluid Motion in the Cranial Cavity Using Various Types of Magnetic Resonance Imaging Techniques. Neurol Med Chir (Tokyo) 2019; 59:133-146. [PMID: 30814424 PMCID: PMC6465527 DOI: 10.2176/nmc.ra.2018-0272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022] Open
Abstract
The "cerebrospinal fluid (CSF) circulation theory" of CSF flowing unidirectionally and circulating through the ventricles and subarachnoid space in a downward or upward fashion has been widely recognized. In this review, observations of CSF motion using different magnetic resonance imaging (MRI) techniques are described, findings that are shared among these techniques are extracted, and CSF motion, as we currently understand it based on the results from the quantitative analysis of CSF motion, is discussed, along with a discussion of slower water molecule motion in the perivascular, paravascular, and brain parenchyma. Today, a shared consensus regarding CSF motion is being formed, as follows: CSF motion is not a circulatory flow, but a combination of various directions of flow in the ventricles and subarachnoid space, and the acceleration of CSF motion differs depending on the CSF space. It is now necessary to revise the currently held concept that CSF flows unidirectionally. Currently, water molecule motion in the order of centimeters per second can be detected with various MRI techniques. Thus, we need new MRI techniques with high-velocity sensitivity, such as in the order of 10 μm/s, to determine water molecule movement in the vessel wall, paravascular space, and brain parenchyma. In this paper, the authors review the previous and current concepts of CSF motion in the central nervous system using various MRI techniques.
Collapse
Affiliation(s)
- Mitsunori MATSUMAE
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki KURODA
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Satoshi YATSUSHIRO
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- BioView Inc., Tokyo, Japan
| | - Akihiro HIRAYAMA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naokazu HAYASHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken TAKIZAWA
- Department of Ophthalmology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hideki ATSUMI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takatoshi SORIMACHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
9
|
Ji Y, Lu D, Wu L, Qiu B, Song YQ, Sun PZ. Preliminary evaluation of accelerated microscopic diffusional kurtosis imaging (μDKI) in a rodent model of epilepsy. Magn Reson Imaging 2018; 56:90-95. [PMID: 30352270 DOI: 10.1016/j.mri.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Our study aimed to develop accelerated microscopic diffusional kurtosis imaging (μDKI) and preliminarily evaluated it in a rodent model of chronic epilepsy. METHODS We investigated two μDKI acceleration schemes of reduced sampling density and angular range in a phantom and wild-type rats, and further tested μDKI method in pilocarpine-induced epilepsy rats using a 4.7 Tesla MRI. Single slice average μDapp and μKapp maps were derived, and Nissl staining was obtained. RESULTS The kurtosis maps from two accelerated μDKI sampling schemes (sampling density and range) are very similar to that using fully sampled data (SSIM > 0.95). For the epileptic models, μDKI showed noticeably different contrast from those obtained with conventional DKI. Specifically, the average μKapp was significantly less than that of the average of Kapp (0.15 ± 0.01 vs. 0.47 ± 0.02) in the ventricle. CONCLUSIONS Our study demonstrated the feasibility of accelerated in vivo μDKI. Our work revealed that μDKI provides complementary information to conventional DKI method, suggesting that advanced DKI sequences are promising to elucidate tissue microstructure in neurological diseases.
Collapse
Affiliation(s)
- Yang Ji
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Limin Wu
- Neuroscience Center, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Bensheng Qiu
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yi-Qiao Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Schlumberger-Doll Research Center, Cambridge, MA, United States of America
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|