1
|
Eyre K, Rafiee MJ, Leo M, Ma J, Hillier E, Amini N, Pressacco J, Janich MA, Zhu X, Friedrich MG, Chetrit M. Clinical utility of a rapid two-dimensional balanced steady-state free precession sequence with deep learning reconstruction. J Cardiovasc Magn Reson 2024; 26:101069. [PMID: 39079600 PMCID: PMC11367510 DOI: 10.1016/j.jocmr.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) cine imaging is still limited by long acquisition times. This study evaluated the clinical utility of an accelerated two-dimensional (2D) cine sequence with deep learning reconstruction (Sonic DL) to decrease acquisition time without compromising quantitative volumetry or image quality. METHODS A sub-study using 16 participants was performed using Sonic DL at two different acceleration factors (8× and 12×). Quantitative left-ventricular volumetry, function, and mass measurements were compared between the two acceleration factors against a standard cine method. Following this sub-study, 108 participants were prospectively recruited and imaged using a standard cine method and the Sonic DL method with the acceleration factor that more closely matched the reference method. Two experienced clinical readers rated images based on their diagnostic utility and performed all image contouring. Quantitative contrast difference and endocardial border sharpness were also assessed. Left- and right-ventricular volumetry, left-ventricular mass, and myocardial strain measurements were compared between cine methods using Bland-Altman plots, Pearson's correlation, and paired t-tests. Comparative analysis of image quality was measured using Wilcoxon-signed-rank tests and visualized using bar graphs. RESULTS Sonic DL at an acceleration factor of 8 more closely matched the reference cine method. There were no significant differences found across left ventricular volumetry, function, or mass measurements. In contrast, an acceleration factor of 12 resulted in a 6% (5.51/90.16) reduction of measured ejection fraction when compared to the standard cine method and a 4% (4.32/88.98) reduction of measured ejection fraction when compared to Sonic DL at an acceleration factor of 8. Thus, Sonic DL at an acceleration factor of 8 was chosen for downstream analysis. In the larger cohort, this accelerated cine sequence was successfully performed in all participants and significantly reduced the acquisition time of cine images compared to the standard 2D method (reduction of 37% (5.98/16) p < 0.0001). Diagnostic image quality ratings and quantitative image quality evaluations were statistically not different between the two methods (p > 0.05). Left- and right-ventricular volumetry and circumferential and radial strain were also similar between methods (p > 0.05) but left-ventricular mass and longitudinal strain were over-estimated using the proposed accelerated cine method (mass over-estimated by 3.36 g/m2, p < 0.0001; longitudinal strain over-estimated by 1.97%, p = 0.001). CONCLUSION This study found that an accelerated 2D cine method with DL reconstruction at an acceleration factor of 8 can reduce CMR cine acquisition time by 37% (5.98/16) without significantly affecting volumetry or image quality. Given the increase of scan time efficiency, this undersampled acquisition method using deep learning reconstruction should be considered for routine clinical CMR.
Collapse
Affiliation(s)
- Katerina Eyre
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | - Margherita Leo
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Junjie Ma
- GE HealthCare, Milwaukee, Wisconsin, USA
| | - Elizabeth Hillier
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Negin Amini
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Josephine Pressacco
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Matthias G Friedrich
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Area19 Medical Inc., Montreal, Canada; Division of Cardiology, McGill University, Montreal, Quebec, Canada
| | - Michael Chetrit
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Demirel ÖB, Weingärtner S, Moeller S, Akçakaya M. Improved Simultaneous Multi-slice imaging with Composition of k-space Interpolations (SMS-COOKIE) for myocardial T1 mapping. PLoS One 2023; 18:e0283972. [PMID: 37478080 PMCID: PMC10361528 DOI: 10.1371/journal.pone.0283972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 03/21/2023] [Indexed: 07/23/2023] Open
Abstract
The aim of this study is to develop and evaluate a regularized Simultaneous Multi-Slice (SMS) reconstruction method for improved Cardiac Magnetic Resonance Imaging (CMR). The proposed reconstruction method, SMS with COmpOsition of k-space IntErpolations (SMS-COOKIE) combines the advantages of Iterative Self-consistent Parallel Imaging Reconstruction (SPIRiT) and split slice-Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), while allowing regularization for further noise reduction. The proposed SMS-COOKIE was implemented with and without regularization, and validated using a Saturation Pulse-Prepared Heart rate Independent inversion REcovery (SAPPHIRE) myocardial T1 mapping sequence. The performance of the proposed reconstruction method was compared to ReadOut (RO)-SENSE-GRAPPA and split slice-GRAPPA, on both retrospectively and prospectively three-fold SMS-accelerated data with an additional two-fold in-plane acceleration. All SMS reconstruction methods yielded similar T1 values compared to single band imaging. SMS-COOKIE showed lower spatial variability in myocardial T1 with significant improvement over RO-SENSE-GRAPPA and split slice-GRAPPA (P < 10-4). The proposed method with additional locally low rank (LLR) regularization reduced the spatial variability, again with significant improvement over RO-SENSE-GRAPPA and split slice-GRAPPA (P < 10-4). In conclusion, improved reconstruction quality was achieved with the proposed SMS-COOKIE, which also provided lower spatial variability with significant improvement over split slice-GRAPPA.
Collapse
Affiliation(s)
- Ömer Burak Demirel
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
3
|
Pan Z, Ma X, Dai E, Auerbach EJ, Guo H, Uğurbil K, Wu X. Reconstruction for 7T high-resolution whole-brain diffusion MRI using two-stage N/2 ghost correction and L1-SPIRiT without single-band reference. Magn Reson Med 2023; 89:1915-1930. [PMID: 36594439 PMCID: PMC9992311 DOI: 10.1002/mrm.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To combine a new two-stage N/2 ghost correction and an adapted L1-SPIRiT method for reconstruction of 7T highly accelerated whole-brain diffusion MRI (dMRI) using only autocalibration scans (ACS) without the need of additional single-band reference (SBref) scans. METHODS The proposed ghost correction consisted of a 3-line reference approach in stage 1 and the reference-free entropy method in stage 2. The adapted L1-SPIRiT method was formulated within the 3D k-space framework. Its efficacy was examined by acquiring two dMRI data sets at 1.05-mm isotropic resolutions with a total acceleration of 6 or 9 (i.e., 2-fold or 3-fold slice and 3-fold in-plane acceleration). Diffusion analysis was performed to derive DTI metrics and estimate fiber orientation distribution functions (fODFs). The results were compared with those of 3D k-space GRAPPA using only ACS, all in reference to 3D k-space GRAPPA using both ACS and SBref (serving as a reference). RESULTS The proposed ghost correction eliminated artifacts more robustly than conventional approaches. Our adapted L1-SPIRiT method outperformed 3D k-space GRAPPA when using only ACS, improving image quality to what was achievable with 3D k-space GRAPPA using both ACS and SBref scans. The improvement in image quality further resulted in an improvement in estimation performances for DTI and fODFs. CONCLUSION The combination of our new ghost correction and adapted L1-SPIRiT method can reliably reconstruct 7T highly accelerated whole-brain dMRI without the need of SBref scans, increasing acquisition efficiency and reducing motion sensitivity.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Demirel OB, Yaman B, Shenoy C, Moeller S, Weingärtner S, Akçakaya M. Signal intensity informed multi-coil encoding operator for physics-guided deep learning reconstruction of highly accelerated myocardial perfusion CMR. Magn Reson Med 2023; 89:308-321. [PMID: 36128896 PMCID: PMC9617789 DOI: 10.1002/mrm.29453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop a physics-guided deep learning (PG-DL) reconstruction strategy based on a signal intensity informed multi-coil (SIIM) encoding operator for highly-accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). METHODS First-pass perfusion CMR acquires highly-accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium-based contrast agent. Thus, using PG-DL reconstruction with a conventional multi-coil encoding operator leads to analogous signal intensity variations across different time-frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time-frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG-DL network, facilitating generalizability across time-frames. PG-DL reconstruction with the proposed SIIM encoding operator is compared to PG-DL with conventional encoding operator, split slice-GRAPPA, locally low-rank (LLR) regularized reconstruction, low-rank plus sparse (L + S) reconstruction, and regularized ROCK-SPIRiT. RESULTS Results on highly accelerated free-breathing first pass myocardial perfusion CMR at three-fold SMS and four-fold in-plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice-GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG-DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods. CONCLUSION PG-DL reconstruction with the proposed SIIM encoding operator improves generalization across different time-frames /SNRs in highly accelerated perfusion CMR.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Burhaneddin Yaman
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Chetan Shenoy
- Department of Medicine (Cardiology)University of MinnesotaMinneapolisMinnesotaUSA
| | - Steen Moeller
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Sun C, Robinson A, Wang Y, Bilchick KC, Kramer CM, Weller D, Salerno M, Epstein FH. A Slice-Low-Rank Plus Sparse (slice-L + S) Reconstruction Method for k-t Undersampled Multiband First-Pass Myocardial Perfusion MRI. Magn Reson Med 2022; 88:1140-1155. [PMID: 35608225 PMCID: PMC9325064 DOI: 10.1002/mrm.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE The synergistic use of k-t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first-pass perfusion MRI. The low-rank plus sparse (L + S) model has shown excellent performance for accelerating single-band (SB) perfusion MRI. METHODS A MB data consistency method employing ESPIRiT maps and through-plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice-L + S method. Slice-L + S was compared to SB L + S and the sequential operations of split slice-GRAPPA and SB L + S (seq-SG-L + S) using synthetic data formed from multislice SB images. Prospectively k-t undersampled MB data were also acquired and reconstructed using seq-SG-L + S and slice-L + S. RESULTS Using synthetic data with total acceleration rates of 6-12, slice-L + S outperformed SB L + S and seq-SG-L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq-SG-L + S, and slice-L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice-L + S provided better image quality than seq-SG-L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION Slice-L + S outperformed SB-L + S and seq-SG-L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality.
Collapse
Affiliation(s)
- Changyu Sun
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
- Department of Biomedical, Biological and Chemical EngineeringUniversity of MissouriColumbiaMissouri
- Department of RadiologyUniversity of MissouriColumbiaMissouri
| | - Austin Robinson
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginia
| | - Yu Wang
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Kenneth C. Bilchick
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginia
| | - Christopher M. Kramer
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginia
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginia
| | - Daniel Weller
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginia
- Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Michael Salerno
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
- Department of MedicineUniversity of Virginia Health SystemCharlottesvilleVirginia
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginia
| | - Frederick H. Epstein
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginia
| |
Collapse
|
6
|
Demirel OB, Yaman B, Moeller S, Weingartner S, Akcakaya M. Signal-Intensity Informed Multi-Coil MRI Encoding Operator for Improved Physics-Guided Deep Learning Reconstruction of Dynamic Contrast-Enhanced MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1472-1476. [PMID: 36086262 DOI: 10.1109/embc48229.2022.9871668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic contrast enhanced (DCE) MRI acquires a series of images following the administration of a contrast agent, and plays an important clinical role in diagnosing various diseases. DCE MRI typically necessitates rapid imaging to provide sufficient spatio-temporal resolution and coverage. Conventional MRI acceleration techniques exhibit limited image quality at such high acceleration rates. Recently, deep learning (DL) methods have gained interest for improving highly-accelerated MRI. However, DCE MRI series show substantial variations in SNR and contrast across images. This hinders the quality and generalizability of DL methods, when applied across time frames. In this study, we propose signal intensity informed multi-coil MRI encoding operator for improved DL reconstruction of DCE MRI. The output of the corresponding inverse problem for this forward operator leads to more uniform contrast across time frames, since the proposed operator captures signal intensity variations across time frames while not altering the coil sensitivities. Our results in perfusion cardiac MRI show that high-quality images are reconstructed at very high acceleration rates, with substantial improvement over existing methods.
Collapse
|
7
|
Zhang C, Moeller S, Demirel OB, Uğurbil K, Akçakaya M. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning. Neuroimage 2022; 256:119248. [PMID: 35487456 PMCID: PMC9179026 DOI: 10.1016/j.neuroimage.2022.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 10/31/2022] Open
Abstract
Parallel imaging is the most clinically used acceleration technique for magnetic resonance imaging (MRI) in part due to its easy inclusion into routine acquisitions. In k-space based parallel imaging reconstruction, sub-sampled k-space data are interpolated using linear convolutions. At high acceleration rates these methods have inherent noise amplification and reduced image quality. On the other hand, non-linear deep learning methods provide improved image quality at high acceleration, but the availability of training databases for different scans, as well as their interpretability hinder their adaptation. In this work, we present an extension of Robust Artificial-neural-networks for k-space Interpolation (RAKI), called residual-RAKI (rRAKI), which achieves scan-specific machine learning reconstruction using a hybrid linear and non-linear methodology. In rRAKI, non-linear CNNs are trained jointly with a linear convolution implemented via a skip connection. In effect, the linear part provides a baseline reconstruction, while the non-linear CNN that runs in parallel provides further reduction of artifacts and noise arising from the linear part. The explicit split between the linear and non-linear aspects of the reconstruction also help improve interpretability compared to purely non-linear methods. Experiments were conducted on the publicly available fastMRI datasets, as well as high-resolution anatomical imaging, comparing GRAPPA and its variants, compressed sensing, RAKI, Scan Specific Artifact Reduction in K-space (SPARK) and the proposed rRAKI. Additionally, highly-accelerated simultaneous multi-slice (SMS) functional MRI reconstructions were also performed, where the proposed rRAKI was compred to Read-out SENSE-GRAPPA and RAKI. Our results show that the proposed rRAKI method substantially improves the image quality compared to conventional parallel imaging, and offers sharper images compared to SPARK and ℓ1-SPIRiT. Furthermore, rRAKI shows improved preservation of time-varying dynamics compared to both parallel imaging and RAKI in highly-accelerated SMS fMRI.
Collapse
Affiliation(s)
- Chi Zhang
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Omer Burak Demirel
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Demirel OB, Yaman B, Dowdle L, Moeller S, Vizioli L, Yacoub E, Strupp J, Olman CA, Ugurbil K, Akcakaya M. 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3765-3769. [PMID: 34892055 PMCID: PMC8923746 DOI: 10.1109/embc46164.2021.9631107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High spatial and temporal resolution across the whole brain is essential to accurately resolve neural activities in fMRI. Therefore, accelerated imaging techniques target improved coverage with high spatio-temporal resolution. Simultaneous multi-slice (SMS) imaging combined with in-plane acceleration are used in large studies that involve ultrahigh field fMRI, such as the Human Connectome Project. However, for even higher acceleration rates, these methods cannot be reliably utilized due to aliasing and noise artifacts. Deep learning (DL) reconstruction techniques have recently gained substantial interest for improving highly-accelerated MRI. Supervised learning of DL reconstructions generally requires fully-sampled training datasets, which is not available for high-resolution fMRI studies. To tackle this challenge, self-supervised learning has been proposed for training of DL reconstruction with only undersampled datasets, showing similar performance to supervised learning. In this study, we utilize a self-supervised physics-guided DL reconstruction on a 5-fold SMS and 4-fold in-plane accelerated 7T fMRI data. Our results show that our self-supervised DL reconstruction produce high-quality images at this 20-fold acceleration, substantially improving on existing methods, while showing similar functional precision and temporal effects in the subsequent analysis compared to a standard 10-fold accelerated acquisition.
Collapse
|