1
|
Güler S, Povaz̆an M, Zhurbenko V, Zivkovic I. An 8Tx/32Rx head-neck coil at 7T by combining 2Tx/32Rx Nova coil with 6Tx shielded coaxial cable elements. Magn Reson Med 2025; 93:864-872. [PMID: 39415491 PMCID: PMC11604854 DOI: 10.1002/mrm.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Standard head coils used at 7T MRI suffer from high signal loss at lower brain regions and neck. This study aimed to increase the field of view (FOV) of a birdcage coil to image the lower brain regions and neck with a straightforward approach of using add-on transmit shielded coaxial cable coil (SCC) elements. METHODS A new head-neck coil was modeled as a combination of the 2Tx/32Rx Nova head coil and 6Tx SCC elements. The add-on transmit SCC elements have been produced. The full wave electromagnetic simulations were performed to analyze the coil geometry and estimate the local specific absorption ratio (SAR). TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field maps and structural images were acquired in a phantom and in vivo on a 7T scanner. RESULTS The computed SAR histogram revealed a peakSAR 10 g $$ {\mathrm{SAR}}_{10g} $$ of 4.08 W/kg. The simulated and measuredB 1 + $$ {\mathrm{B}}_1^{+} $$ maps are in good agreement. The manufactured coil's S-parameters are below- $$ - $$ 10 dB. TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field measurements on a subject presented the increase in the FOV. The T1-weighted structural images of three subjects acquired with the head-neck coil showed increased coverage compared to the head coil only. CONCLUSION Combining the 2Tx/32Rx Nova head coil and 6Tx SCC elements allowed imaging of the whole brain with an increased FOV down to the C4 spine. The coil stayed fully functional when different subjects were scanned. We conclude that the SCC transmit-only coils are a robust adjunct to conventional coil designs and can meaningfully enhance and expand their field of view.
Collapse
Affiliation(s)
- Sadri Güler
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health TechTechnical University of DenmarkKgs. LyngbyDenmark
| | - Michal Povaz̆an
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
| | - Vitaliy Zhurbenko
- Department of Space Research and TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - Irena Zivkovic
- Electrical Engineering DepartmentTechnical University of EindhovenEindhovenThe Netherlands
| |
Collapse
|
2
|
Rahimi F, Nurzed B, Eigentler TW, Berangi M, Oberacker E, Kuehne A, Ghadjar P, Millward JM, Schuhmann R, Niendorf T. Helmet Radio Frequency Phased Array Applicators Enhance Thermal Magnetic Resonance of Brain Tumors. Bioengineering (Basel) 2024; 11:733. [PMID: 39061815 PMCID: PMC11273942 DOI: 10.3390/bioengineering11070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) integrates Magnetic Resonance Imaging (MRI) diagnostics and targeted radio-frequency (RF) heating in a single theranostic device. The requirements for MRI (magnetic field) and targeted RF heating (electric field) govern the design of ThermalMR applicators. We hypothesize that helmet RF applicators (HPA) improve the efficacy of ThermalMR of brain tumors versus an annular phased RF array (APA). An HPA was designed using eight broadband self-grounded bow-tie (SGBT) antennae plus two SGBTs placed on top of the head. An APA of 10 equally spaced SGBTs was used as a reference. Electromagnetic field (EMF) simulations were performed for a test object (phantom) and a human head model. For a clinical scenario, the head model was modified with a tumor volume obtained from a patient with glioblastoma multiforme. To assess performance, we introduced multi-target evaluation (MTE) to ensure whole-brain slice accessibility. We implemented time multiplexed vector field shaping to optimize RF excitation. Our EMF and temperature simulations demonstrate that the HPA improves performance criteria critical to MRI and enhances targeted RF and temperature focusing versus the APA. Our findings are a foundation for the experimental implementation and application of a HPA en route to ThermalMR of brain tumors.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Bilguun Nurzed
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
- Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Thomas W. Eigentler
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
| | - Mostafa Berangi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
| | | | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jason M. Millward
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Rolf Schuhmann
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
3
|
Murali S, Ding H, Adedeji F, Qin C, Obungoloch J, Asllani I, Anazodo U, Ntusi NAB, Mammen R, Niendorf T, Adeleke S. Bringing MRI to low- and middle-income countries: Directions, challenges and potential solutions. NMR IN BIOMEDICINE 2024; 37:e4992. [PMID: 37401341 DOI: 10.1002/nbm.4992] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
The global disparity of magnetic resonance imaging (MRI) is a major challenge, with many low- and middle-income countries (LMICs) experiencing limited access to MRI. The reasons for limited access are technological, economic and social. With the advancement of MRI technology, we explore why these challenges still prevail, highlighting the importance of MRI as the epidemiology of disease changes in LMICs. In this paper, we establish a framework to develop MRI with these challenges in mind and discuss the different aspects of MRI development, including maximising image quality using cost-effective components, integrating local technology and infrastructure and implementing sustainable practices. We also highlight the current solutions-including teleradiology, artificial intelligence and doctor and patient education strategies-and how these might be further improved to achieve greater access to MRI.
Collapse
Affiliation(s)
- Sanjana Murali
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Hao Ding
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Fope Adedeji
- School of Medicine, Faculty of Medicine, University College London, London, UK
| | - Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Iris Asllani
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Udunna Anazodo
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- The Research Institute of London Health Sciences Centre and St. Joseph's Health Care, London, Ontario, Canada
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town, South Africa
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- High Dimensional Neuro-oncology, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
4
|
Schreiber LM, Lohr D, Baltes S, Vogel U, Elabyad IA, Bille M, Reiter T, Kosmala A, Gassenmaier T, Stefanescu MR, Kollmann A, Aures J, Schnitter F, Pali M, Ueda Y, Williams T, Christa M, Hofmann U, Bauer W, Gerull B, Zernecke A, Ergün S, Terekhov M. Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research. Front Cardiovasc Med 2023; 10:1068390. [PMID: 37255709 PMCID: PMC10225557 DOI: 10.3389/fcvm.2023.1068390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.
Collapse
Affiliation(s)
- Laura M. Schreiber
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steffen Baltes
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ibrahim A. Elabyad
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria R. Stefanescu
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alena Kollmann
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Aures
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mihaela Pali
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Tatiana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin Christa
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Maxim Terekhov
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Schmidt R, Keban E, Bollmann S, Wiggins CJ, Niendorf T. Scaling the mountains: what lies above 7 Tesla magnetic resonance? MAGMA (NEW YORK, N.Y.) 2023; 36:151-157. [PMID: 37072540 PMCID: PMC10140119 DOI: 10.1007/s10334-023-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023]
Affiliation(s)
- Rita Schmidt
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Keban
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Saskia Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia
| | - Christopher J Wiggins
- Imaging Core Facility, Institute for Neurology and Medicine, Forschungszentrum Julich, Julich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
6
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Nurzed B, Kuehne A, Aigner CS, Schmitter S, Niendorf T, Eigentler TW. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. MAGMA (NEW YORK, N.Y.) 2023; 36:257-277. [PMID: 36920549 PMCID: PMC10140016 DOI: 10.1007/s10334-023-01075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 μT/√kW (SGBT), 0.73 μT/√kW (BT), and 0.56 μT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
| | | | | | | | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany.
- MRI.TOOLS GmbH, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
In Vivo Magnetic Resonance Spectroscopy Methods for Investigating Cardiac Metabolism. Metabolites 2022; 12:metabo12020189. [PMID: 35208262 PMCID: PMC8877606 DOI: 10.3390/metabo12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive and non-ionizing technique, enabling in vivo investigation of cardiac metabolism in normal and diseased hearts. In vivo measurement tools are critical for studying mechanisms that regulate cardiac energy metabolism in disease developments and to assist in early response assessments to novel therapies. For cardiac MRS, proton (1H), phosphorus (31P), and hyperpolarized 13-carbon (13C) provide valuable metabolic information for diagnosis and treatment assessment purposes. Currently, low sensitivity and some technical limitations limit the utility of MRS. An essential step in translating MRS for clinical use involves further technological improvements, particularly in coil design, improving the signal-to-noise ratios, field homogeneity, and optimizing radiofrequency sequences. This review addresses the recent advances in metabolic imaging by MRS from primarily the literature published since 2015.
Collapse
|