1
|
Otikovs M, Nissan N, Furman-Haran E, Anaby D, Agassi R, Sklair-Levy M, Frydman L. Relaxation-Diffusion T2-ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment. Diagnostics (Basel) 2023; 13:3516. [PMID: 38066757 PMCID: PMC10705897 DOI: 10.3390/diagnostics13233516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Quantitative correlations between T2 and ADC values were explored on cancerous breast lesions using spatiotemporally encoded (SPEN) MRI. To this end, T2 maps of patients were measured at more than one b-value, and ADC maps at several echo time values were recorded. SPEN delivered quality, artifact-free, TE-weighted DW images, from which T2-ADC correlations could be obtained despite the signal losses brought about by diffusion and relaxation. Data confirmed known aspects of breast cancer lesions, including their reduced ADC values vs. healthy tissue. Data also revealed an anticorrelation between the T2 and ADC values, when comparing regions with healthy and diseased tissues. This is contrary to expectations based on simple water restriction considerations. It is also contrary to what has been observed in a majority of porous materials and tissues. Differences between the healthy tissue of the lesion-affected breast and healthy tissue in the contralateral breast were also noticed. The potential significance of these trends is discussed, as is the potential of combining T2- and ADC-weightings to achieve an enhanced endogenous MRI contrast about the location of breast cancer lesions.
Collapse
Affiliation(s)
- Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Nissan
- Department of Radiology, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.N.); (D.A.); (M.S.-L.)
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Debbie Anaby
- Department of Radiology, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.N.); (D.A.); (M.S.-L.)
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Ravit Agassi
- Surgery Department, Soroka Hospital, Beer Sheva 8410101, Israel
| | - Miri Sklair-Levy
- Department of Radiology, Sheba Medical Center, Ramat Gan 5262000, Israel; (N.N.); (D.A.); (M.S.-L.)
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Franklin SL, Schuurmans M, Otikovs M, Borman PTS, van Osch MJP, Bos C. Arterial spin labeling using spatio-temporal encoding readout for robust perfusion imaging in inhomogenous magnetic fields. Magn Reson Med 2023; 89:1092-1101. [PMID: 36420871 PMCID: PMC10099794 DOI: 10.1002/mrm.29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the feasibility of spatio-temporal encoding (SPEN) readout for pseudo-continuous ASL (pCASL) in brain, and its robustness to susceptibility artifacts as introduced by aneurysm clips. METHODS A 2D self-refocused T2 *-compensated hybrid SPEN scheme, with super-resolution reconstruction was implemented on a 1.5T Philips system. Q (=BWchirp *Tchirp ) was varied and, the aneurysm clip-induced artifact was evaluated in phantom (label-images) as well as in vivo (perfusion-weighted signal (PWS)-maps and temporal SNR (tSNR)). In vivo results were compared to gradient-echo EPI (GE-EPI) and spin-echo EPI (SE-EPI). The dependence of tSNR on TR was evaluated separately for SPEN and SE-EPI. SPEN with Q ˜ 75 encodes with the same off-resonance robustness as EPI. RESULTS The clip-induced artifact with SPEN decreased with increase in Q, and was smaller compared to SE-EPI and GE-EPI in vivo. tSNR decreased with Q and the tSNR of GE-EPI and SE-EPI corresponded to SPEN with a Q-value of approximately ˜85 and ˜108, respectively. In addition, SPEN perfusion images showed a higher tSNR (p < 0.05) for TR = 4000 ms compared to TR = 2100 ms, while SE-EPI did not. tSNR remained relatively stable when the time between SPEN-excitation and start of the next labeling-module was more than ˜1000 ms. CONCLUSION Feasibility of combining SPEN with pCASL imaging was demonstrated, enabling cerebral perfusion measurements with a higher robustness to field inhomogeneity (Q > 75) compared to SE-EPI and GE-EPI. However, the SPEN chirp-pulse saturates incoming blood, thereby reducing pCASL labeling efficiency of the next acquisition for short TRs. Future developments are needed to enable 3D scanning.
Collapse
Affiliation(s)
- Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Megan Schuurmans
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Pim T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Otikovs M, Basak A, Frydman L. Spatiotemporal encoding MRI using subspace-constrained sampling and locally-low-rank regularization: Applications to diffusion weighted and diffusion kurtosis imaging of human brain and prostate. Magn Reson Imaging 2022; 94:151-160. [PMID: 36216145 DOI: 10.1016/j.mri.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The benefits of performing locally low-rank (LLR) reconstructions on subsampled diffusion weighted and diffusion kurtosis imaging data employing spatiotemporal encoding (SPEN) methods, is investigated. SPEN allows for self-referenced correction of motion-induced phase errors in case of interleaved diffusion-oriented acquisitions, and allows one to overcome distortions otherwise observed along EPI's phase-encoded dimension. In combination with LLR-based reconstructions of the pooled imaging data and with a joint subsampling of b-weighted and interleaved images, additional improvements in terms of sensitivity as well as shortened acquisition times are demonstrated, without noticeable penalties. Details on how the LLR-regularized, subspace-constrained image reconstructions were adapted to SPEN are given; the improvements introduced by adopting these reconstruction frameworks for the accelerated acquisition of diffusivity and of kurtosis imaging data in both relatively homogeneous regions like the human brain and in more challenging regions like the human prostate, are presented and discussed within the context of similar efforts in the field.
Collapse
Affiliation(s)
- Martins Otikovs
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Basak
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Ma L, Otikovs M, Cousin SF, Liberman G, Bao Q, Frydman L. Simultaneous multi-banding and multi-echo phase encoding for the accelerated acquisition of high-resolution volumetric diffusivity maps by spatiotemporally encoded MRI. Magn Reson Imaging 2021; 79:130-139. [PMID: 33744384 DOI: 10.1016/j.mri.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Spatiotemporal Encoding (SPEN) is an ultrafast imaging technique where the low-bandwidth axis is rasterized in a joint spatial/k-domain. SPEN benefits from increased robustness to field inhomogeneities, folding-free reconstruction of subsampled data, and an ability to combine multiple interleaved or signal averaged scans -yet its relatively high SAR complicates volumetric uses. Here we show how this can be alleviated by merging simultaneous multi-band excitation, with intra-slab multi-echo (ME) phase encoding, for the acquisition of high definition volumetric DWI/DTI data. METHODS A protocol involving phase-cycling of simultaneous multi-banded z-slab excitations in independently ky-interleaved scans, together with ME trains that kz-encoded positions within these slabs, was implemented. A reconstruction incorporating a CAIPIRINHA-like encoding of the multiple bands and exploiting SPEN's ability to deliver self-referenced, per-shot phase maps, then led to high-definition diffusivity acquisitions, with reduced SAR and acquisition times vis-à-vis non-optimized 3D counterparts. RESULTS The new protocol was used to collect full brain 3 T DTI experiments at a variety of nominal voxel sizes, ranging from 1.95 to 2.54 mm3. In general, the new protocol yielded superior sensitivity and fewer distortions than what could be observed in comparably timed phase-encoded 3D SPEN, multi-slice 2D SPEN, or optimized EPI counterparts. CONCLUSIONS A robust procedure for acquiring volumetric DWI/DTI data was developed and demonstrated.
Collapse
Affiliation(s)
- Lingceng Ma
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; College of Electronic Science and Technology, Xiamen University, Xiamen, China
| | - Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel F Cousin
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Centre de RMN à Très Haut Champs, Lyon, France
| | - Gilad Liberman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Massachusetts General Hospital, Boston, USA
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Wuhan Center for Magnetic Resonance, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Otikovs M, Nissan N, Furman-Haran E, Anaby D, Allweis TM, Agassi R, Sklair-Levy M, Frydman L. Diffusivity in breast malignancies analyzed for b > 1000 s/mm 2 at 1 mm in-plane resolutions: Insight from Gaussian and non-Gaussian behaviors. J Magn Reson Imaging 2020; 53:1913-1925. [PMID: 33368734 DOI: 10.1002/jmri.27489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Diffusion-weighted imaging (DWI) can improve breast cancer characterizations, but often suffers from low image quality -particularly at informative b > 1000 s/mm2 values. The aim of this study was to evaluate multishot approaches characterizing Gaussian and non-Gaussian diffusivities in breast cancer. This was a prospective study, in which 15 subjects, including 13 patients with biopsy-confirmed breast cancers, were enrolled. DWI was acquired at 3 T using echo planar imaging (EPI) with and without zoomed excitations, readout-segmented EPI (RESOLVE), and spatiotemporal encoding (SPEN); dynamic contrast-enhanced (DCE) data were collected using three-dimensional gradient-echo T1 weighting; anatomies were evaluated with T2 -weighted two-dimensional turbo spin-echo. Congruence between malignancies delineated by DCE was assessed against high-resolution DWI scans with b-values in the 0-1800 s/mm2 range, as well as against apparent diffusion coefficient (ADC) and kurtosis maps. Data were evaluated by independent magnetic resonance scientists with 3-20 years of experience, and radiologists with 6 and 20 years of experience in breast MRI. Malignancies were assessed from ADC and kurtosis maps, using paired t tests after confirming that these values had a Gaussian distribution. Agreements between DWI and DCE datasets were also evaluated using Sorensen-Dice similarity coefficients. Cancerous and normal tissues were clearly separable by ADCs: by SPEN their average values were (1.03 ± 0.17) × 10-3 and (1.69 ± 0.19) × 10-3 mm2 /s (p < 0.0001); by RESOLVE these values were (1.16 ± 0.16) × 10-3 and (1.52 ± 0.14) × 10-3 (p = 0.00026). Kurtosis also distinguished lesions (K = 0.64 ± 0.15) from normal tissues (K = 0.45 ± 0.05), but only when measured by SPEN (p = 0.0008). The best statistical agreement with DCE-highlighted regions arose for SPEN-based DWIs recorded with b = 1800 s/mm2 (Sorensen-Dice coefficient = 0.67); DWI data recorded with b = 850 and 1200 s/mm2 , led to lower coefficients. Both ADC and kurtosis maps highlighted the breast malignancies, with ADCs providing a more significant separation. The most promising alternative for contrast-free delineations of the cancerous lesions arose from b = 1800 s/mm2 DWI. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Nissan
- Department of Radiology, Sheba-Medical-Center, Ramat-Gan, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.,Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| | - Debbie Anaby
- Department of Radiology, Sheba-Medical-Center, Ramat-Gan, Israel
| | - Tanir M Allweis
- Department of Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Ravit Agassi
- Department of Surgery, Ben Gurion University Hospital, Beer Sheba, Israel
| | - Miri Sklair-Levy
- Department of Radiology, Sheba-Medical-Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.,Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Yon M, Bao Q, Chitrit OJ, Henriques RN, Shemesh N, Frydman L. High-Resolution 3D in vivo Brain Diffusion Tensor Imaging at Ultrahigh Fields: Following Maturation on Juvenile and Adult Mice. Front Neurosci 2020; 14:590900. [PMID: 33328861 PMCID: PMC7714913 DOI: 10.3389/fnins.2020.590900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a well-established technique for mapping brain microstructure and white matter tracts in vivo. High resolution DTI, however, is usually associated with low intrinsic sensitivity and therefore long acquisition times. By increasing sensitivity, high magnetic fields can alleviate these demands, yet high fields are also typically associated with significant susceptibility-induced image distortions. This study explores the potential arising from employing new pulse sequences and emerging hardware at ultrahigh fields, to overcome these limitations. To this end, a 15.2 T MRI instrument equipped with a cryocooled surface transceiver coil was employed, and DTI experiments were compared between SPatiotemporal ENcoding (SPEN), a technique that tolerates well susceptibility-induced image distortions, and double-sampled Spin-Echo Echo-Planar Imaging (SE-EPI) methods. Following optimization, SE-EPI afforded whole brain DTI maps at 135 μm isotropic resolution that possessed higher signal-to-noise ratios (SNRs) than SPEN counterparts. SPEN, however, was a better alternative to SE-EPI when focusing on challenging regions of the mouse brain -including the olfactory bulb and the cerebellum. In these instances, the higher robustness of fully refocused SPEN acquisitions coupled to its built-in zooming abilities, provided in vivo DTI maps with 75 μm nominal isotropic spatial resolution. These DTI maps, and in particular the mean diffusion direction (MDD) details, exhibited variations that matched very well the anatomical features known from histological brain Atlases. Using these capabilities, the development of the olfactory bulb (OB) in live mice was followed from week 1 post-partum, until adulthood. The diffusivity of this organ showed a systematic decrease in its overall isotropic value and increase in its fractional anisotropy with age; this maturation was observed for all regions used in the OB's segmentation but was most evident for the lobules' centers, in particular for the granular cell layer. The complexity of the OB neuronal connections also increased during maturation, as evidenced by the growth in directionalities arising in the mean diffusivity direction maps.
Collapse
Affiliation(s)
- Maxime Yon
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | | | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
7
|
Yon M, de Almeida Martins JP, Bao Q, Budde MD, Frydman L, Topgaard D. Diffusion tensor distribution imaging of an in vivo mouse brain at ultrahigh magnetic field by spatiotemporal encoding. NMR IN BIOMEDICINE 2020; 33:e4355. [PMID: 32812669 PMCID: PMC7583469 DOI: 10.1002/nbm.4355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 05/08/2023]
Abstract
Diffusion tensor distribution (DTD) imaging builds on principles from diffusion, solid-state and low-field NMR spectroscopies, to quantify the contents of heterogeneous voxels as nonparametric distributions, with tensor "size", "shape" and orientation having direct relations to corresponding microstructural properties of biological tissues. The approach requires the acquisition of multiple images as a function of the magnitude, shape and direction of the diffusion-encoding gradients, leading to long acquisition times unless fast image read-out techniques like EPI are employed. While in previous in vivo human brain studies performed at 3 T this proved a viable option, porting these measurements to very high magnetic fields and/or to heterogeneous organs induces B0 - and B1 -inhomogeneity artifacts that challenge the limits of EPI. To overcome such challenges, we demonstrate here that high spatial resolution DTD of mouse brain can be carried out at 15.2 T with a surface-cryoprobe, by relying on SPatiotemporal ENcoding (SPEN) imaging sequences. These new acquisition and data-processing protocols are demonstrated with measurements on in vivo mouse brain, and validated with synthetic phantoms designed to mimic the diffusion properties of white matter, gray matter and cerebrospinal fluid. While still in need of full extensions to 3D mappings and of scanning additional animals to extract more general physiological conclusions, this work represents another step towards the model-free, noninvasive in vivo characterization of tissue microstructure and heterogeneity in animal models, at ≈0.1 mm resolutions.
Collapse
Affiliation(s)
- Maxime Yon
- Department of Chemical and Biological PhysicsWeizmann InstituteRehovotIsrael
| | - João P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| | - Qingjia Bao
- Department of Chemical and Biological PhysicsWeizmann InstituteRehovotIsrael
| | | | - Lucio Frydman
- Department of Chemical and Biological PhysicsWeizmann InstituteRehovotIsrael
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| |
Collapse
|
8
|
Huang J, Chen L, Chan KWY, Cai C, Cai S, Chen Z. Super-resolved water/fat image reconstruction based on single-shot spatiotemporally encoded MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106736. [PMID: 32361511 DOI: 10.1016/j.jmr.2020.106736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Single-shot spatiotemporally encoded (SPEN) MRI has been validated to possess considerable performance in both spatial and temporal resolution. Water/fat separation is essential for MRI applications in which only water signal is needed. In this article, a super-resolved water/fat image reconstruction method (dubbed SWAF) combined prior knowledge was developed based on single-shot SPEN MRI. The point spread function of spatiotemporal encoding under multiple chemical shifts situation was derived and used for constructing an equation for SWAF image reconstruction. By processing the prior chemical shift information with filtering operation, an initial spin density profile of water/fat and a weighting matrix for water/fat residual artifacts suppression were obtained to guide the reconstruction process. A l1 norm minimization problem with regularization was exploited to reconstruct separated water/fat images with high spatial resolution and less residual/aliasing artifacts. Numeric simulation and experiments on water-oil phantom and rat abdomen/neck imaging demonstrated the effectiveness and robustness of this new method. The SWAF method proposed herein would promote the application of SPEN MRI in the cases where water/fat separation is required.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Bao Q, Liberman G, Solomon E, Frydman L. High-resolution diffusion MRI studies of development in pregnant mice visualized by novel spatiotemporal encoding schemes. NMR IN BIOMEDICINE 2020; 33:e4208. [PMID: 31809554 DOI: 10.1002/nbm.4208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
This study introduces an MRI approach to map diffusion of water in vivo with high resolution under challenging conditions; the approach's potential is then used in diffusivity characterizations of embryos and fetoplacental units in pregnant mice, as well as of newborn mice in their initial postnatal period. The method relies on performing self-referenced spatiotemporal encoded MRI acquisitions, which can achieve the motional and susceptibility immunities needed to target challenging regions such as a mouse's abdominal cavity in a single shot. When suitably combined with zooming-in and novel interleaving procedures, these scans can overcome the inhomogeneity and sensitivity challenges arising upon targeting ≈100 μm in-plane resolutions, and thereby enable longitudinal development studies of abdominal organs that have hitherto eluded in vivo diffusion-weighted imaging. This is employed here to follow processes related to embryonic implantation and placentation, including the final stages of mouse gastrulation, the development of white matter in fetal brains, the maturation of fetal spines, and the evolution of the different layers making up mouse hemochorial placentas. The protocol's ability to extract diffusivity information in challenging regions as a function of embryonic mouse development is thus demonstrated, and its usefulness as a tool for visualizing pregnancy-related developmental changes in rodents is discussed.
Collapse
Affiliation(s)
- Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Gilad Liberman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Eddy Solomon
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
10
|
Solomon E, Liberman G, Nissan N, Furman‐Haran E, Sklair‐Levy M, Frydman L. Diffusion‐weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn Reson Med 2020; 84:1391-1403. [DOI: 10.1002/mrm.28213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Eddy Solomon
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Liberman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Noam Nissan
- Department of Radiology Sheba‐Medical‐Center Ramat‐Gan Israel
| | - Edna Furman‐Haran
- Life Sciences Core Facilities Weizmann Institute of Science Rehovot Israel
| | - Miri Sklair‐Levy
- Department of Radiology Sheba‐Medical‐Center Ramat‐Gan Israel
- Sackler School of Medicine Tel‐Aviv University Tel‐Aviv Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
11
|
Bao Q, Ma L, Liberman G, Solomon E, Martinho RP, Frydman L. Dynamic T
2
mapping by multi‐spin‐echo spatiotemporal encoding. Magn Reson Med 2020; 84:895-907. [DOI: 10.1002/mrm.28158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qingjia Bao
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Lingceng Ma
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Gilad Liberman
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Eddy Solomon
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Ricardo P. Martinho
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics Weizmann Institute Rehovot Israel
| |
Collapse
|