Arn L, van Heeswijk RB, Stuber M, Bastiaansen JAM. A robust broadband fat-suppressing phaser T
2 -preparation module for cardiac magnetic resonance imaging at 3T.
Magn Reson Med 2021;
86:1434-1444. [PMID:
33759208 DOI:
10.1002/mrm.28785]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE
Designing a new T2 -preparation (T2 -Prep) module to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat-suppression module for T2 -weighted imaging at 3T.
METHODS
The tip-down radiofrequency (RF) pulse of an adiabatic T2 -Prep module was replaced by a custom-designed RF-excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (a phaser adiabatic T2 -Prep). Numerical simulations and in vitro and in vivo electrocardiogram (ECG)-triggered navigator-gated acquisitions of the human heart were performed. Blood, myocardium, and fat signal-to-noise ratios and right coronary artery vessel sharpness were compared against previously published adiabatic T2 -Prep approaches.
RESULTS
Numerical simulations predicted an increased fat-suppression bandwidth and decreased sensitivity to transmit magnetic field inhomogeneities using the proposed approach while preserving the water T2 -Prep capabilities. This was confirmed by the tissue signals acquired in the phantom and the in vivo images, which show similar blood and myocardium signal-to-noise ratio, contrast-to-noise ratio, and significantly reduced fat signal-to-noise ratio compared with the other methods. As a result, the right coronary artery conspicuity was significantly increased.
CONCLUSION
A novel fat-suppressing T2 -Prep method was developed and implemented that showed robust fat suppression and increased vessel sharpness compared with conventional techniques while preserving its T2 -Prep capabilities.
Collapse