1
|
Rashid I, Lima da Cruz G, Seiberlich N, Hamilton JI. Cardiac MR Fingerprinting: Overview, Technical Developments, and Applications. J Magn Reson Imaging 2024; 60:1753-1773. [PMID: 38153855 PMCID: PMC11211246 DOI: 10.1002/jmri.29206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) is an established imaging modality with proven utility in assessing cardiovascular diseases. The ability of CMR to characterize myocardial tissue using T1- and T2-weighted imaging, parametric mapping, and late gadolinium enhancement has allowed for the non-invasive identification of specific pathologies not previously possible with modalities like echocardiography. However, CMR examinations are lengthy and technically complex, requiring multiple pulse sequences and different anatomical planes to comprehensively assess myocardial structure, function, and tissue composition. To increase the overall impact of this modality, there is a need to simplify and shorten CMR exams to improve access and efficiency, while also providing reproducible quantitative measurements. Multiparametric MRI techniques that measure multiple tissue properties offer one potential solution to this problem. This review provides an in-depth look at one such multiparametric approach, cardiac magnetic resonance fingerprinting (MRF). The article is structured as follows. First, a brief review of single-parametric and (non-Fingerprinting) multiparametric CMR mapping techniques is presented. Second, a general overview of cardiac MRF is provided covering pulse sequence implementation, dictionary generation, fast k-space sampling methods, and pattern recognition. Third, recent technical advances in cardiac MRF are covered spanning a variety of topics, including simultaneous multislice and 3D sampling, motion correction algorithms, cine MRF, synthetic multicontrast imaging, extensions to measure additional clinically important tissue properties (proton density fat fraction, T2*, and T1ρ), and deep learning methods for image reconstruction and parameter estimation. The last section will discuss potential clinical applications, concluding with a perspective on how multiparametric techniques like MRF may enable streamlined CMR protocols. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Imran Rashid
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gastao Lima da Cruz
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
| | - Nicole Seiberlich
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
| | - Jesse I. Hamilton
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
2
|
Lee W, Han PK, Marin T, Mounime IBG, Vafay Eslahi S, Djebra Y, Chi D, Bijari FJ, Normandin MD, El Fakhri G, Ma C. Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model. Magn Reson Med 2024. [PMID: 39402014 DOI: 10.1002/mrm.30284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3 T. METHODS A free-breathing 3D cardiac ECV mapping method was developed at 3 T. T1 mapping was performed before and after contrast agent injection using a free-breathing electrocardiogram-gated inversion recovery sequence with spoiled gradient echo readout. A linear tangent space alignment model-based method was used to reconstruct high-frame-rate dynamic images from (k,t)-space data sparsely sampled along a random stack-of-stars trajectory. Joint T1 and transmit B1 estimation were performed voxel-by-voxel for pre- and post-contrast T1 mapping. To account for the time-varying T1 after contrast agent injection, a linearly time-varying T1 model was introduced for post-contrast T1 mapping. ECV maps were generated by aligning pre- and post-contrast T1 maps through affine transformation. RESULTS The feasibility of the proposed method was demonstrated using in vivo studies with six healthy volunteers at 3 T. We obtained 3D ECV maps at a spatial resolution of 1.9 × 1.9 × 4.5 mm3 and a FOV of 308 × 308 × 144 mm3, with a scan time of 10.1 ± 1.4 and 10.6 ± 1.6 min before and after contrast agent injection, respectively. The ECV maps and the pre- and post-contrast T1 maps obtained by the proposed method were in good agreement with the 2D MOLLI method both qualitatively and quantitatively. CONCLUSION The proposed method allows for free-breathing 3D ECV mapping of the whole heart within a practically feasible imaging time. The estimated ECV values from the proposed method were comparable to those from the existing method.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Paul Kyu Han
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Thibault Marin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Ismaël B G Mounime
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
| | - Samira Vafay Eslahi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanis Djebra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Didi Chi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Felicitas J Bijari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Marc D Normandin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Georges El Fakhri
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Chao Ma
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Keeling EG, Sisco NJ, McElvogue MM, Borazanci A, Dortch RD, Stokes AM. Rapid simultaneous estimation of relaxation rates using multi-echo, multi-contrast MRI. Magn Reson Imaging 2024; 112:116-127. [PMID: 38971264 PMCID: PMC11323764 DOI: 10.1016/j.mri.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R2∗ and R2. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R2∗ and R2. METHODS Spin- and gradient-echo (SAGE) data were simulated across T2∗ and T2 values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R2∗ and R2, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach. RESULTS Across all fitting methods, T2∗ was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T2∗ values (5-15 ms), T2 was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R2∗ and R2 estimates were similar to NLSQ, and there were no differences in R2∗ across fitting methods at high SNR. However, there were some differences at low SNR and for R2 at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R2∗- (0.97 ratio) and R2-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h). CONCLUSIONS LLSQ reliably fit for R2∗ and R2 in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R2∗ and R2.
Collapse
Affiliation(s)
- Elizabeth G Keeling
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.
| | - Nicholas J Sisco
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Molly M McElvogue
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Aimee Borazanci
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Richard D Dortch
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Ashley M Stokes
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| |
Collapse
|
4
|
Jin J, Zhou Y, Chen L, Chen Z. Ultrafast T 2 and T 2* mapping using single-shot spatiotemporally encoded MRI with reduced field of view and spiral out-in-out-in trajectory. Med Phys 2024; 51:7308-7319. [PMID: 38896823 DOI: 10.1002/mp.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND T2 and T2* mapping are crucial components of quantitative magnetic resonance imaging, offering valuable insights into tissue characteristics and pathology. Single-shot methods can achieve ultrafast T2 or T2* mapping by acquiring multiple readout echo trains. However, the extended echo trains pose challenges, such as compromised image quality and diminished quantification accuracy. PURPOSE In this study, we develop a single-shot method for ultrafast T2 and T2* mapping with reduced echo train length. METHODS The proposed method is based on ultrafast single-shot spatiotemporally encoded (SPEN) MRI combined with reduced field of view (FOV) and spiral out-in-out-in (OIOI) trajectory. Specifically, a biaxial SPEN excitation scheme was employed to excite the spin signal into the spatiotemporal encoding domain. The OIOI trajectory with high acquisition efficiency was employed to acquire signals within targeted reduced FOV. Through non-Cartesian super-resolved (SR) reconstruction, 12 aliasing-free images with different echo times were obtained within 150 ms. These images were subsequently fitted to generate T2 or T2* mapping simultaneously using a derived model. RESULTS Accurate and co-registered T2 and T2* maps were generated, closely resembling the reference maps. Numerical simulations demonstrated substantial consistency (R2 > 0.99) with the ground truth values. A mean difference of 0.6% and 1.7% was observed in T2 and T2*, respectively, in in vivo rat brain experiments compared to the reference. Moreover, the proposed method successfully obtained T2 and T2* mappings of rat kidney in free-breathing mode, demonstrating its superiority over multishot methods lacking respiratory navigation. CONCLUSIONS The results suggest that the proposed method can achieve ultrafast and accurate T2 and T2* mapping, potentially facilitating the application of T2 and T2* mapping in scenarios requiring high temporal resolution.
Collapse
Affiliation(s)
- Junxian Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Huaroc Moquillaza E, Weiss K, Stelter J, Steinhelfer L, Lee YJ, Amthor T, Koken P, Makowski MR, Braren R, Doneva M, Karampinos DC. Accelerated liver water T 1 mapping using single-shot continuous inversion-recovery spiral imaging. NMR IN BIOMEDICINE 2024; 37:e5097. [PMID: 38269568 DOI: 10.1002/nbm.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE Liver T1 mapping techniques typically require long breath holds or long scan time in free-breathing, need correction for B 1 + inhomogeneities and process composite (water and fat) signals. The purpose of this work is to accelerate the multi-slice acquisition of liver water selective T1 (wT1) mapping in a single breath hold, improving the k-space sampling efficiency. METHODS The proposed continuous inversion-recovery (IR) Look-Locker methodology combines a single-shot gradient echo spiral readout, Dixon processing and a dictionary-based analysis for liver wT1 mapping at 3 T. The sequence parameters were adapted to obtain short scan times. The influence of fat, B 1 + inhomogeneities and TE on the estimation of T1 was first assessed using simulations. The proposed method was then validated in a phantom and in 10 volunteers, comparing it with MRS and the modified Look-Locker inversion-recovery (MOLLI) method. Finally, the clinical feasibility was investigated by comparing wT1 maps with clinical scans in nine patients. RESULTS The phantom results are in good agreement with MRS. The proposed method encodes the IR-curve for the liver wT1 estimation, is minimally sensitive to B 1 + inhomogeneities and acquires one slice in 1.2 s. The volunteer results confirmed the multi-slice capability of the proposed method, acquiring nine slices in a breath hold of 11 s. The present work shows robustness to B 1 + inhomogeneities (wT 1 , No B 1 + = 1.07 wT 1 , B 1 + - 45.63 , R 2 = 0.99 ) , good repeatability (wT 1 , 2 ° = 1 . 0 wT 1 , 1 ° - 2.14 , R 2 = 0.96 ) and is in better agreement with MRS (wT 1 = 0.92 wT 1 MRS + 103.28 , R 2 = 0.38 ) than is MOLLI (wT 1 MOLLI = 0.76 wT 1 MRS + 254.43 , R 2 = 0.44 ) . The wT1 maps in patients captured diverse lesions, thus showing their clinical feasibility. CONCLUSION A single-shot spiral acquisition can be combined with a continuous IR Look-Locker method to perform rapid repeatable multi-slice liver water T1 mapping at a rate of 1.2 s per slice without a B 1 + map. The proposed method is suitable for nine-slice liver clinical applications acquired in a single breath hold of 11 s.
Collapse
Affiliation(s)
- Elizabeth Huaroc Moquillaza
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Jonathan Stelter
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lisa Steinhelfer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rickmer Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Slioussarenko C, Baudin PY, Reyngoudt H, Marty B. Bi-component dictionary matching for MR fingerprinting for efficient quantification of fat fraction and water T 1 in skeletal muscle. Magn Reson Med 2024; 91:1179-1189. [PMID: 37867467 DOI: 10.1002/mrm.29901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To propose an efficient bi-component MR fingerprinting (MRF) fitting method using a Variable Projection (VARPRO) strategy, applied to the quantification of fat fraction (FF) and water T1 (T 1 H 2 0 $$ \mathrm{T}{1}_{{\mathrm{H}}_20} $$ ) in skeletal muscle tissues. METHODS The MRF signals were analyzed in a two-step process by comparing them to the elements of separate water and fat dictionaries (bi-component dictionary matching). First, each pair of water and fat dictionary elements was fitted to the acquired signal to determine an optimal FF that was used to merge the fingerprints in a combined water/fat dictionary. Second, standard dictionary matching was applied to the combined dictionary for determining the remaining parameters. A clustering method was implemented to further accelerate the fitting. Accuracy, precision, and matching time of this approach were evaluated on both numerical and in vivo datasets, and compared to the reference dictionary-matching approach that includes FF as a dictionary parameter. RESULTS In numerical phantoms, all MRF parameters showed high correlation with ground truth for the reference and the bi-component method (R2 > 0.98). In vivo, the estimated parameters from the proposed method were highly correlated with those from the reference approach (R2 > 0.997). The bi-component method achieved an acceleration factor of up to 360 compared to the reference dictionary matching. CONCLUSION The proposed bi-component fitting approach enables a significant acceleration of the reconstruction of MRF parameter maps for fat-water imaging, while maintaining comparable precision and accuracy to the reference on FF andT 1 H 2 0 $$ \mathrm{T}{1}_{{\mathrm{H}}_20} $$ estimation.
Collapse
Affiliation(s)
| | - Pierre-Yves Baudin
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Harmen Reyngoudt
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| |
Collapse
|
7
|
Christodoulou AG, Cruz G, Arami A, Weingärtner S, Artico J, Peters D, Seiberlich N. The future of cardiovascular magnetic resonance: All-in-one vs. real-time (Part 1). J Cardiovasc Magn Reson 2024; 26:100997. [PMID: 38237900 PMCID: PMC11211239 DOI: 10.1016/j.jocmr.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically "all-in-one" CMR, where several contrasts and/or motion states are acquired simultaneously, and "real-time" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR. To this end, the vision of each is described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 will tackle the "all-in-one" approaches, and Part 2 the "real-time" approaches along with an overall summary of these emerging methods.
Collapse
Affiliation(s)
- Anthony G Christodoulou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gastao Cruz
- Michigan Institute for Imaging Technology and Translation, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ayda Arami
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | | | - Dana Peters
- Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nicole Seiberlich
- Michigan Institute for Imaging Technology and Translation, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Gröschel J, Trauzeddel RF, Müller M, von Knobelsdorff-Brenkenhoff F, Viezzer D, Hadler T, Blaszczyk E, Daud E, Schulz-Menger J. Multi-site comparison of parametric T1 and T2 mapping: healthy travelling volunteers in the Berlin research network for cardiovascular magnetic resonance (BER-CMR). J Cardiovasc Magn Reson 2023; 25:47. [PMID: 37574535 PMCID: PMC10424349 DOI: 10.1186/s12968-023-00954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Parametric mapping sequences in cardiovascular magnetic resonance (CMR) allow for non-invasive myocardial tissue characterization. However quantitative myocardial mapping is still limited by the need for local reference values. Confounders, such as field strength, vendors and sequences, make intersite comparisons challenging. This exploratory study aims to assess whether multi-site studies that control confounding factors provide first insights whether parametric mapping values are within pre-defined tolerance ranges across scanners and sites. METHODS A cohort of 20 healthy travelling volunteers was prospectively scanned at three sites with a 3 T scanner from the same vendor using the same scanning protocol and acquisition scheme. A Modified Look-Locker inversion recovery sequence (MOLLI) for T1 and a fast low-angle shot sequence (FLASH) for T2 were used. At one site a scan-rescan was performed to assess the intra-scanner reproducibility. All acquired T1- and T2-mappings were analyzed in a core laboratory using the same post-processing approach and software. RESULTS After exclusion of one volunteer due to an accidentally diagnosed cardiac disease, T1- and T2-maps of 19 volunteers showed no significant differences between the 3 T sites (mean ± SD [95% confidence interval] for global T1 in ms: site I: 1207 ± 32 [1192-1222]; site II: 1207 ± 40 [1184-1225]; site III: 1219 ± 26 [1207-1232]; p = 0.067; for global T2 in ms: site I: 40 ± 2 [39-41]; site II: 40 ± 1 [39-41]; site III 39 ± 2 [39-41]; p = 0.543). CONCLUSION Parametric mapping results displayed initial hints at a sufficient similarity between sites when confounders, such as field strength, vendor diversity, acquisition schemes and post-processing analysis are harmonized. This finding needs to be confirmed in a powered clinical trial. Trial registration ISRCTN14627679 (retrospectively registered).
Collapse
Affiliation(s)
- Jan Gröschel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf-Felix Trauzeddel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Und Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Maximilian Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- KIZ, Kardiologie im Zentrum, Eisenmannstr. 4, 80331, Munich, Deutschland
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Elias Daud
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine Bar-Ilan University, Nahariya, Safed, Israel
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany.
- Working Group On Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany.
| |
Collapse
|
9
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
10
|
Wang X, Rosenzweig S, Roeloffs V, Blumenthal M, Scholand N, Tan Z, Holme HCM, Unterberg-Buchwald C, Hinkel R, Uecker M. Free-breathing myocardial T 1 mapping using inversion-recovery radial FLASH and motion-resolved model-based reconstruction. Magn Reson Med 2023; 89:1368-1384. [PMID: 36404631 PMCID: PMC9892313 DOI: 10.1002/mrm.29521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To develop a free-breathing myocardialT 1 $$ {\mathrm{T}}_1 $$ mapping technique using inversion-recovery (IR) radial fast low-angle shot (FLASH) and calibrationless motion-resolved model-based reconstruction. METHODS Free-running (free-breathing, retrospective cardiac gating) IR radial FLASH is used for data acquisition at 3T. First, to reduce the waiting time between inversions, an analytical formula is derived that takes the incompleteT 1 $$ {\mathrm{T}}_1 $$ recovery into account for an accurateT 1 $$ {\mathrm{T}}_1 $$ calculation. Second, the respiratory motion signal is estimated from the k-space center of the contrast varying acquisition using an adapted singular spectrum analysis (SSA-FARY) technique. Third, a motion-resolved model-based reconstruction is used to estimate both parameter and coil sensitivity maps directly from the sorted k-space data. Thus, spatiotemporal total variation, in addition to the spatial sparsity constraints, can be directly applied to the parameter maps. Validations are performed on an experimental phantom, 11 human subjects, and a young landrace pig with myocardial infarction. RESULTS In comparison to an IR spin-echo reference, phantom results confirm goodT 1 $$ {\mathrm{T}}_1 $$ accuracy, when reducing the waiting time from 5 s to 1 s using the new correction. The motion-resolved model-based reconstruction further improvesT 1 $$ {\mathrm{T}}_1 $$ precision compared to the spatial regularization-only reconstruction. Aside from showing that a reliable respiratory motion signal can be estimated using modified SSA-FARY, in vivo studies demonstrate that dynamic myocardialT 1 $$ {\mathrm{T}}_1 $$ maps can be obtained within 2 min with good precision and repeatability. CONCLUSION Motion-resolved myocardialT 1 $$ {\mathrm{T}}_1 $$ mapping during free-breathing with good accuracy, precision and repeatability can be achieved by combining inversion-recovery radial FLASH, self-gating and a calibrationless motion-resolved model-based reconstruction.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Sebastian Rosenzweig
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Volkert Roeloffs
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
| | - Moritz Blumenthal
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
| | - Nick Scholand
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Zhengguo Tan
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | | | - Christina Unterberg-Buchwald
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Rabea Hinkel
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
- Laboratory Animal Science Unit, Leibniz Institute for Primate Research, Deutsches Primatenzentrum GmbH, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, Hannover, Germany
| | - Martin Uecker
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- Institute for Diagnostic and Interventional Radiology of the University Medical Center Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
- Cluster of “Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Germany
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
11
|
Eck BL, Yim M, Hamilton JI, da Cruz GJL, Li X, Flamm SD, Tang WHW, Prieto C, Seiberlich N, Kwon DH. Cardiac Magnetic Resonance Fingerprinting: Potential Clinical Applications. Curr Cardiol Rep 2023; 25:119-131. [PMID: 36805913 PMCID: PMC10134477 DOI: 10.1007/s11886-022-01836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW Cardiac magnetic resonance fingerprinting (cMRF) has developed as a technique for rapid, multi-parametric tissue property mapping that has potential to both improve cardiac MRI exam efficiency and expand the information captured. In this review, we describe the cMRF technique, summarize technical developments and in vivo reports, and highlight potential clinical applications. RECENT FINDINGS Technical developments in cMRF continue to progress rapidly, including motion compensated reconstruction, additional tissue property quantification, signal time course analysis, and synthetic LGE image generation. Such technical developments can enable simplified CMR protocols by combining multiple evaluations into a single protocol and reducing the number of breath-held scans. cMRF continues to be reported for use in a range of pathologies; however barriers to clinical implementation remain. Technical developments are described in this review, followed by a focus on potential clinical applications that they may support. Clinical translation of cMRF could shorten protocols, improve CMR accessibility, and provide additional information as compared to conventional cardiac parametric mapping methods. Current needs for clinical implementation are discussed, as well as how those needs may be met in order to bring cMRF from its current research setting to become a viable tool for patient care.
Collapse
Affiliation(s)
- Brendan L Eck
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Yim
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse I Hamilton
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gastao José Lima da Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, England, UK
| | - Xiaojuan Li
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott D Flamm
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, England, UK
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah H Kwon
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Fotaki A, Velasco C, Prieto C, Botnar RM. Quantitative MRI in cardiometabolic disease: From conventional cardiac and liver tissue mapping techniques to multi-parametric approaches. Front Cardiovasc Med 2023; 9:991383. [PMID: 36756640 PMCID: PMC9899858 DOI: 10.3389/fcvm.2022.991383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Cardiometabolic disease refers to the spectrum of chronic conditions that include diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their long-term impact on cardiovascular health. Histological studies have confirmed several modifications at the tissue level in cardiometabolic disease. Recently, quantitative MR methods have enabled non-invasive myocardial and liver tissue characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and T2* provide a pixel-by-pixel representation of the corresponding tissue specific relaxation times, which have been shown to correlate with fibrosis, altered tissue perfusion, oedema and iron levels. Proton density fat fraction mapping approaches allow measurement of lipid tissue in the organ of interest. Several studies have demonstrated their utility as early diagnostic biomarkers and their potential to bear prognostic implications. Conventionally, the quantification of these parameters by MRI relies on the acquisition of sequential scans, encoding and mapping only one parameter per scan. However, this methodology is time inefficient and suffers from the confounding effects of the relaxation parameters in each single map, limiting wider clinical and research applications. To address these limitations, several novel approaches have been proposed that encode multiple tissue parameters simultaneously, providing co-registered multiparametric information of the tissues of interest. This review aims to describe the multi-faceted myocardial and hepatic tissue alterations in cardiometabolic disease and to motivate the application of relaxometry and proton-density cardiac and liver tissue mapping techniques. Current approaches in myocardial and liver tissue characterization as well as latest technical developments in multiparametric quantitative MRI are included. Limitations and challenges of these novel approaches, and recommendations to facilitate clinical validation are also discussed.
Collapse
Affiliation(s)
- Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,*Correspondence: Anastasia Fotaki,
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
13
|
Phair A, Cruz G, Qi H, Botnar RM, Prieto C. Free-running 3D whole-heart T 1 and T 2 mapping and cine MRI using low-rank reconstruction with non-rigid cardiac motion correction. Magn Reson Med 2023; 89:217-232. [PMID: 36198014 PMCID: PMC9828568 DOI: 10.1002/mrm.29449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE To introduce non-rigid cardiac motion correction into a novel free-running framework for the simultaneous acquisition of 3D whole-heart myocardial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images, enabling a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mo>∼</mml:mo></mml:mrow> <mml:annotation>$$ \sim $$</mml:annotation></mml:semantics> </mml:math> 3-min scan. METHODS Data were acquired using a free-running 3D golden-angle radial readout interleaved with inversion recovery and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> -preparation pulses. After correction for translational respiratory motion, non-rigid cardiac-motion-corrected reconstruction with dictionary-based low-rank compression and patch-based regularization enabled 3D whole-heart <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> mapping at any given cardiac phase as well as whole-heart cardiac cine imaging. The framework was validated and compared with established methods in 11 healthy subjects. RESULTS Good quality 3D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images were reconstructed for all subjects. Septal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> values using the proposed approach ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>1200</mml:mn> <mml:mo>±</mml:mo> <mml:mn>50</mml:mn></mml:mrow> <mml:annotation>$$ 1200\pm 50 $$</mml:annotation></mml:semantics> </mml:math> ms) were higher than those from a 2D MOLLI sequence ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>1063</mml:mn> <mml:mo>±</mml:mo> <mml:mn>33</mml:mn></mml:mrow> <mml:annotation>$$ 1063\pm 33 $$</mml:annotation></mml:semantics> </mml:math> ms), which is known to underestimate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> , while <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> values from the proposed approach ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>51</mml:mn> <mml:mo>±</mml:mo> <mml:mn>4</mml:mn></mml:mrow> <mml:annotation>$$ 51\pm 4 $$</mml:annotation></mml:semantics> </mml:math> ms) were in good agreement with those from a 2D GraSE sequence ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mn>51</mml:mn> <mml:mo>±</mml:mo> <mml:mn>2</mml:mn></mml:mrow> <mml:annotation>$$ 51\pm 2 $$</mml:annotation></mml:semantics> </mml:math> ms). CONCLUSION The proposed technique provides 3D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>1</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_1 $$</mml:annotation></mml:semantics> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics> <mml:mrow> <mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> </mml:msub> </mml:mrow> <mml:annotation>$$ {T}_2 $$</mml:annotation></mml:semantics> </mml:math> maps and cine images with isotropic spatial resolution in a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mo>∼</mml:mo></mml:mrow> <mml:annotation>$$ \sim $$</mml:annotation></mml:semantics> </mml:math> 3.3-min scan.
Collapse
Affiliation(s)
- Andrew Phair
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Haikun Qi
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK,Instituto de Ingeniería Biológica y MédicaPontificia Universidad Católica de ChileSantiagoChile,Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile,Millennium Institute for Intelligent Healthcare EngineeringSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK,Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile,Millennium Institute for Intelligent Healthcare EngineeringSantiagoChile
| |
Collapse
|
14
|
Gatefait CGF, Ellison SLR, Nyangoma S, Schmitter S, Kolbitsch C. Optimisation of data acquisition towards continuous cardiac Magnetic Resonance Fingerprinting applications. Phys Med 2023; 105:102514. [PMID: 36608390 DOI: 10.1016/j.ejmp.2022.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Assess and optimise acquisition parameters for continuous cardiac Magnetic Resonance Fingerprinting (MRF). METHODS Different acquisition schemes (flip angle amplitude, lobe size, T2-preparation pulses) for cardiac MRF were assessed in simulations and phantom and demonstrated in one healthy volunteer. Three different experimental designs were evaluated using central composite and fractional factorial designs. Relative errors for T1 and T2 were calculated for a wide range of realistic T1 and T2 value combinations. The effect of different designs on the accuracy of T1 and T2 was assessed using response surface modelling and Cohen's f calculations. RESULTS Larger flip angle amplitudes lead to an improvement of T2 accuracy and precision for simulations and phantom experiments. Similar effects could also be shown qualitatively in in-vivo scans. Accuracy and precision of T1 were robust to different design parameters with improved values for faster flip angle variation. Cohen's f showed that T2-preparation pulses influence the accuracy of T2. The number of pulses used is the most important parameter. Without T2-preparation pulses, RMSE were 3.0 ± 8.09 % for T1 and 16.24 ± 14.47 % for T2. Using those pulses reduced the RMSE to 2.3 ± 8.4 % for T1 and 14.11 ± 13.46 % for T2. Nonetheless, even if the improvement is significant, RMSE are still too high for reliable quantification. CONCLUSION In contrast to previous study using triggered MRF sequences using < 30° flip angles, large flip angle amplitudes led to better results for continuous cardiac MRF sequences. T2-preparation pulse can improve the accuracy of T2 estimation but lead to longer scan times.
Collapse
|
15
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Cao T, Wang N, Kwan AC, Lee HL, Mao X, Xie Y, Nguyen KL, Colbert CM, Han F, Han P, Han H, Christodoulou AG, Li D. Free-breathing, non-ECG, simultaneous myocardial T 1 , T 2 , T 2 *, and fat-fraction mapping with motion-resolved cardiovascular MR multitasking. Magn Reson Med 2022; 88:1748-1763. [PMID: 35713184 PMCID: PMC9339519 DOI: 10.1002/mrm.29351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop a free-breathing, non-electrocardiogram technique for simultaneous myocardial T1 , T2 , T2 *, and fat-fraction (FF) mapping in a single scan. METHODS The MR Multitasking framework is adapted to quantify T1 , T2 , T2 *, and FF simultaneously. A variable TR scheme is developed to preserve temporal resolution and imaging efficiency. The underlying high-dimensional image is modeled as a low-rank tensor, which allows accelerated acquisition and efficient reconstruction. The accuracy and/or repeatability of the technique were evaluated on static and motion phantoms, 12 healthy volunteers, and 3 patients by comparing to the reference techniques. RESULTS In static and motion phantoms, T1 /T2 /T2 */FF measurements showed substantial consistency (R > 0.98) and excellent agreement (intraclass correlation coefficient > 0.93) with reference measurements. In human subjects, the proposed technique yielded repeatable T1 , T2 , T2 *, and FF measurements that agreed with those from references. CONCLUSIONS The proposed free-breathing, non-electrocardiogram, motion-resolved Multitasking technique allows simultaneous quantification of myocardial T1 , T2 , T2 *, and FF in a single 2.5-min scan.
Collapse
Affiliation(s)
- Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nan Wang
- Radiology Department, Stanford University, Stanford, California, USA
| | - Alan C. Kwan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Imaging and Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Caroline M. Colbert
- David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Physics and Biology in Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Fei Han
- Siemens Medical Solutions USA, Inc., Los Angeles, California, USA
| | - Pei Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Velasco C, Fletcher TJ, Botnar RM, Prieto C. Artificial intelligence in cardiac magnetic resonance fingerprinting. Front Cardiovasc Med 2022; 9:1009131. [PMID: 36204566 PMCID: PMC9530662 DOI: 10.3389/fcvm.2022.1009131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that allows for multiparametric quantitative characterization of the tissues of interest in a single acquisition. In particular, it has gained attention in the field of cardiac imaging due to its ability to provide simultaneous and co-registered myocardial T1 and T2 mapping in a single breath-held cardiac MRF scan, in addition to other parameters. Initial results in small healthy subject groups and clinical studies have demonstrated the feasibility and potential of MRF imaging. Ongoing research is being conducted to improve the accuracy, efficiency, and robustness of cardiac MRF. However, these improvements usually increase the complexity of image reconstruction and dictionary generation and introduce the need for sequence optimization. Each of these steps increase the computational demand and processing time of MRF. The latest advances in artificial intelligence (AI), including progress in deep learning and the development of neural networks for MRI, now present an opportunity to efficiently address these issues. Artificial intelligence can be used to optimize candidate sequences and reduce the memory demand and computational time required for reconstruction and post-processing. Recently, proposed machine learning-based approaches have been shown to reduce dictionary generation and reconstruction times by several orders of magnitude. Such applications of AI should help to remove these bottlenecks and speed up cardiac MRF, improving its practical utility and allowing for its potential inclusion in clinical routine. This review aims to summarize the latest developments in artificial intelligence applied to cardiac MRF. Particularly, we focus on the application of machine learning at different steps of the MRF process, such as sequence optimization, dictionary generation and image reconstruction.
Collapse
Affiliation(s)
- Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- *Correspondence: Carlos Velasco
| | - Thomas J. Fletcher
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
18
|
Liu Y, Hamilton J, Jiang Y, Seiberlich N. Cardiac MRF using rosette trajectories for simultaneous myocardial T1, T2, and proton density fat fraction mapping. Front Cardiovasc Med 2022; 9:977603. [PMID: 36204572 PMCID: PMC9530568 DOI: 10.3389/fcvm.2022.977603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
The goal of this work is to extend prior work on cardiac MR Fingerprinting (cMRF) using rosette k-space trajectories to enable simultaneous T1, T2, and proton density fat fraction (PDFF) mapping in the heart. A rosette trajectory designed for water-fat separation at 1.5T was used in a 2D ECG-triggered 15-heartbeat cMRF sequence. Water and fat specific T1 and T2 maps were generated from the cMRF data. A PDFF map was also retrieved using Hierarchical IDEAL by segmenting the rosette cMRF data into multiple echoes. The accuracy of rosette cMRF in T1, T2, and PDFF quantification was validated in the ISMRM/NIST phantom and an in-house built fat fraction phantom, respectively. The proposed method was also applied for myocardial tissue mapping of healthy subjects and cardiac patients at 1.5T. T1, T2, and PDFF values measured using rosette cMRF in the ISMRM/NIST phantom and the fat fraction phantom agreed well with the reference values. In 16 healthy subjects, rosette cMRF yielded T1 values which were 80~90 ms higher than spiral cMRF and MOLLI. T2 values obtained using rosette cMRF were ~3 ms higher than spiral cMRF and ~5 ms lower than conventional T2-prep bSSFP method. Rosette cMRF was also able to detect abnormal T1 and T2 values in cardiomyopathy patients and may provide more accurate maps due to effective fat suppression. In conclusion, this study shows that rosette cMRF has the potential for efficient cardiac tissue characterization through simultaneous quantification of myocardial T1, T2, and PDFF.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Yuchi Liu
| | - Jesse Hamilton
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Yun Jiang
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Axel L, Phan TS, Metaxas DN. Visualization and Analysis of Multidimensional Cardiovascular Magnetic Resonance Imaging: Challenges and Opportunities. Front Cardiovasc Med 2022; 9:919810. [PMID: 35859582 PMCID: PMC9289269 DOI: 10.3389/fcvm.2022.919810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in magnetic resonance imaging are enabling the efficient creation of high-dimensional, multiparametric images, containing a wealth of potential information about the structure and function of many organs, including the cardiovascular system. However, the sizes of these rich data sets are so large that they are outstripping our ability to adequately visualize and analyze them, thus limiting their clinical impact. While there are some intrinsic limitations of human perception and of conventional display devices which hamper our ability to effectively use these data, newer computational methods for handling the data may aid our ability to extract and visualize the salient components of these high-dimensional data sets.
Collapse
Affiliation(s)
- Leon Axel
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- *Correspondence: Leon Axel
| | - Timothy S. Phan
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Dimitris N. Metaxas
- Department of Computer Science, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|