1
|
Luo Q, Zhong Z, Sun K, Scotti A, Zhou XJ. Gradient-echo-train-based sub-millisecond periodic event encoded dynamic imaging with random (k, t)-space undersampling: k-t get-SPEEDI. Magn Reson Med 2022; 88:1690-1701. [PMID: 35666824 PMCID: PMC9339512 DOI: 10.1002/mrm.29313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The gradient-echo-train-based Sub-millisecond Periodic Event Encoded Dynamic Imaging (get-SPEEDI) technique provides ultrahigh temporal resolutions (∼0.6 ms) for detecting rapid physiological activities, but its practical adoption can be hampered by long scan times. This study aimed at developing a more efficient variant of get-SPEEDI for reducing the scan time without degrading temporal resolution or image quality. METHODS The proposed pulse sequence, named k-t get-SPEEDI, accelerated get-SPEEDI acquisition by undersampling the k-space phase-encoding lines semi-randomly. At each time frame, k-space was fully sampled in the central region whereas randomly undersampled in the outer regions. A time-series of images was reconstructed using an algorithm based on the joint partial separability and sparsity constraints. To demonstrate the performance of k-t get-SPEEDI, images of human aortic valve opening and closing were acquired with 0.6-ms temporal resolution and compared with those from conventional get-SPEEDI. RESULTS k-t get-SPEEDI achieved a 2-fold scan time reduction over the conventional get-SPEEDI (from ∼6 to ∼3 min), while achieving comparable SNRs and contrast-to-noise ratio (CNRs) for visualizing the dynamic process of aortic valve: SNR/CNR ≈ $$ \approx $$ 70/38 vs. 73/39 in the k-t and conventional get-SPEEDI scans, respectively. The time courses of aortic valve area also matched well between these two sequences with a correlation coefficient of 0.86. CONCLUSIONS The k-t get-SPEEDI pulse sequence was able to half the scan time without compromising the image quality and ultrahigh temporal resolution. Additional scan time reduction may also be possible, facilitating in vivo adoptions of SPEEDI techniques.
Collapse
Affiliation(s)
- Qingfei Luo
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zheng Zhong
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Kaibao Sun
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alessandro Scotti
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of RadiologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Zhong Z, Sun K, Dan G, Luo Q, Zhou XJ. MRI with sub-millisecond temporal resolution over a reduced field of view. Magn Reson Med 2021; 86:3166-3174. [PMID: 34270138 PMCID: PMC8568630 DOI: 10.1002/mrm.28924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE To demonstrate an MRI pulse sequence-Sub-millisecond Periodic Event Encoded Dynamic Imaging with a reduced field of view (or rFOV-SPEEDI)-for decreasing the scan times while achieving sub-millisecond temporal resolution. METHODS rFOV-SPEEDI was based on a variation of SPEEDI, known as get-SPEEDI, which used each echo in an echo-train to sample a distinct k-space raster by synchronizing with a cyclic event. This can produce a set of time-resolved images of the cyclic event with a temporal resolution determined by the echo spacing (typically < 1 ms). rFOV-SPEEDI incorporated a 2D radiofrequency (RF) pulse into get-SPEEDI to limit the field of view (FOV), leading to reduction in phase-encoding steps and subsequently decreased scan times without compromising the spatial resolution. Two experiments were performed at 3T to illustrate rFOV-SPEEDI's capability of capturing fast-changing electric currents in a phantom and the rapid opening and closing of aortic valve in human subjects over reduced FOVs. The results were compared with those from full FOV get-SPEEDI. RESULTS In the first experiment, the rapidly varying currents (50-200 Hz) were successfully captured with a temporal resolution of 0.8 ms, and agreed well with the applied currents. In the second experiment, the rapid opening and closing processes of aortic valve were clearly visualized with a temporal resolution of 0.6 ms over a reduced FOV (12 × 12 cm2 ). In both experiments, the acquisition times of rFOV-SPEEDI were decreased by 33%-50% relative to full FOV get-SPEEDI acquisitions and the spatial resolution was maintained. CONCLUSION Reducing the FOV is a viable approach to shortening the scan times in SPEEDI, which is expected to help stimulate SPEEDI applications for studying ultrafast, cyclic physiological and biophysical processes over a focal region.
Collapse
Affiliation(s)
- Zheng Zhong
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Fischer J, Özen AC, Ilbey S, Traser L, Echternach M, Richter B, Bock M. Sub-millisecond 2D MRI of the vocal fold oscillation using single-point imaging with rapid encoding. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:301-310. [PMID: 34542771 PMCID: PMC8995286 DOI: 10.1007/s10334-021-00959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The slow spatial encoding of MRI has precluded its application to rapid physiologic motion in the past. The purpose of this study is to introduce a new fast acquisition method and to demonstrate feasibility of encoding rapid two-dimensional motion of human vocal folds with sub-millisecond resolution. METHOD In our previous work, we achieved high temporal resolution by applying a rapidly switched phase encoding gradient along the direction of motion. In this work, we extend phase encoding to the second image direction by using single-point imaging with rapid encoding (SPIRE) to image the two-dimensional vocal fold oscillation in the coronal view. Image data were gated using electroglottography (EGG) and motion corrected. An iterative reconstruction with a total variation (TV) constraint was used and the sequence was also simulated using a motion phantom. RESULTS Dynamic images of the vocal folds during phonation at pitches of 150 and 165 Hz were acquired in two volunteers and the periodic motion of the vocal folds at a temporal resolution of about 600 µs was shown. The simulations emphasize the necessity of SPIRE for two-dimensional motion encoding. DISCUSSION SPIRE is a new MRI method to image rapidly oscillating structures and for the first time provides dynamic images of the vocal folds oscillations in the coronal plane.
Collapse
Affiliation(s)
- Johannes Fischer
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Louisa Traser
- Freiburg Institute for Musicians' Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Echternach
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard Richter
- Freiburg Institute for Musicians' Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Line scan-based rapid magnetic resonance imaging of repetitive motion. Sci Rep 2021; 11:4505. [PMID: 33627753 PMCID: PMC7904786 DOI: 10.1038/s41598-021-83954-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional (2D) line scan-based dynamic magnetic resonance imaging (MRI) is examined as a means to capture the interior of objects under repetitive motion with high spatiotemporal resolutions. The method was demonstrated in a 9.4-T animal MRI scanner where line-by-line segmented k-space acquisition enabled recording movements of an agarose phantom and quail eggs in different conditions—raw and cooked. A custom MR-compatible actuator which utilized the Lorentz force on its wire loops in the scanner’s main magnetic field effectively induced the required periodic movements of the objects inside the magnet. The line-by-line k-space segmentation was achieved by acquiring a single k-space line for every frame in a motion period before acquisition of another line with a different phase-encode gradient in the succeeding motion period. The reconstructed time-course images accurately represented the objects’ displacements with temporal resolutions up to 5.5 ms. The proposed method can drastically increase the temporal resolution of MRI for imaging rapid periodic motion of objects while preserving adequate spatial resolution for internal details when their movements are driven by a reliable motion-inducing mechanism.
Collapse
|
5
|
Zhong Z, Sun K, Karaman MM, Zhou XJ. Magnetic resonance imaging with submillisecond temporal resolution. Magn Reson Med 2020; 85:2434-2444. [PMID: 33252784 DOI: 10.1002/mrm.28588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/20/2020] [Accepted: 10/17/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To demonstrate an MRI technique-Submillisecond Periodic Event Encoded Dynamic Imaging (SPEEDI)-for capturing cyclic dynamic events with submillisecond temporal resolution. METHODS The SPEEDI technique is based on an FID or an echo signal in which each time point in the signal is used to sample a distinct k-space raster, followed by repeated FIDs or echoes to produce the remaining k-space data in each k-space raster. All acquisitions are synchronized with a cyclic event, resulting in a set of time-resolved images of the cyclic event with a temporal resolution determined by the dwell time. In SPEEDI, spatial encoding is accomplished by phase encoding. The SPEEDI technique was demonstrated in two experiments at 3 T to (1) visualize fast-changing electric currents that mimicked the waveform of an action potential, and (2) characterize rapidly decaying eddy currents in an MRI system, with a temporal resolution of 0.2 ms and 0.4 ms, respectively. In both experiments, compressed sensing was incorporated to reduce the scan times. Phase difference maps related to the dynamics of electric currents or eddy currents were then obtained. RESULTS In the first experiment, time-resolved phase maps resulting from the action potential-mimicking current waveform were successfully obtained and agreed well with theoretical calculations (normalized RMS error = 0.07). In the second experiment, spatially resolved eddy current phase maps revealed time constants (27.1 ± 0.2 ms, 41.1 ± 3.5 ms, and 34.8 ± 0.7 ms) that matched well with those obtained from an established method using point sources (26.4 ms, 41.2 ms and 34.8 ms). For both experiments, phase maps from fully sampled and compressed-sensing-accelerated k-space data exhibited a high structural similarity (> 0.8) despite a two-fold to three-fold acceleration. CONCLUSIONS We have illustrated that SPEEDI can provide submillisecond temporal resolution. This capability will likely lead to future exploration of ultrafast, cyclic biomedical processes using MRI.
Collapse
Affiliation(s)
- Zheng Zhong
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - M Muge Karaman
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Birkholz P, Kürbis S, Stone S, Häsner P, Blandin R, Fleischer M. Printable 3D vocal tract shapes from MRI data and their acoustic and aerodynamic properties. Sci Data 2020; 7:255. [PMID: 32759947 PMCID: PMC7406497 DOI: 10.1038/s41597-020-00597-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
A detailed understanding of how the acoustic patterns of speech sounds are generated by the complex 3D shapes of the vocal tract is a major goal in speech research. The Dresden Vocal Tract Dataset (DVTD) presented here contains geometric and (aero)acoustic data of the vocal tract of 22 German speech sounds (16 vowels, 5 fricatives, 1 lateral), each from one male and one female speaker. The data include the 3D Magnetic Resonance Imaging data of the vocal tracts, the corresponding 3D-printable and finite-element models, and their simulated and measured acoustic and aerodynamic properties. The dataset was evaluated in terms of the plausibility and the similarity of the resonance frequencies determined by the acoustic simulations and measurements, and in terms of the human identification rate of the vowels and fricatives synthesized by the artificially excited 3D-printed vocal tract models. According to both the acoustic and perceptual metrics, most models are accurate representations of the intended speech sounds and can be readily used for research and education.
Collapse
Affiliation(s)
- Peter Birkholz
- Institute of Acoustics and Speech Communication, TU Dresden, Dresden, Germany.
| | - Steffen Kürbis
- Institute of Acoustics and Speech Communication, TU Dresden, Dresden, Germany
| | - Simon Stone
- Institute of Acoustics and Speech Communication, TU Dresden, Dresden, Germany
| | - Patrick Häsner
- Institute of Acoustics and Speech Communication, TU Dresden, Dresden, Germany
| | - Rémi Blandin
- Institute of Acoustics and Speech Communication, TU Dresden, Dresden, Germany
| | - Mario Fleischer
- Charité - Universitätsmedizin Berlin, Department of Audiology and Phoniatrics, Berlin, Germany
| |
Collapse
|