1
|
Odéen H, Payne AH, Parker DL. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI). J Magn Reson Imaging 2025. [PMID: 39842847 DOI: 10.1002/jmri.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences. Many different types of MEG (monopolar, bipolar, tripolar etc.) have been described and pros and cons are discussed. We further review studies investigating the safety of MR-ARFI, as well as approaches to simulate the MR-ARFI displacement. Lastly, MR-ARFI applications such as for focal spot localization, tissue stiffness interrogation following thermal ablation, trans-skull aberration correction, and simultaneous MR-ARFI and MR thermometry are discussed. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Willoughby WR, Odéen H, Jones J, Bolding M. Magnetic Resonance Imaging of Focused Ultrasound Radiation Force Strain Fields for Discrimination of Solid and Liquid Phases. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1892-1900. [PMID: 37271680 DOI: 10.1016/j.ultrasmedbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/05/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Focused ultrasound (FUS) has become a non-invasive option for some surgical procedures, including tumor ablation and thalamotomy. Extension of magnetic resonance (MR) imaging-guided focused ultrasound for ablation of slowly perfused cerebrovascular lesions requires a novel treatment monitoring method that does not rely on thermometry or high-frequency Doppler methods. The goal of this study was to evaluate the sensitivity and specificity of strain estimates based on MR acoustic radiation force imaging (MR-ARFI) for differentiation of solids and liquids. METHODS Strain fields were estimated in gelatin-based tissue-mimicking focused ultrasound phantoms on the basis of apparent displacement fields measured by MR-ARFI. MR-ARFI and diffusion-weighted imaging (DWI) measurements were made before and after FUS-induced heating to evaluate the performance of displacement, strain and apparent diffusion coefficient (ADC) measurements for the discrimination of solid and liquid phases. RESULTS As revealed by receiver operating characteristic analyses, axial normal strain and shear strain components performed significantly better than axial displacement measurements alone when predicting whether a gelatin had melted. Additional measurements must be made to estimate certain strain components, so this trade-off must be considered when developing clinical strategies. ADC had the best overall performance, but DWI is vulnerable to signal dropouts and susceptibility artifacts near cerebrovascular lesions, so this metric may have limited clinical applicability. CONCLUSION Strain components based on MR-ARFI apparent displacement measurements perform better than apparent displacement measurements alone at discriminating between solids and liquids. These methods are applicable to FUS treatment monitoring and evaluation of mechanical tissue properties in vivo.
Collapse
Affiliation(s)
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jesse Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Odéen H, Hofstetter LW, Payne AH, Guiraud L, Dumont E, Parker DL. Simultaneous proton resonance frequency T 1 - MR shear wave elastography for MR-guided focused ultrasound multiparametric treatment monitoring. Magn Reson Med 2023; 89:2171-2185. [PMID: 36656135 PMCID: PMC10940047 DOI: 10.1002/mrm.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W. Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H. Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Luo H, Sigona MK, Manuel TJ, Phipps MA, Chen LM, Caskey CF, Grissom WA. Reduced-field of view three-dimensional MR acoustic radiation force imaging with a low-rank reconstruction for targeting transcranial focused ultrasound. Magn Reson Med 2022; 88:2419-2431. [PMID: 35916311 PMCID: PMC9529839 DOI: 10.1002/mrm.29403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects. METHODS MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount. To simultaneously minimize scan time and the FUS duty cycle, a 2-min three-dimensional (3D) reduced-FOV spin echo ARFI scan with two-dimensional undersampling was implemented at 3T with a FUS duty cycle of 0.85%. The 3D k-space sampling scheme incorporated uniform undersampling in one phase-encoded axis and partial Fourier (PF) sampling in the other. The scan interleaved FUS-on and FUS-off data collection to improve displacement map quality via a joint low-rank image reconstruction. Experiments in agarose and graphite phantoms and living macaque brains for neuromodulation and blood-brain barrier opening studied the effects of the sampling and reconstruction strategy on the acquisition, and evaluated its repeatability and accuracy. RESULTS In the phantom, the distances between displacement centroids of 10 prospective reconstructions and a fully sampled reference were below 1 mm. In in vivo brain, the distances between centroids ranged from 1.3 to 2.1 mm. Results in phantom and in vivo brain both showed that the proposed method can recover the FUS focus compared to slower fully sampled scans. CONCLUSION The proposed 3D MR-ARFI reduced-FOV method enables rapid imaging of the FUS focus while maintaining a low FUS duty cycle.
Collapse
Affiliation(s)
- Huiwen Luo
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle K Sigona
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J Manuel
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Marshal A Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Li M Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William A Grissom
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Cai H, Liu S. The value of contrast-enhanced ultrasound versus shear wave elastography in differentiating benign and malignant superficial lymph node lesions. Am J Transl Res 2021; 13:11625-11631. [PMID: 34786088 PMCID: PMC8581941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyze the value of contrast-enhanced ultrasound (CEUS) versus shear wave elastography (SWE) in differentiating benign and malignant superficial lymph node lesions. METHODS In this retrospective study, a total of 140 superficial lymph nodes from 140 patients pathologically confirmed to have an enlargement of their superficial lymph nodes were examined using CEUS and SWE. The results and diagnostic efficacy were analyzed. RESULTS Among the 67 benign lymph nodes, there were 38 cases of type I, 17 of type II, and 12 of types III and IV. Among the 73 malignant lymph nodes, there were 53 cases of type III, 11 of type IV, and 9 of types I and II. Among the patients with lymph nodes <1 cm, there were 20, 4, 8, and 5 cases of types I, II, III, and IV, respectively. Among the patients with 1-2 cm lymph nodes, there were 15, 10, 26 and 7 cases of types I, II, III, and IV, respectively. There were 6, 10, 27, and 2 cases of types I, II, III, and IV in the >2 cm lymph nodes, respectively. The accuracy, sensitivity, and specificity of CEUS in the diagnosis of malignant lymph nodes were 85.00%, 87.67%, and 82.09%, respectively, and those of SWE were 89.29%, 80.82%, and 98.51%, respectively. SWE showed higher specificity than CEUS (P<0.05). SWE showed mean shear wave velocity (SWV) values of (2.11±0.41) m/s for the benign lymph nodes and (3.22±0.79) m/s for the malignant lymph nodes (P<0.05). The receiver operating characteristic (ROC) curves of the SWV values for the benign and malignant lymph nodes showed AUC=0.9948. CONCLUSION Both CEUS and SWE are valuable in the differentiation of benign and malignant lymph node lesions, but SWE has a higher specificity. The SWV value of SWE is superior in the differentiation of benign and malignant lymph nodes. The combination of the two methods can achieve a higher accuracy.
Collapse
Affiliation(s)
- Huahai Cai
- Department of Ultrasound, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang, China
| | - Shuyu Liu
- Department of Ultrasound, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang, China
| |
Collapse
|
8
|
Hofstetter LW, Odéen H, Bolster BD, Christensen DA, Payne A, Parker DL. Magnetic resonance shear wave elastography using transient acoustic radiation force excitations and sinusoidal displacement encoding. Phys Med Biol 2021; 66. [PMID: 33352538 DOI: 10.1088/1361-6560/abd5ce] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
A magnetic resonance (MR) shear wave elastography technique that uses transient acoustic radiation force impulses from a focused ultrasound (FUS) transducer and a sinusoidal-shaped MR displacement encoding strategy is presented. Using this encoding strategy, an analytic expression for calculating the shear wave speed in a heterogeneous medium was derived. Green's function-based simulations were used to evaluate the feasibility of calculating shear wave speed maps using the analytic expression. Accuracy of simulation technique was confirmed experimentally in a homogeneous gelatin phantom. The elastography measurement was compared to harmonic MR elastography in a homogeneous phantom experiment and the measured shear wave speed values differed by less than 14%. This new transient elastography approach was able to map the position and shape of inclusions sized from 8.5 to 14 mm in an inclusion phantom experiment. These preliminary results demonstrate the feasibility of using a straightforward analytic expression to generate shear wave speed maps from MR images where sinusoidal-shaped motion encoding gradients are used to encode the displacement-time history of a transiently propagating wave-packet. This new measurement technique may be particularly well suited for performing elastography before, during, and after MR-guided FUS therapies since the same device used for therapy is also used as an excitation source for elastography.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bradley D Bolster
- Siemens Medical Solutions USA, Inc., Salt Lake City, Utah, United States of America
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America.,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
9
|
Hofstetter LW, Fausett L, Mueller A, Odéen H, Payne A, Christensen DA, Parker DL. Development and characterization of a tissue mimicking psyllium husk gelatin phantom for ultrasound and magnetic resonance imaging. Int J Hyperthermia 2020; 37:283-290. [PMID: 32204632 DOI: 10.1080/02656736.2020.1739345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Purpose: To develop and characterize a tissue-mimicking phantom that enables the direct comparison of magnetic resonance (MR) and ultrasound (US) imaging techniques useful for monitoring high-intensity focused ultrasound (HIFU) treatments. With no additions, gelatin phantoms produce little if any scattering required for US imaging. This study characterizes the MR and US image characteristics as a function of psyllium husk concentration, which was added to increase US scattering.Methods: Gelatin phantoms were constructed with varying concentrations of psyllium husk. The effects of psyllium husk concentration on US B-mode and MR imaging were evaluated at nine different concentrations. T1, T2, and T2* MR maps were acquired. Acoustic properties (attenuation and speed of sound) were measured at frequencies of 0.6, 1.0, 1.8, and 3.0 MHz using a through-transmission technique. Phantom elastic properties were evaluated for both time and temperature dependence.Results: Ultrasound image echogenicity increased with increasing psyllium husk concentration while quality of gradient-recalled echo MR images decreased with increasing concentration. For all phantoms, the measured speed of sound ranged between 1567-1569 m/s and the attenuation ranged between 0.42-0.44 dB/(cm·MHz). Measured T1 ranged from 974-1051 ms. The T2 and T2* values ranged from 97-108 ms and 48-88 ms, respectively, with both showing a decreasing trend with increased psyllium husk concentration. Phantom stiffness, measured using US shear-wave speed measurements, increased with age and decreased with increasing temperature.Conclusions: The presented dual-use tissue-mimicking phantom is easy to manufacture and can be used to compare and evaluate US-guided and MR-guided HIFU imaging protocols.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lewis Fausett
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Guertler CA, Okamoto RJ, Ireland JA, Pacia CP, Garbow JR, Chen H, Bayly PV. Estimation of Anisotropic Material Properties of Soft Tissue by MRI of Ultrasound-Induced Shear Waves. J Biomech Eng 2020; 142:031001. [PMID: 31980814 PMCID: PMC7104780 DOI: 10.1115/1.4046127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/31/2019] [Indexed: 11/08/2022]
Abstract
This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating "slow" and "fast" shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.
Collapse
Affiliation(s)
- Charlotte A Guertler
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Ruth J Okamoto
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Jake A Ireland
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130
| | - Christopher P Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| | - Joel R Garbow
- Biomedical Magnetic Resonance Laboratory, Washington University in St. Louis, 4525 Scott Avenue, CB 8227, St. Louis, MO 63110
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| | - Philip V Bayly
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, 1 Brookings Drive, CB 1185 St. Louis, MO 63130; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, CB 1097, St. Louis, MO 63130
| |
Collapse
|
11
|
Considerations for ultrasound exposure during transcranial MR acoustic radiation force imaging. Sci Rep 2019; 9:16235. [PMID: 31700021 PMCID: PMC6838326 DOI: 10.1038/s41598-019-52443-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to improve the sensitivity of magnetic resonance-acoustic radiation force imaging (MR-ARFI) to minimize pressures required to localize focused ultrasound (FUS) beams, and to establish safe FUS localization parameters for ongoing ultrasound neuromodulation experiments in living non-human primates. We developed an optical tracking method to ensure that the MR-ARFI motion-encoding gradients (MEGs) were aligned with a single-element FUS transducer and that the imaged slice was prescribed at the optically tracked location of the acoustic focus. This method was validated in phantoms, which showed that MR-ARFI-derived displacement sensitivity is maximized when the MR-ARFI MEGs were maximally aligned with the FUS propagation direction. The method was then applied in vivo to acquire displacement images in two healthy macaque monkeys (M fascicularis) which showed the FUS beam within the brain. Temperature images were acquired using MR thermometry to provide an estimate of in vivo brain temperature changes during MR-ARFI, and pressure and thermal simulations of the acoustic pulses were performed using the k-Wave package which showed no significant heating at the focus of the FUS beam. The methods presented here will benefit the multitude of transcranial FUS applications as well as future human applications.
Collapse
|
12
|
Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen DA, Payne A, Parker DL. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 2019; 81:3153-3167. [PMID: 30663806 PMCID: PMC6414262 DOI: 10.1002/mrm.27647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|