Chen W, Lee NG, Byrd D, Narayanan S, Nayak KS. Improved real-time tagged MRI using REALTAG.
Magn Reson Med 2020;
84:838-846. [PMID:
31872918 PMCID:
PMC7180094 DOI:
10.1002/mrm.28144]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES
To evaluate a novel method for real-time tagged MRI with increased tag persistence using phase sensitive tagging (REALTAG), demonstrated for speech imaging.
METHODS
Tagging is applied as a brief interruption to a continuous real-time spiral acquisition. REALTAG is implemented using a total tagging flip angle of 180° and a novel frame-by-frame phase sensitive reconstruction to remove smooth background phase while preserving the sign of the tag lines. Tag contrast-to-noise ratio of REALTAG and conventional tagging (total flip angle of 90°) is simulated and evaluated in vivo. The ability to extend tag persistence is tested during the production of vowel-to-vowel transitions by American English speakers.
RESULTS
REALTAG resulted in a doubling of contrast-to-noise ratio at each time point and increased tag persistence by more than 1.9-fold. The tag persistence was 1150 ms with contrast-to-noise ratio >6 at 1.5T, providing 2 mm in-plane resolution, 179 frames/s, with 72.6 ms temporal window width, and phase sensitive reconstruction. The new imaging window is able to capture internal tongue deformation over word-to-word transitions in natural speech production.
CONCLUSION
Tag persistence is substantially increased in intermittently tagged real-time MRI by using the improved REALTAG method. This makes it possible to capture longer motion patterns in the tongue, such as cross-word vowel-to-vowel transitions, and provides a powerful new window to study tongue biomechanics.
Collapse