1
|
Simchick G, Allen TJ, Hernando D. Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware. Magn Reson Med 2024; 92:2652-2669. [PMID: 39119838 PMCID: PMC11436311 DOI: 10.1002/mrm.30237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To evaluate reproducibility and interlobar agreement of intravoxel incoherent motion (IVIM) quantification in the liver across field strengths and MR scanners with different gradient hardware. METHODS Cramer-Rao lower bound optimization was performed to determine optimized monopolar and motion-robust 2D (b-value and first-order motion moment [M1]) IVIM-DWI acquisitions. Eleven healthy volunteers underwent diffusion MRI of the liver, where each optimized acquisition was obtained five times across three MRI scanners. For each data set, IVIM estimates (diffusion coefficient (D), pseudo-diffusion coefficients (d 1 * $$ {d}_1^{\ast } $$ andd 2 * $$ {d}_2^{\ast } $$ ), blood velocity SDs (Vb1 and Vb2), and perfusion fractions [f1 and f2]) were obtained in the right and left liver lobes using two signal models (pseudo-diffusion and M1-dependent physical) with and without T2 correction (fc1 and fc2) and three fitting techniques (tri-exponential region of interest-based full and segmented fitting and blood velocity SD distribution fitting). Reproducibility and interlobar agreement were compared across methods using within-subject and pairwise coefficients of variation (CVw and CVp), paired sample t-tests, and Bland-Altman analysis. RESULTS Using a combination of motion-robust 2D (b-M1) data acquisition, M1-dependent physical signal modeling with T2 correction, and blood velocity SD distribution fitting, multiscanner reproducibility with median CVw = 5.09%, 11.3%, 9.20%, 14.2%, and 12.6% for D, Vb1, Vb2, fc1, and fc2, respectively, and interlobar agreement with CVp = 8.14%, 11.9%, 8.50%, 49.9%, and 42.0%, respectively, was achieved. CONCLUSION Recently proposed advanced IVIM acquisition, signal modeling, and fitting techniques may facilitate reproducible IVIM quantification in the liver, as needed for establishment of IVIM-based quantitative biomarkers for detection, staging, and treatment monitoring of diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Allen
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Vasquez JA, Brown M, Woolsey M, Abdul-Ghani M, Katabathina V, Deng S, Blangero J, Clarke GD. Reproducibility and Repeatability of Intravoxel Incoherent Motion MRI Acquisition Methods in Liver. J Magn Reson Imaging 2024; 60:1691-1703. [PMID: 38240167 PMCID: PMC11258206 DOI: 10.1002/jmri.29249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) diffusion weighted MRI (DWI) has potential for evaluating hepatic fibrosis but image acquisition technique influence on diffusion parameter estimation bears investigation. PURPOSE To minimize variability and maximize repeatably in abdominal DWI in terms of IVIM parameter estimates. STUDY TYPE Prospective test-retest and image quality comparison. SUBJECTS Healthy volunteers (3F/7M, 29.9 ± 12.9 years) and Family Study subjects (18F/12M, 51.7 ± 16.7 years), without and with liver steatosis. FIELD STRENGTH/SEQUENCE Abdominal single-shot echo-planar imaging (EPI) and simultaneous multi-slice (SMS) DWI sequences with respiratory triggering (RT), breath-holding (BH), and navigator echo (NE) at 3 Tesla. ASSESSMENT SMS-BH, EPI-NE, and SMS-RT data from twice-scanned healthy volunteers were analyzed using 6 × b-values (0-800 s⋅mm-2) and lower (LO) and higher (HI) b-value ranges. Family Study subjects were scanned using SMS and standard EPI sequences. The biexponential IVIM model was used to estimate fast-diffusion coefficient (Df), fraction of fast diffusion (f), and slow-diffusion coefficient (Ds). Scan time, estimated signal-to-noise ratio (eSNR), eSNR per acquisition, and distortion ratio were compared. STATISTICAL TESTS Coefficients of variation (CoV) and Bland Altman analyses were performed for test-retest repeatability. Interclass correlation coefficient (ICC) assessed interobserver agreement with P < 0.05 deemed significant. RESULTS Within-subject CoVs among volunteers (N = 10) for f and Ds were lowest in EPI-NE-LO (11.6%) and SMS-RT-HI (11.1%). Inter-observer ICCs for f and Ds were highest for EPI-NE-LO (0.63) and SMS-RT-LO (0.76). Df could not be estimated for most subjects. Estimated eSNR (EPI = 21.9, SMS = 4.7) and eSNR time (EPI = 6.7, SMS = 16.6) were greater for SMS, with less distortion in the liver region (DR-PE: EPI = 23.6, SMS = 13.1). DATA CONCLUSION Simultaneous multislice acquisitions had significantly less variability and higher ICCs of Ds, higher eSNR, less distortion, and reduced scan time compared to EPI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Juan A. Vasquez
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marissa Brown
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary Woolsey
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mohammad Abdul-Ghani
- Diabetes Division, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Venkata Katabathina
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Shengwen Deng
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - John Blangero
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Gilani N, Mikheev A, Brinkmann IM, Kumbella M, Babb JS, Basukala D, Wetscherek A, Benkert T, Chandarana H, Sigmund EE. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01159-6. [PMID: 38703246 DOI: 10.1007/s10334-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Collapse
Affiliation(s)
- Nima Gilani
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
| | - Artem Mikheev
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | | | - Malika Kumbella
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Dibash Basukala
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Eric E Sigmund
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| |
Collapse
|
4
|
Yang T, Li Y, Ye Z, Yao S, Li Q, Yuan Y, Song B. Diffusion Weighted Imaging of the Abdomen and Pelvis: Recent Technical Advances and Clinical Applications. Acad Radiol 2023; 30:470-482. [PMID: 36038417 DOI: 10.1016/j.acra.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023]
Abstract
Diffusion weighted imaging (DWI) serves as one of the most important functional magnetic resonance imaging techniques in abdominal and pelvic imaging. It is designed to reflect the diffusion of water molecules and is particularly sensitive to the malignancies. Yet, the limitations of image distortion and artifacts in single-shot DWI may hamper its widespread use in clinical practice. With recent technical advances in DWI, such as simultaneous multi-slice excitation, computed or reduced field-of-view techniques, as well as advanced shimming methods, it is possible to achieve shorter acquisition time, better image quality, and higher robustness in abdominopelvic DWI. This review discussed the recent advances of each DWI approach, and highlighted its future perspectives in abdominal and pelvic imaging, hoping to familiarize physicians and radiologists with the technical improvements in this field and provide future research directions.
Collapse
Affiliation(s)
- Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
5
|
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022; 87:2724-2740. [PMID: 35092092 PMCID: PMC9275352 DOI: 10.1002/mrm.29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiqi Geng
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuxin Zhang
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Zhang H, Wang P, Shi D, Yao X, Li Y, Liu X, Sun Y, Ding J, Wang S, Wang G, Ren K. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 2022; 32:2988-2997. [PMID: 35031840 DOI: 10.1007/s00330-021-08415-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To prospectively investigate the capability of intravoxel incoherent motion (IVIM) and conventional diffusion tensor imaging (DTI) to identify early kidney function injury in type 2 diabetes. METHODS Forty-one diabetes patients (normoalbuminuria: n = 27; microalbuminuria: n = 14) and 28 volunteers were recruited. All participants were examined using DTI and IVIM with 3.0-T MRI. DTI parameters (mean diffusivity [MD], fractional anisotropy [FA]), and IVIM parameters (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion component fraction [f]) were measured in the renal parenchyma (cortex and medulla) by two experienced radiologists independently. Image features were compared among the groups using separate one-way analyses of variance. Diagnostic performances of various diffusion parameters for predicting diabetic renal damage were compared. RESULTS The medullary D and FA values were significantly different among the microalbuminuria subgroup, normoalbuminuria subgroup, and control group (all p < 0.001). In medulla, area under the curve (AUC) values for combined FA and D were significantly higher than single FA (AUC = 0.938, 0.769, respectively; p = 0.003), and the combined AUC of FA and D was numerically higher than that of single D (0.938 vs 0.878, p > 0.05). AUC of combined FA and D was 0.985, not significantly different from individual AUC for FA and D (AUC = 0.909 and 0.952, respectively; all p > 0.05) in differentiating the microalbuminuria subgroup from the control group. CONCLUSION IVIM-derived D and DTI-derived FA values were better than other parameters for evaluating early kidney impairment of diabetes. The single indicator FA and D performed as well as the combined diagnostic indicator in the medulla for differentiating the microalbuminuria subgroup from the control group. KEY POINTS • We speculated that early renal progression in type 2 diabetes result from restricted tubular flow and kidney tubule dysregulation may precede or at least accompany abnormal glomerular changes. • In medulla, the AUC values of FA and D and the combination of FA and D obtained by comparing the microalbuminuria subgroup with the control group were 0.909, 0.952, and 0.985, respectively. • IVIM-derived D and DTI-derived FA are effective MR biomarkers to evaluate early alterations of the renal function in patients with diabetes.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Peng Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xuedan Liu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yang Sun
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Jie Ding
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China. .,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China.
| |
Collapse
|
7
|
Ohno N, Yoshida K, Ueda Y, Makino Y, Miyati T, Gabata T, Kobayashi S. Diffusion-weighted Imaging of the Abdomen during a Single Breath-hold Using Simultaneous-multislice Echo-planar Imaging. Magn Reson Med Sci 2021; 22:253-262. [PMID: 34732598 PMCID: PMC10086397 DOI: 10.2463/mrms.mp.2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This multi-scanner study aimed to investigate the validity of single breath-hold (BH) diffusion-weighted imaging (DWI) using simultaneous-multislice (SMS) echo-planar imaging in multiple abdominal organs to enable faster acquisition and reliable quantification of apparent diffusion coefficient (ADC). METHODS SNR, geometric distortion (GD), and ADC in a phantom; the ADC in the liver, renal cortex, paraspinal muscle, spleen, and pancreas; and the signal intensity ratio of the portal vein-to-muscle (SIRPV-M) in healthy volunteers were compared between BH- and respiratory-triggered (RT) DWI with b-values of 0 and 800 s/mm2 in two different MRI scanners. RESULTS The phantom study showed that the SNR of BH-DWI was significantly lower than that of the RT-DWI (P < 0.05 for both scanners), whereas the GD and ADC of BH-DWI did not differ significantly from those of the RT-DWI (P = 0.09-0.60). In the volunteer study, the scan times were 23 seconds for BH-DWI and 184±33 seconds for RT-DWI, respectively. The ADC of the liver in BH-DWI was significantly lower than that in RT-DWI (P < 0.05 for both scanners), whereas there were no significant differences in the ADCs of the renal cortex, paraspinal muscle, spleen, or pancreas between BH-DWI and RT-DWI (P = 0.07-0.86). The SIRPV-M in BH-DWI was significantly smaller than in RT-DWI (P < 0.05 for both scanners). CONCLUSION The proposed method enables the acquisition of abdominal diffusion-weighted images in a single BH.
Collapse
Affiliation(s)
- Naoki Ohno
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | - Yu Ueda
- MR Clinical Science, Philips Japan, Ltd
| | - Yuki Makino
- Department of Radiological Technology, Kanazawa University Hospital
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | - Satoshi Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University.,Department of Radiology, Kanazawa University Hospital.,Department of Radiological Technology, Kanazawa University Hospital
| |
Collapse
|
8
|
Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, Parker GJ, Parkes LM. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 2021; 41:1939-1953. [PMID: 33325766 PMCID: PMC8323340 DOI: 10.1177/0271678x20978523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multi-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm-2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability.
Collapse
Affiliation(s)
- Lauren A Scott
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ben R Dickie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Shelley D Rawson
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Timothy L Burnett
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Geoff Jm Parker
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK.,Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Stabinska J, Ljimani A, Zöllner HJ, Wilken E, Benkert T, Limberg J, Esposito I, Antoch G, Wittsack HJ. Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn Reson Med 2021; 85:3085-3095. [PMID: 33462838 DOI: 10.1002/mrm.28631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess the feasibility of measuring tubular and vascular signal fractions in the human kidney using nonnegative least-square (NNLS) analysis of intravoxel incoherent motion data collected in healthy volunteers and patients with renal pathologies. METHODS MR imaging was performed at 3 Tesla in 12 healthy subjects and 3 patients with various kidney pathologies (fibrotic kidney disease, failed renal graft, and renal masses). Relative signal fractions f and mean diffusivities of the diffusion components in the cortex, medulla, and renal lesions were obtained using the regularized NNLS fitting of the intravoxel incoherent motion data. Test-retest repeatability of the NNLS approach was tested in 5 volunteers scanned twice. RESULTS In the healthy kidneys, the NNLS method yielded diffusion spectra with 3 distinguishable components that may be linked to the slow tissue water diffusion, intermediate tubular and vascular flow, and fast blood flow in larger vessels with the relative signal fractions, fslow , finterm and ffast , respectively. In the pathological kidneys, the diffusion spectra varied substantially from those acquired in the healthy kidneys. Overall, the renal cyst showed substantially higher finterm and lower fslow , whereas the fibrotic kidney, failed renal graft, and renal cell carcinoma demonstrated the opposite trend. CONCLUSION NNLS-based intravoxel incoherent motion could potentially become a valuable tool in assessing changes in tubular and vascular volume fractions under pathophysiological conditions.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Helge Jörn Zöllner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Enrica Wilken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Thomas Benkert
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Juliane Limberg
- Institute of Pathology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Wu B, Jia F, Li X, Li L, Wang K, Han D. Comparative Study of Amide Proton Transfer Imaging and Intravoxel Incoherent Motion Imaging for Predicting Histologic Grade of Hepatocellular Carcinoma. Front Oncol 2020; 10:562049. [PMID: 33194630 PMCID: PMC7659984 DOI: 10.3389/fonc.2020.562049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Preoperative grading of hepatocellular carcinoma (HCC) is an important factor associated with prognosis after liver resection. The promising prediction of the differentiation of HCC remains a challenge. The purpose of our study was to investigate the value of amide proton transfer (APT) imaging in predicting the histological grade of HCC, compared with the intravoxel incoherent motion (IVIM) imaging. Methods: From September 2018 to February 2020, 88 patients with HCC were enrolled and divided into four groups (G1, G2, G3, and G4) based on the histologic grades. Preoperative APT signal intensity (SI), apparent diffusion coefficient (ADC), true molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f ) of HCC were independently measured by two radiologists. The averaged values of those parameters were compared using an analysis of variance. The Spearman rank analysis was used to compare the correlation between those imaging parameters and the histological grades. Receiver operating characteristic (ROC) curve analysis was used to explore the predictive performance. Results: There were significant differences in APT SI, ADC, D, and f among the four grades of HCC (all P < 0.001). A moderate to good relationship was found between APT SI and the histologic grade of HCC (r = 0.679, P < 0.001). APT SI had an area under the ROC curve (AUC) of 0.890 (95% CI: 0.805–0.947) for differentiating low- from high-grade HCC, and the corresponding sensitivity and specificity were 85.71% and 82.05%, respectively. Comparison of ROC curves demonstrated that the AUC of APT SI was significantly higher than those of IVIM-derived parameter (Z = 2.603, P = 0.0092; Z = 2.099, P = 0.0358; Z = 4.023, P = 0.0001; Z = 2.435, P = 0.0149, compared with ADC, D, D*, and f , respectively). Moreover, the combination of both techniques further improved the diagnostic performance, with an AUC of 0.929 (95% CI: 0.854–0.973). Conclusion: APT imaging may be a potential noninvasive biomarker for the prediction of histologic grading of HCC and complements IVIM imaging for the more accurate and comprehensive characterization of HCC.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Jia
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuekun Li
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Riexinger A, Laun FB, Bickelhaupt S, Seuß H, Uder M, Hensel B, Saake M. On the dependence of the cardiac motion artifact on the breathing cycle in liver diffusion-weighted imaging. PLoS One 2020; 15:e0239743. [PMID: 33002028 PMCID: PMC7529231 DOI: 10.1371/journal.pone.0239743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to investigate whether the cardiac motion artifact that regularly appears in diffusion-weighted imaging of the left liver lobe might be reduced by acquiring images in inspiration, when the coupling between heart and liver might be minimal. Materials and methods 43 patients with known or suspected focal liver lesions were examined at 1.5 T with breath hold acquisition, once in inspiration and once in expiration. Data were acquired with a diffusion-weighted echo planar imaging sequence and two b-values (b50 = 50 s/mm² and b800 = 800 s/mm²). The severity of the cardiac motion artifact in the left liver lobe was rated by two experienced radiologists for both b-values with a 5 point Likert scale. Additionally, the normalized signal S(b800)/S(b50) in the left liver lobe was computed. The Wilcoxon signed-rank test was used comparing the scores of the two readers obtained in inspiration and expiration, and to compare the normalized signal in inspiration and expiration. Results The normalized signal in inspiration was slightly higher than in expiration (0.349±0.077 vs 0.336±0.058), which would indicate a slight reduction of the cardiac motion artifact, but this difference was not significant (p = 0.24). In the qualitative evaluation, the readers did not observe a significant difference for b50 (reader 1: p = 0.61; reader 2: p = 0.18). For b800, reader 1 observed a significant difference of small effect size favouring expiration (p = 0.03 with a difference of mean Likert scores of 0.27), while reader 2 observed no significant difference (p = 0.62). Conclusion Acquiring the data in inspiration does not lead to a markedly reduced cardiac motion artifact in diffusion-weighted imaging of the left liver lobe and is in this regard not to be preferred over acquiring the data in expiration.
Collapse
Affiliation(s)
- Andreas Riexinger
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | | | | | - Hannes Seuß
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Jia F, Wu B, Yan R, Li L, Wang K, Han D. Prediction Model for Intermediate-Stage Hepatocellular Carcinoma Response to Transarterial Chemoembolization. J Magn Reson Imaging 2020; 52:1657-1667. [PMID: 32424881 DOI: 10.1002/jmri.27189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The outcome of intermediate-stage hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) is greatly heterogeneous. Current means for predicting HCC response to TACE are lacking. PURPOSE To investigate whether the combination of parameters derived from amide proton transfer (APT) and intravoxel incoherent motion (IVIM) imaging, and morphological characteristics of tumor can establish a better prediction model than the univariant model for HCC response to TACE. STUDY TYPE Prospective. SUBJECTS 56 patients with intermediate-stage HCC (50 males and six females). FIELD STRENGTH/SEQUENCES 3.0T; T2 -weighted-fast spin echo, 3D liver acquisition with volume flex, single-shot fast spin echo-planar imaging (EPI), spin echo-EPI. ASSESSMENT Pretreatment APT signal intensities (SIs), apparent diffusion coefficient (ADC), true molecular diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) for tumor, peritumoral, and normal tissues were measured. Follow-up MRI scanning was performed, and the patients were classified as responders or nonresponders based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. STATISTICAL TESTS The imaging parameters were compared among the three tissues and between the two groups using analysis of variance (ANOVA) or two-sample t-test. The prediction model's variables were derived from univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was used to explore the predictive performance. RESULTS Based on the logistic regression analysis results, we established a prediction model that integrated the APT SI and D values in the tumor tissue and the tumor size. ROC analyses revealed that the model was better able to predict tumor response to TACE (area under the ROC curve = 0.851) than the individual parameters on their own. DATA CONCLUSION A prediction model incorporating pretreatment APT SI, D in the tumor tissue and tumor size may be useful for predicting the response of intermediate-stage HCC to TACE. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1 J. MAGN. RESON. IMAGING 2020;52:1657-1667.
Collapse
Affiliation(s)
- Fei Jia
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Baolin Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Ruifang Yan
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
13
|
Gurney‐Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A. Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol. Magn Reson Med 2020; 83:1003-1015. [PMID: 31566262 PMCID: PMC6899942 DOI: 10.1002/mrm.27990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time. METHODS Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys. RESULTS Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively. CONCLUSIONS We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min).
Collapse
Affiliation(s)
- Oliver J. Gurney‐Champion
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Susanne S. Rauh
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Kevin Harrington
- Targeted Therapy teamThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Frederik B. Laun
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Andreas Wetscherek
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| |
Collapse
|