1
|
Chen W, Chen Z, Ma L, Wang Y, Song X. Rapid and quantitative CEST-MRI sequence using water presaturation. Magn Reson Med 2025; 93:730-740. [PMID: 39385344 DOI: 10.1002/mrm.30309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Despite the significant potential for in vivo metabolic imaging in preclinical and clinical applications, CEST MRI suffers from long scan time and inaccurate quantification. This study aims to suppress the contaminations among signals under different frequencies, which could shorten the TR and thereby facilitate CEST imaging acceleration and quantification. METHODS A novel sequence is proposed by applying a water-presaturation (WPS) module at the beginning of each TR. WPS CEST quickly knocks down the residual signal from previous TRs so that the magnetization of all TRs recovers from zero, which aligns well with the formula of quasi-steady-state theorem and enables accurate quantification within shorter TR. WPS CEST was assessed by simulations, creatine phantom, and healthy human brain scans at 3 T. RESULTS In simulation and phantom experiment, WPS CEST allows accurate estimation of exchange rate (ksw) using omega plot and using shorter delay time (Td) and saturation time (Ts) (e.g., 1 s/1 s) compared with the conventional CEST. Simulations further showed that WPS CEST could obtain consistent spin-lock relaxation (R1ρ) values over varied Tds and Tss. Six human scans indicated that R1ρ collected from conventional sequences showed significant differences between two groups with Td and Ts of (1 s/1 s) and (2 s/2 s) (amide: 1.721 ± 0.051 s-1 vs. 1.622 ± 0.050 s-1, p = 0.001; nuclear Overhauser enhancement: 1.792 ± 0.046 s-1 vs. 1.687 ± 0.053 s-1, p = 0.004), whereas WPS CEST scans using these 2 Td/Ts values obtained the same mean R1ρ (amide: 1.616 ± 0.053 s-1 vs. 1.616 ± 0.048 s-1, p = 0.862; nuclear Overhauser enhancement: 1.688 ± 0.064 s-1 vs. 1.684 ± 0.054 s-1, p = 0.544). CONCLUSION WPS CEST demonstrated accurate quantitation within shorter TR compared with conventional sequences, and thereby may allow rapid quantitative CEST scans in various situations.
Collapse
Affiliation(s)
- Wenxuan Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, China
| | - Lele Ma
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yi Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Lam WW, Chudzik A, Lehman N, Łazorczyk A, Kozioł P, Niedziałek A, Gananathan A, Orzyłowska A, Rola R, Stanisz GJ. Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat. NMR IN BIOMEDICINE 2025; 38:e5282. [PMID: 39473129 PMCID: PMC11631369 DOI: 10.1002/nbm.5282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T1-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T1 and T2 maps were also acquired. The MT and WASSR Z-spectra and T1 map were fitted to a two-pool quantitative MT model to estimate the T2 of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M0, MT), and the magnetization exchange rate from the macromolecular pool to the free pool (RMT). The T1-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M0, MT and AREX maps with a B1 of 2 μT best matched the hyperintensity on the post-contrast T1-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M0, MT were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B1 = 2 μT at 3.6 ppm and relative macromolecular pool size (M0, MT) images over entire period of 3-13 days after cancer cell implantation.
Collapse
Affiliation(s)
- Wilfred W. Lam
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Agata Chudzik
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Natalia Lehman
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Artur Łazorczyk
- Department of RadiographyMedical University of LublinLublinPoland
| | - Paulina Kozioł
- Department of RadiographyMedical University of LublinLublinPoland
| | - Anna Niedziałek
- Department of RadiographyMedical University of LublinLublinPoland
| | - Athavan Gananathan
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Radosław Rola
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
| | - Greg J. Stanisz
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada
- Department of Neurosurgery and Paediatric NeurosurgeryMedical University of LublinLublinPoland
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Lawrence LSP, Maralani PJ, Das S, Sahgal A, Stanisz GJ, Lau AZ. Magnetic resonance imaging techniques for monitoring glioma response to chemoradiotherapy. J Neurooncol 2025; 171:255-264. [PMID: 39527382 DOI: 10.1007/s11060-024-04856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Treatment response assessment for gliomas currently uses changes in tumour size as measured with T1- and T2-weighted MRI. However, changes in tumour size may occur many weeks after therapy completion and are confounded by radiation treatment effects. Advanced MRI techniques sensitive to tumour physiology may provide complementary information to evaluate tumour response at early timepoints during therapy. The objective of this review is to provide a summary of the history and current knowledge regarding advanced MRI techniques for early treatment response evaluation in glioma. METHODS The literature survey included perfusion MRI, diffusion-weighted imaging, quantitative magnetization transfer imaging, and chemical exchange transfer MRI. Select articles spanning the history of each technique as applied to treatment response evaluation in glioma were chosen. This report is a narrative review, not formally systematic. RESULTS Chemical exchange saturation transfer imaging potentially offers the earliest method to detect tumour response due to changes in metabolism. Diffusion-weighted imaging is sensitive to changes in tumour cellularity later during radiotherapy and is prognostic for progression-free and overall survival. Substantial evidence suggests that perfusion MRI can differentiate between tumour recurrence and treatment effect, but consensus regarding acquisition, processing, and interpretation is still lacking. Magnetization transfer imaging shows promise for detecting subtle white matter damage which could indicate tumour invasion, but more research in this area is needed. CONCLUSION Advanced MRI techniques show potential for early treatment response assessment, but each technique alone lacks specificity. Multiparametric imaging may be necessary to aid biological interpretation and enable treatment guidance.
Collapse
Affiliation(s)
- Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sunit Das
- Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
4
|
Simegn GL, Sun PZ, Zhou J, Kim M, Reddy R, Zu Z, Zaiss M, Yadav NN, Edden RA, van Zijl PC, Knutsson L. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review. NMR IN BIOMEDICINE 2025; 38:e5294. [PMID: 39532518 PMCID: PMC11606773 DOI: 10.1002/nbm.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1 +) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1 + inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1 + inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30329, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jinyuan Zhou
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mina Kim
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nirbhay Narayan Yadav
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C.M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Ding D, Chang L, Men C, Yang B, Pylypenko D, Zhang T, Yu D, Wang F. Does amide proton transfer-weighted MRI have diagnostic and differential value in ovarian cystic and predominantly cystic lesion? Abdom Radiol (NY) 2024:10.1007/s00261-024-04768-w. [PMID: 39694947 DOI: 10.1007/s00261-024-04768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES This study aims to evaluate the diagnostic value of amide proton transfer-weighted (APTw) imaging in distinguishing cystic or predominantly cystic ovarian lesions. MATERIALS AND METHODS 49 patients underwent APTw imaging at 3T-MR before surgery, with 20 volunteers serving as the control group. Participants were divided into the following groups: solid components of normal ovaries (Group A, n = 29), solid components of malignant lesions (Group B, n = 7), cystic fluid of follicles (Group C, n = 31), cystic fluid of benign lesions (Group D, n = 46), functional cysts (Group d1, n = 8), endometriomas (Group d2, n = 28), cystadenomas (Group d3, n = 10), and cystic fluid of malignant lesions (Group E, n = 12). Independent t-tests or Mann-Whitney U tests and one-way ANOVA were used to compare group differences. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficacy in distinguishing between different lesions. RESULTS For solid components, significant differences in MTRasym values were observed between Groups A and B (P < 0.001). For cystic components, significant differences were found between Groups C and D, C and E, d1 and d2, d2 and d3, d1 and d3, C and d2, C and d3, E and d1, and E and d2 (all P < 0.01). ROC analysis of these results showed high AUC values (ranging from 0.813 to 1.0), all P < 0.05. CONCLUSIONS APTw can reveal differences in MTRasym values between normal and diseased ovarian tissues, demonstrating high clinical value in differentiating functional cysts, endometriomas, and cystadenomas, as well as distinguishing benign lesions (functional cysts or endometriomas) from malignant tumors.
Collapse
Affiliation(s)
- Dawei Ding
- Qilu Hospital of Shandong University, Jinan, China
- Qingzhou People's Hospital, Qingzhou, China
| | - Lingyu Chang
- Qilu Hospital of Shandong University, Jinan, China
| | | | - Bo Yang
- Qilu Hospital of Shandong University, Jinan, China
- Qingzhou People's Hospital, Qingzhou, China
| | | | - Tao Zhang
- Weifang People's Hospital, Weifang, China
| | - Dexin Yu
- Qilu Hospital of Shandong University, Jinan, China
| | - Fang Wang
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Pflüger I, Rastogi A, Casagranda S, Papageorgakis C, Behnisch R, Liebig P, Prager M, Ippen FM, Paech D, Wick W, Bendszus M, Brugnara G, Vollmuth P. Amide proton transfer weighted MRI measurements yield consistent and repeatable results in patients with gliomas: a prospective test-retest study. Eur Radiol 2024:10.1007/s00330-024-11197-2. [PMID: 39694884 DOI: 10.1007/s00330-024-11197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES Chemical exchange saturation transfer (CEST) imaging has emerged as a promising imaging biomarker, but its reliability for clinical practice remains uncertain. This study aimed to investigate the robustness of CEST parameters in healthy volunteers and patients with brain tumours. METHODS A total of n = 52 healthy volunteers and n = 52 patients with histologically confirmed glioma underwent two consecutive 3-T MRI scans separated by a 1-min break. The CEST measurements were reconstructed using two models: with and without fluid suppression and included the evaluation of both amide (amidePTw) and amine (aminePTw) offsets. Mean intensity values in healthy volunteers were compared from volumetric segmentations (VOI) of grey matter, white matter, and the whole brain. Mean intensity values in brain tumour patients were assessed from VOI of the contrast-enhancing, non-enhancing and whole tumour, as well as from the normal-appearing white matter. Test-retest reliability was assessed using ICC and Bland-Altman plots. RESULTS The amidePTw/aminePTw signal intensity distribution was significantly affected by fluid suppression (p < 0.001 for each VOI). Test-retest reliability in healthy volunteers showed fair to excellent agreement (ICC = 0.53-0.74), with the highest signal intensity values observed by amidePTw (ICC = 0.73-0.74). In patients, an excellent agreement of both amidePTw and aminePTw measurements was observed across different tumour regions (ICC = 0.76-0.89), with the highest ICC for contrast-enhancing tumour measurements. Bland-Altman analysis indicated negligible systematic bias and no proportional bias in measurement errors. CONCLUSION Measurements from amide/aminePTw imaging obtained from an adequately powered test-retest study yield consistent and reproducible results in glioma patients, as a prerequisite for robust imaging biomarker discovery in neuro-oncology. KEY POINTS Question The clinical reliability of chemical exchange saturation transfer imaging remains uncertain, necessitating further investigation to establish its robustness as a biomarker in neuro-oncology. Findings This study demonstrates that amide/amine proton transfer imaging provides repeatable, high-agreement measurements in glioma patients, particularly in contrast-enhancing tumour regions. Clinical relevance This test-retest study demonstrates that chemical exchange saturation transfer imaging using two models and assessing amide and amine offsets yield consistent and repeatable results in glioma patients, as a prerequisite for robust imaging biomarker discovery for neuro-oncology studies and clinical practice.
Collapse
Affiliation(s)
- Irada Pflüger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
| | - Aditya Rastogi
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Stefano Casagranda
- Department of R&D Advanced Applications, Olea Medical, La Ciotat, France
| | | | - Rouven Behnisch
- Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany
| | | | - Marcel Prager
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Bonn University Hospital, Bonn, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany
- Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
- Division for Computational Neuroimaging, Heidelberg University Hospital, Heidelberg, Germany.
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.
- Division for Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Sun PZ. Physics-guided multi-dimensional scan optimization and quasi-steady-state reconstruction to enhance CEST MRI sensitivity efficiency and quantification accuracy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 370:107821. [PMID: 39689390 DOI: 10.1016/j.jmr.2024.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become increasingly utilized for detecting dilute labile protons and characterizing microenvironment properties. However, the CEST MRI effect is only a few percent, and there is a need for a systematic approach to optimize scan parameters for sensitive and accurate CEST quantification. We propose multi-dimensional adjustments of key parameters such as the repetition time (TR) and RF duty cycle to optimize CEST MRI sensitivity per unit of time and utilization of quasi-steady-state (QUASS) reconstruction to recover the full CEST effect during postprocessing. Our work herein derived the CEST effect based on the generalized spin-lock CEST model and determined the interdependency of the optimal RF duty cycle and TR, showing the optimal TR decreases with the RF duty cycle but plateaus beyond 60-80 %. The accuracy of the solution was validated with both numerical simulations and CEST MRI experiments on a dual pH creatine gel phantom. The desired equilibrium CEST effect was further reconstructed with the QUASS algorithm from the optimized CEST MRI scan. In summary, our study establishes a workflow for CEST MRI scan optimization and postprocessing analysis, providing a framework to boost both the sensitivity of CEST MRI scans and the accuracy of CEST quantification. This approach holds promise for future in vivo validation and translation.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Non-Human-Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
9
|
Karimian-Jazi K, Enbergs N, Golubtsov E, Schregel K, Ungermann J, Fels-Palesandro H, Schwarz D, Sturm V, Kernbach JM, Batra D, Ippen FM, Pflüger I, von Knebel Doeberitz N, Heiland S, Bunse L, Platten M, Winkler F, Wick W, Paech D, Bendszus M, Breckwoldt MO. Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI. Invest Radiol 2024:00004424-990000000-00277. [PMID: 39644107 DOI: 10.1097/rli.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma. This prospective study investigates amide proton transfer-weighted (APTw) MRI at 3 T as an imaging biomarker to elucidate the molecular heterogeneity and invasion patterns of recurrent glioma in comparison to pseudoprogression (PsPD). MATERIALS AND METHODS We performed a monocenter, prospective trial and screened 371 glioma patients who received tumor monitoring between August 2021 and March 2024 at our institution. The study included IDH wildtype astrocytoma and IDH mutant astrocytoma and oligodendroglioma, graded according to the WHO 2021 classification. Patients had received clinical standard of care treatment including surgical resection and radiochemotherapy prior to study inclusion. Patients were monitored by 3 monthly MRI follow-up imaging, and response assessment was performed according to the RANO criteria. Within this cohort, we identified 30 patients who presented with recurrent glioma and 12 patients with PsPD. In addition to standard anatomical sequences (FLAIR and T1-w Gd-enhanced sequences), MRI included APTw imaging. After sequence co-registration, semiautomated segmentation was performed of the FLAIR lesion, CE lesion, resection cavity, and the contralateral normal-appearing white matter, and APTw signals were quantified in these regions of interest. RESULTS APTw values were highest in solid, Gd-enhancing tumor parts as compared with the nonenhancing FLAIR lesion (APTw: 1.99% vs 1.36%, P = 0.001), whereas there were no detectable APTw alterations in the normal-appearing white matter (APTw: 0.005%, P < 0.001 compared with FLAIR). Patients with progressive disease had higher APTw levels compared with patients with PsPD (APTw: 1.99% vs 1.26%, P = 0.008). Chemical exchange saturation transfer identified heterogeneity within the FLAIR lesion that was not detectable by conventional sequences. There were also focal APTw signal peaks within contrast enhancing lesions as putative metabolic hotspots within recurrent glioma. The resection cavity developed an APTw increase at recurrence that was not detectable prior to recurrence nor in patients with PsPD (APTw before recurrence: 0.6% vs 2.68% at recurrence, P = 0.03). CONCLUSIONS Our study shows that APTw imaging can differentiate PD and PsPD. We identify previously undetectable imaging patterns during glioma recurrence, which include alterations within resection cavity associated with disease progression. Our work highlights the clinical potential of APTw imaging for glioma monitoring and further establishes it as an imaging biomarker in neuro-oncology.
Collapse
Affiliation(s)
- Kianush Karimian-Jazi
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen L, Xu H, Gong T, Jin J, Lin L, Zhou Y, Huang J, Chen Z. Accelerating multipool CEST MRI of Parkinson's disease using deep learning-based Z-spectral compressed sensing. Magn Reson Med 2024; 92:2616-2630. [PMID: 39044635 DOI: 10.1002/mrm.30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To develop a deep learning-based approach to reduce the scan time of multipool CEST MRI for Parkinson's disease (PD) while maintaining sufficient prediction accuracy. METHOD A deep learning approach based on a modified one-dimensional U-Net, termed Z-spectral compressed sensing (CS), was proposed to recover dense Z-spectra from sparse ones. The neural network was trained using simulated Z-spectra generated by the Bloch equation with various parameter settings. Its feasibility and effectiveness were validated through numerical simulations and in vivo rat brain experiments, compared with commonly used linear, pchip, and Lorentzian interpolation methods. The proposed method was applied to detect metabolism-related changes in the 6-hydroxydopamine PD model with multipool CEST MRI, including APT, CEST@2 ppm, nuclear Overhauser enhancement, direct saturation, and magnetization transfer, and the prediction performance was evaluated by area under the curve. RESULTS The numerical simulations and in vivo rat-brain experiments demonstrated that the proposed method could yield superior fidelity in retrieving dense Z-spectra compared with existing methods. Significant differences were observed in APT, CEST@2 ppm, nuclear Overhauser enhancement, and direct saturation between the striatum regions of wild-type and PD models, whereas magnetization transfer exhibited no significant difference. Receiver operating characteristic analysis demonstrated that multipool CEST achieved better predictive performance compared with individual pools. Combined with Z-spectral CS, the scan time of multipool CEST MRI can be reduced to 33% without distinctly compromising prediction accuracy. CONCLUSION The integration of Z-spectral CS with multipool CEST MRI can enhance the prediction accuracy of PD and maintain the scan time within a reasonable range.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Haipeng Xu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junxian Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Liangjie Lin
- Clinical & Technical Supports, Philips Healthcare, Beijing, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Yan M, Bie C, Jia W, Liu C, He X, Song X. Synthesis of higher-B 0 CEST Z-spectra from lower-B 0 data via deep learning and singular value decomposition. NMR IN BIOMEDICINE 2024; 37:e5221. [PMID: 39113170 DOI: 10.1002/nbm.5221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 11/15/2024]
Abstract
Chemical exchange saturation transfer (CEST) MRI at 3 T suffers from low specificity due to overlapping CEST effects from multiple metabolites, while higher field strengths (B0) allow for better separation of Z-spectral "peaks," aiding signal interpretation and quantification. However, data acquisition at higher B0 is restricted by equipment access, field inhomogeneity and safety issues. Herein, we aim to synthesize higher-B0 Z-spectra from readily available data acquired with 3 T clinical scanners using a deep learning framework. Trained with simulation data using models based on Bloch-McConnell equations, this framework comprised two deep neural networks (DNNs) and a singular value decomposition (SVD) module. The first DNN identified B0 shifts in Z-spectra and aligned them to correct frequencies. After B0 correction, the lower-B0 Z-spectra were streamlined to the second DNN, casting into the key feature representations of higher-B0 Z-spectra, obtained through SVD truncation. Finally, the complete higher-B0 Z-spectra were recovered from inverse SVD, given the low-rank property of Z-spectra. This study constructed and validated two models, a phosphocreatine (PCr) model and a pseudo-in-vivo one. Each experimental dataset, including PCr phantoms, egg white phantoms, and in vivo rat brains, was sequentially acquired on a 3 T human and a 9.4 T animal scanner. Results demonstrated that the synthetic 9.4 T Z-spectra were almost identical to the experimental ground truth, showing low RMSE (0.11% ± 0.0013% for seven PCr tubes, 1.8% ± 0.2% for three egg white tubes, and 0.79% ± 0.54% for three rat slices) and high R2 (>0.99). The synthesized amide and NOE contrast maps, calculated using the Lorentzian difference, were also well matched with the experiments. Additionally, the synthesis model exhibited robustness to B0 inhomogeneities, noise, and other acquisition imperfections. In conclusion, the proposed framework enables synthesis of higher-B0 Z-spectra from lower-B0 ones, which may facilitate CEST MRI quantification and applications.
Collapse
Affiliation(s)
- Mengdi Yan
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Chongxue Bie
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wentao Jia
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Chuyu Liu
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Heo HY, Singh M, Mahmud SZ, Blair L, Kamson DO, Zhou J. Unraveling contributions to the Z-spectrum signal at 3.5 ppm of human brain tumors. Magn Reson Med 2024; 92:2641-2651. [PMID: 39086185 PMCID: PMC11436306 DOI: 10.1002/mrm.30241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE To evaluate the influence of the confounding factors, direct water saturation (DWS), and magnetization transfer contrast (MTC) effects on measured Z-spectra and amide proton transfer (APT) contrast in brain tumors. METHODS High-grade glioma patients were scanned using an RF saturation-encoded 3D MR fingerprinting (MRF) sequence at 3 T. For MRF reconstruction, a recurrent neural network was designed to learn free water and semisolid macromolecule parameter mappings of the underlying multiple tissue properties from saturation-transfer MRF signals. The DWS spectra and MTC spectra were synthesized by solving Bloch-McConnell equations and evaluated in brain tumors. RESULTS The dominant contribution to the saturation effect at 3.5 ppm was from DWS and MTC effects, but 25%-33% of the saturated signal in the gadolinium-enhancing tumor (13%-20% for normal tissue) was due to the APT effect. The APT# signal of the gadolinium-enhancing tumor was significantly higher than that of the normal-appearing white matter (10.1% vs. 8.3% at 1 μT and 11.2% vs. 7.8% at 1.5 μT). CONCLUSION The RF saturation-encoded MRF allowed us to separate contributions to the saturation signal at 3.5 ppm in the Z-spectrum. Although free water and semisolid MTC are the main contributors, significant APT contrast between tumor and normal tissues was observed.
Collapse
Affiliation(s)
- Hye-Young Heo
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Munendra Singh
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sultan Z Mahmud
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Olayinka Kamson
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Kurmi Y, Viswanathan M, Zu Z. Enhancing SNR in CEST imaging: A deep learning approach with a denoising convolutional autoencoder. Magn Reson Med 2024; 92:2404-2419. [PMID: 39030953 DOI: 10.1002/mrm.30228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To develop a SNR enhancement method for CEST imaging using a denoising convolutional autoencoder (DCAE) and compare its performance with state-of-the-art denoising methods. METHOD The DCAE-CEST model encompasses an encoder and a decoder network. The encoder learns features from the input CEST Z-spectrum via a series of one-dimensional convolutions, nonlinearity applications, and pooling. Subsequently, the decoder reconstructs an output denoised Z-spectrum using a series of up-sampling and convolution layers. The DCAE-CEST model underwent multistage training in an environment constrained by Kullback-Leibler divergence, while ensuring data adaptability through context learning using Principal Component Analysis-processed Z-spectrum as a reference. The model was trained using simulated Z-spectra, and its performance was evaluated using both simulated data and in vivo data from an animal tumor model. Maps of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects were quantified using the multiple-pool Lorentzian fit, along with an apparent exchange-dependent relaxation metric. RESULTS In digital phantom experiments, the DCAE-CEST method exhibited superior performance, surpassing existing denoising techniques, as indicated by the peak SNR and Structural Similarity Index. Additionally, in vivo data further confirm the effectiveness of the DCAE-CEST in denoising the APT and NOE maps when compared with other methods. Although no significant difference was observed in APT between tumors and normal tissues, there was a significant difference in NOE, consistent with previous findings. CONCLUSION The DCAE-CEST can learn the most important features of the CEST Z-spectrum and provide the most effective denoising solution compared with other methods.
Collapse
Affiliation(s)
- Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Mahmud SZ, Singh M, van Zijl P, Heo HY. Fast and motion-robust saturation transfer MRI with inherent B 0 correction using rosette trajectories and compressed sensing. Magn Reson Med 2024; 92:2535-2545. [PMID: 39129199 PMCID: PMC11436307 DOI: 10.1002/mrm.30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To implement rosette readout trajectories with compressed sensing reconstruction for fast and motion-robust CEST and magnetization transfer contrast imaging with inherent correction of B0 inhomogeneity. METHODS A pulse sequence was developed for fast saturation transfer imaging using a stack of rosette trajectories with a higher sampling density near the k-space center. Each rosette lobe was segmented into two halves to generate dual-echo images. B0 inhomogeneities were estimated using the phase difference between the images and corrected subsequently. The rosette-based imaging was evaluated in comparison to a fully sampled Cartesian trajectory and demonstrated on CEST phantoms (creatine solutions and egg white) and healthy volunteers at 3 T. RESULTS Compared with the conventional Cartesian acquisition, compressed sensing reconstructed rosette images provided image quality with overall higher contrast-to-noise ratio and significantly faster readout time. Accurate B0 map estimation was achieved from the rosette acquisition with a negligible bias of 0.01 Hz between the rosette and dual-echo Cartesian gradient echo B0 maps, using the latter as ground truth. The water-saturation spectra (Z-spectra) and amide proton transfer weighted signals obtained from the rosette-based sequence were well preserved compared with the fully sampled data, both in the phantom and human studies. CONCLUSIONS Fast, motion-robust, and inherent B0-corrected CEST and magnetization transfer contrast imaging using rosette trajectories could improve subject comfort and compliance, contrast-to-noise ratio, and provide inherent B0 homogeneity information. This work is expected to significantly accelerate the translation of CEST-MRI into a robust, clinically viable approach.
Collapse
Affiliation(s)
- Sultan Z. Mahmud
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Munendra Singh
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Weigand-Whittier J, Wendland M, Lam B, Velasquez M, Vandsburger MH. Ungated, plug-and-play preclinical cardiac CEST-MRI using radial FLASH with segmented saturation. Magn Reson Med 2024. [PMID: 39607872 DOI: 10.1002/mrm.30382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE Electrocardiography (ECG) and respiratory-gated preclinical cardiac CEST-MRI acquisitions are difficult because of variable saturation recovery with T1, RF interference in the ECG signal, and offset-to-offset variation in Z-magnetization and cardiac phase introduced by changes in cardiac frequency and trigger delays. METHODS The proposed method consists of segmented saturation modules with radial FLASH readouts and golden angle progression. The segmented saturation blocks drive the system to steady-state, and because center k-space is sampled repeatedly, steady-state saturation dominates contrast during gridding and reconstruction. Ten complete Z-spectra were acquired in healthy mice using both ECG and respiratory-gated and ungated methods. Z-spectra were also acquired at multiple saturation B1 values to optimize for amide and Cr contrasts. RESULTS There was no significant difference between CEST contrasts (amide, Cr, magnetization transfer) calculated from images acquired using ECG and respiratory-gated and ungated methods (p = 0.27, 0.11, 0.47). A saturation power of 1.8μT provides optimal contrast amplitudes for both amide and total Cr contrast without significantly complicating CEST contrast quantification because of water direct saturation, magnetization transfer, and RF spillover between amide and Cr pools. Further, variability in CEST contrast measurements was significantly reduced using the ungated radial FLASH acquisition (p = 0.002, 0.006 for amide and Cr, respectively). CONCLUSION This method enables CEST mapping in the murine myocardium without the need for cardiac or respiratory gating. Quantitative CEST contrasts are consistent with those obtained using gated sequences, and per-contrast variance is significantly reduced. This approach makes preclinical cardiac CEST-MRI easily accessible, even for investigators without prior experience in cardiac imaging.
Collapse
Affiliation(s)
- Jonah Weigand-Whittier
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Michael Wendland
- Berkeley Preclinical Imaging Core, University of California Berkeley, Berkeley, California, USA
| | - Bonnie Lam
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Mark Velasquez
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Zu T, Yong X, Dai Z, Jiang T, Hsu YC, Lu S, Zhang Y. Prospective acceleration of whole-brain CEST imaging by golden-angle view ordering in Cartesian coordinates and joint k-space and image-space parallel imaging (KIPI). Magn Reson Med 2024. [PMID: 39607875 DOI: 10.1002/mrm.30375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To prospectively accelerate whole-brain CEST acquisition by joint k-space and image-space parallel imaging (KIPI) with a proposed golden-angle view ordering technique (GAVOT) in Cartesian coordinates. THEORY AND METHODS The T2-decay effect will vary across frames with variable acceleration factors (AF) in the prospective acquisition using sequences with long echo trains. The GAVOT method uses a subset strategy to eliminate the T2-decay inconsistency, where all frames use a subset of shots from the calibration frame to form their k-space view ordering. The golden-angle rule is adapted to ensure uniform k-space coverage for arbitrary AFs in Cartesian coordinates. Phantom and in vivo studies were conducted on a 3 T scanner. RESULTS The GAVOT view ordering yielded a higher g-factor than conventional uniformly centric ordering, whereas the noise propagation in amide proton transfer (APT) weighted images was similar between different view ordering. Compared to centric ordering, GAVOT successfully eliminated the T2-decay inconsistency across all frames, resulting in fewer image artifacts for both KIPI and conventional parallel imaging methods. The synergy of GAVOT and KIPI mitigated strong aliasing artifacts and achieved high-quality reconstruction of prospective variable-AF datasets. GAVOT-KIPI reduced the scan time to 2.1 min for whole-brain APT weighted imaging and 4.7 min for quantitative APT signal (APT#) mapping. CONCLUSION GAVOT makes the prospective variable AF strategy flexible and practical, and, in conjunction with KIPI, ensures high-quality reconstruction from highly undersampled data, facilitating the clinical translation of whole-brain CEST imaging.
Collapse
Affiliation(s)
- Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xingwang Yong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhechuan Dai
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Tongling Jiang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Shanshan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Hamon G, Lecler A, Ferré JC, Bourdillon P, Duron L, Savatovsky J. 3-Tesla amide proton transfer-weighted imaging (APT-WI): elevated signal also in tumor mimics. Eur Radiol 2024:10.1007/s00330-024-11202-8. [PMID: 39592486 DOI: 10.1007/s00330-024-11202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES To explore amide proton transfer-weighted imaging (APTwi) for the initial classification of brain masses in clinical practice by systematically reporting APTwi signal intensity (APT-SI) in tumor mimics and brain tumors. MATERIALS AND METHODS Single-center retrospective analysis (2017-2020) of APTwi in 156 patients (84 men, mean age: 50.9 ± 20) who underwent characterization imaging of a brain mass prior to any treatment, using 3-Tesla MRI. 125/156 (80%) patients presented with brain tumor and 31/156 (20%) with tumor mimics. Regions of interest were manually drawn on 2D axial slices by two readers on APTwi map in lesional and perilesional areas and APT-SI, corresponding to the Magnetization Transfer Ratio asymmetry at 3.5 ppm, was systematically reported. Student's t-test or Wilcoxon-test were used to compare groups of patients. RESULTS The mean APT-SI in lesional and perilesional areas were significantly higher in tumors compared to tumor mimics: 3% [2.10-4] (median [Q1-Q3]) vs 1.7% [0.80-2.55] (p < 0.001) and 1.9% [1.2-2.80] vs. 1.0% [0.55-2.3] (p < 0.01). There were no differences in mean APT-SI in the tumor core between low and high-grade tumors: 2.5% [1.80-4.0] vs. 3.25% [2.5-4.0]. The mean APT-SI was significantly higher in high-grade glioma compared to low-grade glioma: 3.4% [2.7-4] vs. 2.1% [1.7-2.5] (p < 0.001). Highest mean APT-SI in tumor core were found in mesenchymal tumors (5.83% ± 1.45, mean ± SD), embryonal tumors (5.27% ± 3.5) and meningiomas (4.28% ± 0.70). In tumor mimics, highest mean APT-SI was found in the core of infectious lesions (3.52% ± 0.67). CONCLUSION High signal on ATPwi is not exclusive to high-grade brain tumors but can be observed in some tumor mimics and subtypes of low-grade tumors. KEY POINTS Question What is the value of amide proton transfer-weighted imaging (APTwi) in the setting of brain mass classification? Findings High APT-signal intensity in the tumor core of a brain mass could correspond to a high- or low-grade tumor or tumor mimic. Clinical relevance In patients presenting for the initial classification of brain masses, APTwi findings should be interpreted with caution and in conjunction with other MRI parameters, as a high APTwi signal does not necessarily indicate a high-grade tumor.
Collapse
Affiliation(s)
- Guillaume Hamon
- Department of Neuroradiology, University Hospital Pontchaillou, Rennes, France
| | - Augustin Lecler
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France.
| | | | - Pierre Bourdillon
- Department of Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Loïc Duron
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Julien Savatovsky
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
18
|
Tang PLY, Romero AM, Nout RA, van Rij C, Slagter C, Swaak-Kragten AT, Smits M, Warnert EAH. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Eur Radiol Exp 2024; 8:123. [PMID: 39477835 PMCID: PMC11525355 DOI: 10.1186/s41747-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) analysis-for target delineation. METHODS Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTRasym and LD maps. From both maps, biological tumor volumes were generated (BTVMTRasym and BTVLD) and added to the conventional GTV to generate biological GTVs (GTVbio,MTRasym and GTVbio,LD). Wilcoxon signed-rank tests were performed for comparisons. RESULTS The GTVbio,MTRasym and GTVbio,LD were significantly larger than the conventional GTV (p ≤ 0.022), with a median volume increase of 9.3% and 2.1%, respectively. The GTVbio,MTRasym and GTVbio,LD were significantly smaller than the CTV (p = 0.004), with a median volume reduction of 72.1% and 70.9%, respectively. There was no significant volume difference between the BTVMTRasym and BTVLD (p = 0.074). In three patients, BTVMTRasym delineation was affected by elevated signals at the brain periphery due to residual motion artifacts; this elevation was absent on the APT-weighted LD maps. CONCLUSION Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts. RELEVANCE STATEMENT The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor. TRIAL REGISTRATION NCT05970757 (ClinicalTrials.gov). KEY POINTS Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTRasym.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline van Rij
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cleo Slagter
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemarie T Swaak-Kragten
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Yang X, Qiu Q, Lu W, Chen B, Zhao M, Liang W, Wen Z. Prediction of Kirsten rat sarcoma ( KRAS) mutation in rectal cancer with amide proton transfer-weighted magnetic resonance imaging. Quant Imaging Med Surg 2024; 14:7061-7072. [PMID: 39429593 PMCID: PMC11485380 DOI: 10.21037/qims-24-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 10/22/2024]
Abstract
Background Kirsten rat sarcoma (KRAS) mutation drives resistance to anti-epidermal growth factor receptor (anti-EGFR)-targeted therapies in rectal cancer. Amide proton transfer-weighted magnetic resonance imaging (APTw MRI) might be a supplement to the evaluation of KRAS mutation because the APTw value can reflect mobile cellular protein content in vivo. This study aimed to determine whether APTw MRI could predict KRAS mutation in rectal cancer and compare this technique with diffusion-weighted imaging (DWI). Methods This retrospective study reviewed 153 consecutive patients with rectal cancer from April 2019 to June 2021 in our hospital. Among them, a total of 55 patients who did not undergo neoadjuvant chemoradiotherapy and underwent preoperative APTw MRI, DWI, and postoperative KRAS tests were included in this study. In two-dimensional APTw images, two radiologists manually delineated three regions of interest (ROIs) along tumor contour in the largest slice and the adjacent two slices of tumor respectively. The mean APTw value within a ROI was calculated, and the values of three ROIs were averaged for each patient. In consecutive DWI images, two radiologists depicted the ROIs of the whole lesion, and the mean apparent diffusion coefficient (ADC) was generated. The intraclass correlation coefficient (ICC), Shapiro-Wilk test and Student's t-test were used for statistical analyses. Receiver operating characteristic (ROC) curves were constructed for APTw and ADC values respectively, and the area under the curve (AUC) was used to evaluate the diagnostic performance for the prediction of KRAS mutation. Results Among these 55 patients, KRAS mutation occurred in 21 patients. The ICCs of two independent raters for APTw and ADC values were 0.937 [95% confidence interval (CI), 0.914-0.953] and 0.976 (95% CI, 0.959-0.986), respectively. ADC values did not show a statistically significant difference between the KRAS-mutant group and the wild type (WT) group (P=0.733). KRAS-mutant tumors exhibited a higher APTw value than WT tumors in patients with rectal non-mucinous adenocarcinoma (3.324%±0.685% vs. 2.230%±0.833%, P<0.001). The AUC of the APTw value was 0.827 (95% CI, 0.701-0.916), with a cutoff value of 2.4% (sensitivity, 95.2%; specificity, 55.9%). Conclusions DWI cannot differentiate mutant KRAS genes from WT genes in patients with rectal cancer, but APTw MRI has potential for evaluating KRAS mutation in rectal cancer. The APTw value had moderate diagnostic performance in the prediction of KRAS mutation with a high sensitivity but a low specificity. APTw MRI might be a promising supplement to KRAS genomic analysis in rectal cancer patients.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Qiu
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weirong Lu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingmei Chen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minning Zhao
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Liang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Liu B, She H, Du YP. Scan-Specific Unsupervised Highly Accelerated Non-Cartesian CEST Imaging Using Implicit Neural Representation and Explicit Sparse Prior. IEEE Trans Biomed Eng 2024; 71:3032-3045. [PMID: 38814759 DOI: 10.1109/tbme.2024.3407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Chemical exchange saturation transfer (CEST) is a promising magnetic resonance imaging (MRI) technique. CEST imaging usually requires a long scan time, and reducing acquisition time is highly desirable for clinical applications. METHODS A novel scan-specific unsupervised deep learning algorithm is proposed to accelerate steady-state pulsed CEST imaging with golden-angle stack-of-stars trajectory using hybrid-feature hash encoding implicit neural representation. Additionally, imaging quality is further improved by using the explicit prior knowledge of low rank and weighted joint sparsity in the spatial and Z-spectral domain of CEST data. RESULTS In the retrospective acceleration experiment, the proposed method outperforms other state-of-the-art algorithms (TDDIP, LRTES, kt-SLR, NeRP, CRNN, and PBCS) for the in vivo human brain dataset under various acceleration rates. In the prospective acceleration experiment, the proposed algorithm can still obtain results close to the fully-sampled images. CONCLUSION AND SIGNIFICANCE The hybrid-feature hash encoding implicit neural representation combined with explicit sparse prior (INRESP) can efficiently accelerate CEST imaging. The proposed algorithm achieves reduced error and improved image quality compared to several state-of-the-art algorithms at relatively high acceleration factors. The superior performance and the training database-free characteristic make the proposed algorithm promising for accelerating CEST imaging in various applications.
Collapse
|
21
|
Zhang Y, Li G, Chen J, Jiang M, Gao Y, Li K, Wen H, Yan J. The value of predicting neoadjuvant chemotherapy early efficacy in nasopharyngeal carcinoma based on amide proton transfer imaging and diffusion weighted imaging. Quant Imaging Med Surg 2024; 14:7330-7340. [PMID: 39429559 PMCID: PMC11485347 DOI: 10.21037/qims-24-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024]
Abstract
Background Early detection of nasopharyngeal carcinoma (NPC) patients who are not sensitive to neoadjuvant chemotherapy (NAC) can guard against overtreatment. This study aimed to evaluate the effectiveness of amide proton transfer (APT) imaging and diffusion-weighted imaging (DWI) in predicting the early response to NAC in patients with NPC. Methods This prospective study enrolled fifty patients with biopsy-confirmed NPC from September 2021 to May 2023. Magnetic resonance imaging (MRI) including APT and DWI, was performed before NAC. After NAC, patients were divided into complete response (CR), partial response (PR), and stable disease (SD) and progressive disease (PD) groups based on the Response Evaluation Criteria in Solid Tumours Version 1.1. The Kruskal-Wallis H test was used for statistical analysis. The differences in APT and apparent diffusion coefficient (ADC) values among the different efficacy groups were compared, the receiver operating characteristic (ROC) curve was drawn for statistically significant parameters, and the area under the curve (AUC) was calculated. Results Fifty patients (mean age: 47±14 years; 42 males and 8 females) were included in the final analysis (11 were in the CR group, 30 in the PR group, 9 in the SD group, and 0 in the PD group). The ADC values showed no significant differences among the different treatment response groups. The SD group showed significantly lower APTmax (P=0.025), APTskewness (P=0.025) and APT90% (P=0.001) values than the CR and PR groups. Setting APT90% =3.10% as the cut-off value, optimal diagnostic performance (AUC: 0.831; sensitivity: 0.778; specificity: 0.878) was obtained in predicting the SD group. Conclusions APT imaging can predict the early tumour response to NAC in patients with NPC. APT imaging may be superior to DWI in predicting tumour response.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guomin Li
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jinyan Chen
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Meien Jiang
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yunyu Gao
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Kunsong Li
- Department of Oncology, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hua Wen
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianhao Yan
- Department of Medical Imaging, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Li JL, Xu Y, Xiang YS, Wu P, Shen AJ, Wang PJ, Wang F. The Value of Amide Proton Transfer MRI in the Diagnosis of Malignant and Benign Urinary Bladder Lesions: Comparison With Diffusion-Weighted Imaging. J Magn Reson Imaging 2024; 60:1124-1133. [PMID: 38174777 DOI: 10.1002/jmri.29199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Conventional magnetic resonance imaging (MRI) has certain limitations in distinguishing between malignant and benign urinary bladder (UB) lesions. Amide proton transfer (APT) imaging may provide more diagnostic information than diffusion-weighted imaging (DWI) to distinguish between malignant and benign UB. PURPOSE To investigate the potential of APT imaging in the diagnosis of malignant and benign UB lesions and to compare its diagnostic efficacy with that of conventional DWI. STUDY TYPE Prospective. SUBJECTS Eighty patients with UB lesions. FIELD STRENGTH/SEQUENCE A 3.0 T/turbo spin echo (TSE) T1-weighted and T2-weighted imaging, single-shot echo planar DWI, and three-dimensional TSE APT imaging. ASSESSMENT Patients underwent radical cystectomy or transurethral resection of the bladder lesions within 2 weeks after CT urography and MRI examination. APT signal intensity in UB lesions was quantified by the asymmetric magnetization transfer ratio (MTRasym). MTRasym and apparent diffusion coefficient (ADC) values were measured and compared between malignant and benign UB lesions. STATISTICAL TESTS Kolmogorov-Smirnov test, Student's t test or Mann-Whitney U test, Spearman rank correlation coefficient, area under the receiver operating characteristic (ROC) curve (AUC), Delong test, and intraclass correlation coefficient (ICC). The significance threshold was set at P < 0.05. RESULTS Thirty-two patients had pathologically confirmed benign UB lesions, including 2 bladder leiomyomas, 1 submucosal amyloidosis, 1 inflammatory myofibroblastic tumor, and 28 inflammatory lesions, and 48 patients had pathologically confirmed urothelial carcinoma. Urothelial carcinomas showed significantly higher MTRasym values (1.53% [0.74%] vs. 0.85% [0.23%]) and significantly lower ADC values (1.24 ± 0.34 × 10-3 mm2/s vs. 1.43 ± 0.22 × 10-3 mm2/s) than benign UB lesions. The MTRasym value (AUC = 0.928) was significantly better in differentiating urothelial carcinoma from benign UB lesions than the ADC value (AUC = 0.722). DATA CONCLUSION APT imaging may have value in discriminating malignant from benign UB lesions and has better diagnostic performance than DWI. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jing-Lu Li
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Yun Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Yong-Sheng Xiang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Peng Wu
- Clinical and Technical Support, Philips Healthcare, Shanghai, China
| | - Ai-Jun Shen
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Pei-Jun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Yu FF, Rathnakar J, Ryder B, Hitt B, Kashmer OM, Sherry AD, Vinogradov E. Differentiation and characterization of healthy versus pathological tau using chemical exchange saturation transfer. NMR IN BIOMEDICINE 2024; 37:e5160. [PMID: 38646677 DOI: 10.1002/nbm.5160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024]
Abstract
Neurofibrillary tangles of tau constitute one of the key biological hallmarks of Alzheimer's disease. Currently, the assessment of regional tau accumulation requires intravenous administration of radioactive tracers for PET imaging. A noninvasive MRI-based solution would have significant clinical implications. Herein, we utilized an MRI technique known as chemical exchange saturation transfer (CEST) to determine the imaging signature of tau in both its monomeric and pathologic fibrillated conformations. Three sets of purified recombinant full-length (4R) tau protein were prepared for collection of CEST spectra using a 9.4 T NMR spectrometer at varying temperatures (25, 37, and 42 °C) and RF intensities (0.7, 1.0, 1.5, and 2.2 μT). Monomeric and fibrillated tau were readily distinguished based on their Z-spectrum profiles. Fibrillated tau demonstrated a less prominent peak at 3.5 ppm with additional peaks near 0.5 and 1.5 ppm. No significant differences were identified between fibrillated tau prepared using heparin versus seed-competent tau. In conclusion, monomeric and fibrillated tau can be readily detected and distinguished based on their CEST-derived Z-spectra, pointing to the potential utility of CEST-MRI as a noninvasive biomarker of regional pathologic tau accumulation in the brain. Further testing and validation in vitro and in vivo will be necessary before this can be applied clinically.
Collapse
Affiliation(s)
- Fang Frank Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Rathnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bryan Ryder
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brian Hitt
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, UCI Medical Center, Orange, California, USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry & Biochemistry, University of Texas at Dallas, Dallas, Texas, USA
| | - Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Özdemir İ, Etyemez S, Barker PB. High-field downfield MR spectroscopic imaging in the human brain. Magn Reson Med 2024; 92:890-899. [PMID: 38469953 PMCID: PMC11209804 DOI: 10.1002/mrm.30075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding,1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY
- Department of Psychiatry, Weill Cornell Medicine, New York, NY
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
25
|
Borges de Almeida G, Pascuzzo R, Mambrin F, Aquino D, Verri M, Moscatelli M, Del Bene M, DiMeco F, Silvani A, Pollo B, Grisoli M, Doniselli FM. The Role of Amide Proton Transfer (APT)-Weighted Imaging in Glioma: Assessment of Tumor Grading, Molecular Profile and Survival in Different Tumor Components. Cancers (Basel) 2024; 16:3014. [PMID: 39272871 PMCID: PMC11394364 DOI: 10.3390/cancers16173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed. APT values were semi-automatically extracted from tumor solid and, whenever present, necrotic components. APT values were compared between groups stratified by WHO grade, IDH-mutation, MGMT promoter methylation and 1- and 2-year survival status using Wilcoxon rank-sum test, adjusting for multiple comparisons. Overall survival (OS) was analyzed in the subgroup of 48 patients with grade 4 tumors using Cox proportional-hazards models. Random-effects models were used to assess inter-subject heterogeneity of the mean APT values in each tumor component. APT values of the solid component significantly differed between patients with grades 2-3 and 4 tumors (mean 1.58 ± 0.50 vs. 2.04 ± 0.56, p = 0.028) and correlated with OS after 1 year (1.81 ± 0.58 in survivors vs. 2.17 ± 0.51 in deceased patients, p = 0.030). APT values did not differ by IDH-mutation, MGMT methylation, and 2-year survival status. Within grade 4 glioma patients, higher APT kurtosis of the solid component was a negative prognostic factor (hazard ratio = 1.60, p = 0.040). Mean APT values of the necrosis showed high inter-subject variability, although most necrotic tumors were grade 4 and IDH wildtype. In conclusion, APTw imaging in the solid component provided metrics associated with glioma grade and survival status but showed weak correlation with IDH-mutation and MGMT promoter methylation status, in contrast to previous works. Further research is needed to understand APT signal variability within the necrotic component of high-grade gliomas.
Collapse
Affiliation(s)
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesca Mambrin
- Neuroradiology Unit, Department of Diagnostics and Pathology, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Mattia Verri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Massimiliano Del Bene
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesco DiMeco
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Fabio Martino Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| |
Collapse
|
26
|
Wu Q, Gong P, Liu S, Li Y, Liang D, Zheng H, Wu Y. B 1 inhomogeneity corrected CEST MRI based on direct saturation removed omega plot model at 5T. Magn Reson Med 2024; 92:532-542. [PMID: 38650080 DOI: 10.1002/mrm.30112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE CEST can image macromolecules/compounds via detecting chemical exchange between labile protons and bulk water. B1 field inhomogeneity impairs CEST quantification. Conventional B1 inhomogeneity correction methods depend on interpolation algorithms, B1 choices, acquisition number or calibration curves, making reliable correction challenging. This study proposed a novel B1 inhomogeneity correction method based on a direct saturation (DS) removed omega plot model. METHODS Four healthy volunteers underwent B1 field mapping and CEST imaging under four nominal B1 levels of 0.75, 1.0, 1.5, and 2.0 μT at 5T. DS was resolved using a multi-pool Lorentzian model and removed from respective Z spectrum. Residual spectral signals were used to construct the omega plot as a linear function of 1/B 1 2 $$ {B}_1^2 $$ , from which corrected signals at nominal B1 levels were calculated. Routine asymmetry analysis was conducted to quantify amide proton transfer (APT) effect. Its distribution across white matter was compared before and after B1 inhomogeneity correction and also with the conventional interpolation approach. RESULTS B1 inhomogeneity yielded conspicuous artifact on APT images. Such artifact was mitigated by the proposed method. Homogeneous APT maps were shown with SD consistently smaller than that before B1 inhomogeneity correction and the interpolation method. Moreover, B1 inhomogeneity correction from two and four CEST acquisitions yielded similar results, superior over the interpolation method that derived inconsistent APT contrasts among different B1 choices. CONCLUSION The proposed method enables reliable B1 inhomogeneity correction from at least two CEST acquisitions, providing an effective way to improve quantitative CEST MRI.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Shengping Liu
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
27
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
28
|
Nguyen CT, Chow SKK, Nguyen HN, Liu T, Walls A, Withey S, Liebig P, Mueller M, Thierry B, Yang CT, Huang CJ. Formation of Zwitterionic and Self-Healable Hydrogels via Amino-yne Click Chemistry for Development of Cellular Scaffold and Tumor Spheroid Phantom for MRI. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36157-36167. [PMID: 38973633 PMCID: PMC11261563 DOI: 10.1021/acsami.4c06917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
In situ-forming biocompatible hydrogels have great potential in various medical applications. Here, we introduce a pH-responsive, self-healable, and biocompatible hydrogel for cell scaffolds and the development of a tumor spheroid phantom for magnetic resonance imaging. The hydrogel (pMAD) was synthesized via amino-yne click chemistry between poly(2-methacryloyloxyethyl phosphorylcholine-co-2-aminoethylmethacrylamide) and dialkyne polyethylene glycol. Rheology analysis, compressive mechanical testing, and gravimetric analysis were employed to investigate the gelation time, mechanical properties, equilibrium swelling, and degradability of pMAD hydrogels. The reversible enamine and imine bond mechanisms leading to the sol-to-gel transition in acidic conditions (pH ≤ 5) were observed. The pMAD hydrogel demonstrated potential as a cellular scaffold, exhibiting high viability and NIH-3T3 fibroblast cell encapsulation under mild conditions (37 °C, pH 7.4). Additionally, the pMAD hydrogel also demonstrated the capability for in vitro magnetic resonance imaging of glioblastoma tumor spheroids based on the chemical exchange saturation transfer effect. Given its advantages, the pMAD hydrogel emerges as a promising material for diverse biomedical applications, including cell carriers, bioimaging, and therapeutic agent delivery.
Collapse
Affiliation(s)
- Cao Tuong
Vi Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Steven Kwok Keung Chow
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | - Hoang Nam Nguyen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Tesi Liu
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Angela Walls
- Clinical
Research and Imaging Centre, South Australian
Health and Medical Research Institute, Adelaide 5001, Australia
| | | | | | - Marco Mueller
- Advanced
Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne 1000, Switzerland
| | - Benjamin Thierry
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future
Industries Institute, University of South
Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
| |
Collapse
|
29
|
Sun PZ. Quasi-steady-state (QUASS) reconstruction enhances T 1 normalization in apparent exchange-dependent relaxation (AREX) analysis: A reevaluation of T 1 correction in quantitative CEST MRI of rodent brain tumor models. Magn Reson Med 2024; 92:236-245. [PMID: 38380727 PMCID: PMC11055669 DOI: 10.1002/mrm.30056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE The apparent exchange-dependent relaxation (AREX) analysis has been proposed as an effective means to correct T1 contribution in CEST quantification. However, it has been recognized that AREX T1 correction is not straightforward if CEST scans are not performed under the equilibrium condition. Our study aimed to test if quasi-steady-state (QUASS) reconstruction could boost the accuracy of the AREX metric under common non-equilibrium scan conditions. THEORY AND METHODS Numerical simulation and in vivo scans were performed to assess the AREX metric accuracy. The CEST signal was simulated under different relaxation delays, RF saturation amplitudes, and durations. The AREX was evaluated as a function of the bulk water T1 and labile proton concentration using the multiple linear regression model. AREX MRI was also assessed in brain tumor rodent models, with both apparent CEST scans and QUASS reconstruction. RESULTS Simulation showed that the AREX calculation from apparent CEST scans, under non-equilibrium conditions, had significant dependence on labile proton fraction ratio, RF saturation time, and T1. In comparison, QUASS-boosted AREX depended on the labile proton fraction ratio without significant dependence on T1 and RF saturation time. Whereas the apparent (2.7 ± 0.8%) and QUASS MTR asymmetry (2.8 ± 0.8%) contrast between normal and tumor regions of interest (ROIs) were significant, the difference was small. In comparison, AREX contrast between normal and tumor ROIs calculated from the apparent CEST scan and QUASS reconstruction was 3.8 ± 1.1%/s and 4.4 ± 1.2%/s, respectively, statistically different from each other. CONCLUSIONS AREX analysis benefits from the QUASS-reconstructed equilibrium CEST effect for improved T1 correction and quantitative CEST analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
30
|
Tokunaga C, Wada T, Togao O, Kobayashi K, Kato T. Amide proton transfer-weighted imaging with a short acquisition time based on a self B0 correction using the turbo spin echo-Dixon method: A phantom study. Magn Reson Imaging 2024; 110:69-77. [PMID: 38614223 DOI: 10.1016/j.mri.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Conventional amide proton transfer (APT)-weighted imaging requires a chemical exchange saturation transfer (CEST) sequence with multiple saturation frequency offsets and a B0 correction sequence, plus a long acquisition time that can be reduced by applying the conventional method using CEST images with seven radiation pulses (i.e., the seven-points method). For a further reduction of acquisition times, we propose fast two-dimensional (2D) APT-weighted imaging based on a self B0 correction using the turbo spin echo (TSE)-Dixon method. We conducted a phantom study to investigate the accuracy of TSE-Dixon APT-weighted imaging. METHODS We prepared two types of phantoms with six samples for a concentrationdependent evaluation and a pH-dependent evaluation. APT-weighted images were acquired by the conventional, seven-points, and TSE-Dixon methods. Linear regression analyses assessed the dependence between each method's APT signal intensities (SIs) and the concentration or pH. We performed a one-way analysis of variance with Tukey's honestly significant difference post hoc test to compare the APT SIs among the three methods. The agreement of the APT SIs between the conventional and seven-points or TSE-Dixon methods was assessed by a Bland- Altman plot analysis. RESULTS The APT SIs of all three acquisition methods showed positive concentration dependence and pH dependence. No significant differences were observed in the APT SIs between the conventional and TSE-Dixon methods at each concentration. The Bland-Altman plot analyses showed that the APT SIs measured with the seven-points method resulted in 0.42% bias and narrow 95% limits of agreement (LOA) (0.93%-0.09%) compared to the conventional method. The APT SIs measured using the TSE-Dixon method showed 0.14% bias and similar 95% LOA (-0.33% to 0.61%) compared with the seven-points method. The APT SIs of all three methods showed positive pH dependence. At each pH, no significant differences in the APT SIs were observed among the methods. Bland-Altman plot analyses showed that the APT SIs measured with the seven-points method resulted in low bias (0.03%) and narrow 95% LOA (-0.30% to 0.36%) compared to the conventional method. The APT SIs measured by the TSE-Dixon method showed slightly larger bias (0.29%) and similar 95% LOA (from -0.15% to 0.72%) compared to those measured by the seven-points method. CONCLUSION These results demonstrated that our proposed method has the same concentration dependence and pH dependence as the conventional method and the seven-points method. We thus expect that APT-weighted imaging with less influence of motion can be obtained in clinical examinations.
Collapse
Affiliation(s)
- Chiaki Tokunaga
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouji Kobayashi
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Wang X, Cao YY, Jiang Y, Jia M, Tian G, Bu CQ, Zhao N, Yue XZ, Shen ZW, Ji Y, Han YD. Effects of Breathing Patterns on Amide Proton Transfer MRI in the Kidney: A Preliminary Comparative Study in Healthy Volunteers and Patients With Tumors. J Magn Reson Imaging 2024; 60:222-230. [PMID: 37888865 DOI: 10.1002/jmri.29099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The amide proton transfer-weighted (APTw) imaging for kidney diseases is important. However, the breathing patterns on APTw imaging remains unexplored. PURPOSE This study aimed to investigate the effects of intermittent breath-hold (IBH) and free breathing (FB) on renal 3D-APTw imaging. STUDY TYPE Healthy volunteers were enrolled prospectively, and renal clear cell carcinoma (RCCC) patients were included retrospectively. POPULATION 58 healthy volunteers and 10 RCCC patients. FIELD STRENGTH/SEQUENCE 3-T, turbo spin echo, and fast field echo. ASSESSMENT 3D-APTw imaging was scanned using the IBH and FB methods in volunteers and using the IBH method in RCCC patients. The image quality was evaluated by three observers according to the 5-point Likert scale. Optimal images rated at three points or higher were used to measure the APT values. STATISTICAL ANALYSIS The measurement repeatability was assessed using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. The APT values were analyzed using McNemar's test, one-way analysis of variance, and t test. RESULTS 50 healthy volunteers and 8 RCCC patients were enrolled. Renal 3D-APTw imaging using the IBH method revealed a higher success rate (88% vs 78%). The ICCs were excellent in the IBH group (ICCs > 0.74) and were good in the FB group (ICCs < 0.74). No significant differences in the APT values among various zones using the IBH (P = 0.263) or FB method (P = 0.506). The mean APT value using the IBH method (2.091% ± 0.388%) was slightly lower than the FB method (2.176% ± 0.292%), but no significant difference (P = 0.233). The APT value of RCCC (4.832% ± 1.361%) was considerably higher than normal renal using the IBH method. CONCLUSIONS The study demonstrated that the IBH method substantially increased the image quality of renal 3D-APTw imaging. Furthermore, APT values may vary between normal and tumor tissues. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- X Wang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Y Y Cao
- Department of Imaging Center, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y Jiang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - M Jia
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - G Tian
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - C Q Bu
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - N Zhao
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - X Z Yue
- Philips Healthcare, Beijing, China
| | - Z W Shen
- Philips Healthcare, Beijing, China
| | - Y Ji
- Department of Imaging Center, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y D Han
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Kurmi Y, Viswanathan M, Zu Z. A Denoising Convolutional Autoencoder for SNR Enhancement in Chemical Exchange Saturation Transfer imaging: (DCAE-CEST). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597818. [PMID: 38895366 PMCID: PMC11185751 DOI: 10.1101/2024.06.07.597818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose To develop a SNR enhancement method for chemical exchange saturation transfer (CEST) imaging using a denoising convolutional autoencoder (DCAE), and compare its performance with state-of-the-art denoising methods. Method The DCAE-CEST model encompasses an encoder and a decoder network. The encoder learns features from the input CEST Z-spectrum via a series of 1D convolutions, nonlinearity applications and pooling. Subsequently, the decoder reconstructs an output denoised Z-spectrum using a series of up-sampling and convolution layers. The DCAE-CEST model underwent multistage training in an environment constrained by Kullback-Leibler divergence, while ensuring data adaptability through context learning using Principal Component Analysis processed Z-spectrum as a reference. The model was trained using simulated Z-spectra, and its performance was evaluated using both simulated data and in-vivo data from an animal tumor model. Maps of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects were quantified using the multiple-pool Lorentzian fit, along with an apparent exchange-dependent relaxation metric. Results In digital phantom experiments, the DCAE-CEST method exhibited superior performance, surpassing existing denoising techniques, as indicated by the peak SNR and Structural Similarity Index. Additionally, in vivo data further confirms the effectiveness of the DCAE-CEST in denoising the APT and NOE maps when compared to other methods. While no significant difference was observed in APT between tumors and normal tissues, there was a significant difference in NOE, consistent with previous findings. Conclusion The DCAE-CEST can learn the most important features of the CEST Z-spectrum and provide the most effective denoising solution compared to other methods.
Collapse
Affiliation(s)
- Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| |
Collapse
|
33
|
Li Y, Lin L, Zhang Y, Ren C, Zhang W, Cheng J. Preliminary exploration of amide proton transfer weighted imaging in differentiation between benign and malignant bone tumors. Front Oncol 2024; 14:1402628. [PMID: 38903728 PMCID: PMC11187086 DOI: 10.3389/fonc.2024.1402628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose To explore the value of 3D amide proton transfer weighted imaging (APTWI) in the differential diagnosis between benign and malignant bone tumors, and to compare the diagnostic performance of APTWI with traditional diffusion-weighted imaging (DWI). Materials and methods Patients with bone tumors located in the pelvis or lower limbs confirmed by puncture or surgical pathology were collected from January 2021 to July 2023 in the First Affiliated Hospital of Zhengzhou University. All patients underwent APTWI and DWI examinations. The magnetization transfer ratio with asymmetric analysis at the frequency offset of 3.5 ppm [MTRasym(3.5 ppm)] derived by APTWI and the apparent diffusion coefficient (ADC) derived by DWI for the tumors were measured. The Kolmogorou-Smirnou and Levene normality test was used to confirm the normal distribution of imaging parameters; and the independent sample t test was used to compare the differences in MTRasym(3.5 ppm) and ADC between benign and malignant bone tumors. In addition, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of different imaging parameters in differentiation between benign and malignant bone tumors. P<0.05 means statistically significant. Results Among 85 bone tumor patients, 33 were benign and 52 were malignant. The MTRasym(3.5 ppm) values of malignant bone tumors were significantly higher than those of benign tumors, while the ADC values were significantly lower in benign tumors. ROC analysis shows that MTRasym(3.5 ppm) and ADC values perform well in the differential diagnosis of benign and malignant bone tumors, with the area under the ROC curve (AUC) of 0.798 and 0.780, respectively. Combination of MTRasym(3.5 ppm) and ADC values can further improve the diagnostic performance with the AUC of 0.849 (sensitivity = 84.9% and specificity = 73.1%). Conclusion MTRasym(3.5 ppm) of malignant bone tumors was significantly higher than that of benign bone tumors, reflecting the abnormal increase of protein synthesis in malignant tumors. APTWI combined with DWI can achieve a high diagnostic efficacy in differentiation between benign and malignant bone tumors.
Collapse
Affiliation(s)
- Ying Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuiping Ren
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhua Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Obdeijn IV, Wiegers EC, Alic L, Plasschaert SLA, Kranendonk MEG, Hoogduin HM, Klomp DWJ, Wijnen JP, Lequin MH. Amide proton transfer weighted imaging in pediatric neuro-oncology: initial experience. NMR IN BIOMEDICINE 2024; 37:e5122. [PMID: 38369653 DOI: 10.1002/nbm.5122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p < 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p < 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.
Collapse
Affiliation(s)
- Iris V Obdeijn
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lejla Alic
- Magnetic Detection and Imaging Group, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Sabine L A Plasschaert
- Department of Pediatric Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariëtte E G Kranendonk
- Department of Diagnostic Laboratory, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans M Hoogduin
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Center for Image Sciences, High Field MR Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H Lequin
- Department of Pediatric Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, University of Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
Schüre JR, Weinmüller S, Kamm L, Herz K, Zaiss M. Sidebands in CEST MR-How to recognize and avoid them. Magn Reson Med 2024; 91:2391-2402. [PMID: 38317286 DOI: 10.1002/mrm.30011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Clinical scanners require pulsed CEST sequences to maintain amplifier and specific absorption rate limits. During off-resonant RF irradiation and interpulse delay, the magnetization can accumulate specific relative phases within the pulse train. In this work, we show that these phases are important to consider, as they can lead to unexpected artifacts when no interpulse gradient spoiling is performed during the saturation train. METHODS We investigated sideband artifacts using a CEST-3D snapshot gradient-echo sequence at 3 T. Initially, Bloch-McConnell simulations were carried out with Pulseq-CEST, while measurements were performed in vitro and in vivo. RESULTS Sidebands can be hidden in Z-spectra, and their structure becomes clearly visible only at high sampling. Sidebands are further influenced by B0 inhomogeneities and the RF phase cycling within the pulse train. In vivo, sidebands are mostly visible in liquid compartments such as CSF. Multi-pulse sidebands can be suppressed by interpulse gradient spoiling. CONCLUSION We provide new insights into sidebands occurring in pulsed CEST experiments and show that, similar as in imaging sequences, gradient and RF spoiling play an important role. Gradient spoiling avoids misinterpretations of sidebands as CEST effects especially in liquid environments including pathological tissue or for CEST resonances close to water. It is recommended to simulate pulsed CEST sequences in advance to avoid artifacts.
Collapse
Affiliation(s)
- Jan-Rüdiger Schüre
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Weinmüller
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Kamm
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Herz
- Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
37
|
Ma A, Yan X, Qu Y, Wen H, Zou X, Liu X, Lu M, Mo J, Wen Z. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. BMC Med Imaging 2024; 24:85. [PMID: 38600452 PMCID: PMC11005152 DOI: 10.1186/s12880-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.
Collapse
Affiliation(s)
- Andong Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinran Yan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Haitao Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xia Zou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinzi Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Mingjun Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Jianhua Mo
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
38
|
Sheng L, Yuan E, Yuan F, Song B. Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions. Magn Reson Imaging 2024; 107:88-99. [PMID: 38242255 DOI: 10.1016/j.mri.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
The chemical exchange saturation transfer technique serves as a valuable tool for generating in vivo image contrast based on the content of various proton groups, including amide protons, amine protons, and aliphatic protons. Among these, amide proton transfer-weighted (APTw) imaging has seen extensive development as a means to assess the biochemical status of lesions. The exchange from saturated amide protons to bulk water protons during and following the saturation ratio frequency pulse contributes to detectable APT signals. While APTw imaging has garnered significant attention in the central nervous system, demonstrating noteworthy findings in cerebral neoplasia, stroke, and Alzheimer's disease over the past decade, its application in the abdomen has been a relatively recent progression. Notably, studies have explored its utility in hepatocellular carcinoma, prostate cancer, and cervical carcinoma within the abdominal context. Despite these advancements, there is a paucity of reviews on APTw imaging in abdominal applications. This paper aims to fill this gap by providing a concise overview of the fundamental theories underpinning APTw imaging. Additionally, we systematically summarize its diverse clinical applications in the abdomen, with a particular focus on the digestive and urogenital systems. Finally, the manuscript concludes by discussing technical limitations and factors influencing APTw imaging in abdominal applications, along with prospects for future research.
Collapse
Affiliation(s)
- Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Enyu Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
39
|
Schüre JR, Casagranda S, Sedykh M, Liebig P, Papageorgakis C, Mancini L, Bisdas S, Nichelli L, Pinter N, Mechtler L, Jafari R, Boddaert N, Dangouloff-Ros V, Poujol J, Schmidt M, Doerfler A, Zaiss M. Fluid suppression in amide proton transfer-weighted (APTw) CEST imaging: New theoretical insights and clinical benefits. Magn Reson Med 2024; 91:1354-1367. [PMID: 38073061 DOI: 10.1002/mrm.29915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Amide proton transfer-weighted (APTw) MRI at 3T provides a unique contrast for brain tumor imaging. However, APTw imaging suffers from hyperintensities in liquid compartments such as cystic or necrotic structures and provides a distorted APTw signal intensity. Recently, it has been shown that heuristically motivated fluid suppression can remove such artifacts and significantly improve the readability of APTw imaging. THEORY AND METHODS In this work, we show that the fluid suppression can actually be understood by the known concept of spillover dilution, which itself can be derived from the Bloch-McConnell equations in comparison to the heuristic approach. Therefore, we derive a novel post-processing formula that efficiently removes fluid artifact, and explains previous approaches. We demonstrate the utility of this APTw assessment in silico, in vitro, and in vivo in brain tumor patients acquired at MR scanners from different vendors. RESULTS Our results show a reduction of the CEST signals from fluid environments while keeping the APTw-CEST signal intensity almost unchanged for semi-solid tissue structures such as the contralateral normal appearing white matter. This further allows us to use the same color bar settings as for conventional APTw imaging. CONCLUSION Fluid suppression has considerable value in improving the readability of APTw maps in the neuro-oncological field. In this work, we derive a novel post-processing formula from the underlying Bloch-McConnell equations that efficiently removes fluid artifact, and explains previous approaches which justify the derivation of this metric from a theoretical point of view, to reassure the scientific and medical field about its use.
Collapse
Affiliation(s)
- Jan-Rüdiger Schüre
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefano Casagranda
- Department of R&D Advanced Applications, Olea Medical, La Ciotat, France
| | - Maria Sedykh
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Laura Mancini
- Lysholm Department of Neuroradiology, University College of London Hospitals NHS Foundation Trus, London, UK
- Institute of Neurology UCL, London, UK
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, University College of London Hospitals NHS Foundation Trus, London, UK
- Institute of Neurology UCL, London, UK
| | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - Nandor Pinter
- DENT Neurologic Institute, Buffalo, New York, USA
- Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| | | | - Ramin Jafari
- Philips Healthcare, Cambridge, Massachusetts, USA
| | - Nathalie Boddaert
- Necker-Enfants Malades Hospital, AP-HP, Pediatric Radiology Department, Université Paris, Paris, France
- Imagine Institute, INSERM U1163, Université Paris cité, Paris, France
| | - Volodia Dangouloff-Ros
- Necker-Enfants Malades Hospital, AP-HP, Pediatric Radiology Department, Université Paris, Paris, France
- Imagine Institute, INSERM U1163, Université Paris cité, Paris, France
| | | | - Manuel Schmidt
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
40
|
Wu J, Huang Q, Shen Y, Guo P, Zhou J, Jiang S. Radiomic feature reliability of amide proton transfer-weighted MR images acquired with compressed sensing at 3T. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34:e23027. [PMID: 39185083 PMCID: PMC11343505 DOI: 10.1002/ima.23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/08/2024] [Indexed: 08/27/2024]
Abstract
Compressed sensing (CS) is a novel technique for MRI acceleration. The purpose of this paper was to assess the effects of CS on the radiomic features extracted from amide proton transfer-weighted (APTw) images. Brain tumor MRI data of 40 scans were studied. Standard images using sensitivity encoding (SENSE) with an acceleration factor (AF) of 2 were used as the gold standard, and APTw images using SENSE with CS (CS-SENSE) with an AF of 4 were assessed. Regions of interest (ROIs), including normal tissue, edema, liquefactive necrosis, and tumor, were manually drawn, and the effects of CS-SENSE on radiomics were assessed for each ROI category. An intraclass correlation coefficient (ICC) was first calculated for each feature extracted from APTw images with SENSE and CS-SENSE for all ROIs. Different filters were applied to the original images, and the effects of these filters on the ICCs were further compared between APTw images with SENSE and CS-SENSE. Feature deviations were also provided for a more comprehensive evaluation of the effects of CS-SENSE on radiomic features. The ROI-based comparison showed that most radiomic features extracted from CS-SENSE-APTw images and SENSE-APTw images had moderate or greater reliabilities (ICC ≥ 0.5) for all four ROIs and all eight image sets with different filters. Tumor showed significantly higher ICCs than normal tissue, edema, and liquefactive necrosis. Compared to the original images, filters (such as Exponential or Square) may improve the reliability of radiomic features extracted from CS-SENSE-APTw and SENSE-APTw images.
Collapse
Affiliation(s)
- Jingpu Wu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qianqi Huang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiqing Shen
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pengfei Guo
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Saito S, Ueda J. Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology. Radiol Phys Technol 2024; 17:47-59. [PMID: 38351261 PMCID: PMC10901953 DOI: 10.1007/s12194-024-00785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/01/2024]
Abstract
Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as "preclinical MRI". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan.
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita, 564-8565, Japan.
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan
| |
Collapse
|
42
|
Heo HY, Singh M, Yedavalli V, Jiang S, Zhou J. CEST and nuclear Overhauser enhancement imaging with deep learning-extrapolated semisolid magnetization transfer reference: Scan-rescan reproducibility and reliability studies. Magn Reson Med 2024; 91:1002-1015. [PMID: 38009996 PMCID: PMC10842109 DOI: 10.1002/mrm.29937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE To develop a novel MR physics-driven, deep-learning, extrapolated semisolid magnetization transfer reference (DeepEMR) framework to provide fast, reliable magnetization transfer contrast (MTC) and CEST signal estimations, and to determine the reproducibility and reliability of the estimates from the DeepEMR. METHODS A neural network was designed to predict a direct water saturation and MTC-dominated signal at a certain CEST frequency offset using a few high-frequency offset features in the Z-spectrum. The accuracy, scan-rescan reproducibility, and reliability of MTC, CEST, and relayed nuclear Overhauser enhancement (rNOE) signals estimated from the DeepEMR were evaluated on numerical phantoms and in heathy volunteers at 3 T. In addition, we applied the DeepEMR method to brain tumor patients and compared tissue contrast with other CEST calculation metrics. RESULTS The DeepEMR method demonstrated a high degree of accuracy in the estimation of reference MTC signals at ±3.5 ppm for APT and rNOE imaging, and computational efficiency (˜190-fold) compared with a conventional fitting approach. In addition, the DeepEMR method achieved high reproducibility and reliability (intraclass correlation coefficient = 0.97, intersubject coefficient of variation = 3.5%, and intrasubject coefficient of variation = 1.3%) of the estimation of MTC signals at ±3.5 ppm. In tumor patients, DeepEMR-based amide proton transfer images provided higher tumor contrast than a conventional MT ratio asymmetry image, particularly at higher B1 strengths (>1.5 μT), with a distinct delineation of the tumor core from normal tissue or peritumoral edema. CONCLUSION The DeepEMR approach is feasible for measuring clean APT and rNOE effects in longitudinal and cross-sectional studies with low scan-rescan variability.
Collapse
Affiliation(s)
- Hye-Young Heo
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Munendra Singh
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Wu X, Su T, Chen Y, Xu Z, Wang X, Hu G, Wang Y, Wong LM, Zhang Z, Zhang T, Jin Z. B1 Power Modification for Amide Proton Transfer Imaging in Parotid Glands: A Strategy for Image Quality Accommodation and Evaluation of Tumor Detection Feasibility. Cancers (Basel) 2024; 16:888. [PMID: 38473250 DOI: 10.3390/cancers16050888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In the application of APTw protocols for evaluating tumors and parotid glands, inhomogeneity and hyperintensity artifacts have remained an obstacle. This study aimed to improve APTw imaging quality and evaluate the feasibility of difference B1 values to detect parotid tumors. METHODS A total of 31 patients received three APTw sequences to acquire 32 lesions and 30 parotid glands (one patient had lesions on both sides). Patients received T2WI and 3D turbo-spin-echo (TSE) APTw imaging on a 3.0 T scanner for three sequences (B1 = 2 μT, 1 μT, and 0.7 μT in APTw 1, 2, and 3, respectively). APTw image quality was evaluated using four-point Likert scales in terms of integrity and hyperintensity artifacts. Image quality was compared between the three sequences. An evaluable group and a trustable group were obtained for APTmean value comparison. RESULTS Tumors in both APT2 and APT3 had fewer hyperintensity artifacts than in APT1. With B1 values decreasing, tumors had less integrity in APTw imaging. APTmean values of tumors were higher than parotid glands in traditional APT1 sequence though not significant, while the APTmean subtraction value was significantly different. CONCLUSIONS Applying a lower B1 value could remove hyperintensity but could also compromise its integrity. Combing different APTw sequences might increase the feasibility of tumor detection.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhentan Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoqi Wang
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Geli Hu
- Department of Clinical and Technical Support, Philips Healthcare, Beijing 100600, China
| | - Yunting Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lun M Wong
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhuhua Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
44
|
Di Gregorio E, Papi C, Conti L, Di Lorenzo A, Cavallari E, Salvatore M, Cavaliere C, Ferrauto G, Aime S. A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl 2024; 63:e202313485. [PMID: 37905585 DOI: 10.1002/anie.202313485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marco Salvatore
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Carlo Cavaliere
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| |
Collapse
|
45
|
Xu J, Zu T, Hsu YC, Wang X, Chan KWY, Zhang Y. Accelerating CEST imaging using a model-based deep neural network with synthetic training data. Magn Reson Med 2024; 91:583-599. [PMID: 37867413 DOI: 10.1002/mrm.29889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE To develop a model-based deep neural network for high-quality image reconstruction of undersampled multi-coil CEST data. THEORY AND METHODS Inspired by the variational network (VN), the CEST image reconstruction equation is unrolled into a deep neural network (CEST-VN) with a k-space data-sharing block that takes advantage of the inherent redundancy in adjacent CEST frames and 3D spatial-frequential convolution kernels that exploit correlations in the x-ω domain. Additionally, a new pipeline based on multiple-pool Bloch-McConnell simulations is devised to synthesize multi-coil CEST data from publicly available anatomical MRI data. The proposed network is trained on simulated data with a CEST-specific loss function that jointly measures the structural and CEST contrast. The performance of CEST-VN was evaluated on four healthy volunteers and five brain tumor patients using retrospectively or prospectively undersampled data with various acceleration factors, and then compared with other conventional and state-of-the-art reconstruction methods. RESULTS The proposed CEST-VN method generated high-quality CEST source images and amide proton transfer-weighted maps in healthy and brain tumor subjects, consistently outperforming GRAPPA, blind compressed sensing, and the original VN. With the acceleration factors increasing from 3 to 6, CEST-VN with the same hyperparameters yielded similar and accurate reconstruction without apparent loss of details or increase of artifacts. The ablation studies confirmed the effectiveness of the CEST-specific loss function and data-sharing block used. CONCLUSIONS The proposed CEST-VN method can offer high-quality CEST source images and amide proton transfer-weighted maps from highly undersampled multi-coil data by integrating the deep learning prior and multi-coil sensitivity encoding model.
Collapse
Affiliation(s)
- Jianping Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, People's Republic of China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, People's Republic of China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
46
|
Sun C, Zhao Y, Zu Z. Evaluation of the molecular origin of amide proton transfer-weighted imaging. Magn Reson Med 2024; 91:716-734. [PMID: 37749854 PMCID: PMC10841347 DOI: 10.1002/mrm.29878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To evaluate the assumption in amide proton transfer weighted (APTw) imaging that the APT dominates over the relayed nuclear Overhauser enhancement (rNOE) and other CEST effects such as those from amines/guanidines, thereby providing imaging of mobile proteins/peptides. METHODS We introduced two auxiliary asymmetric analysis metrics that can vary the relative contributions from amine/guanidinium CEST and other effects. By comparing these metrics with the conventional asymmetric analysis metric on healthy rat brains, we can approximately assess the contribution from amines/guanidines to APTw and determine whether the APT dominates over the rNOE effect. To further investigate the molecular origin of APTw, we used samples of dialyzed tissue homogenates to eliminate small metabolites and supernatants of homogenates to separate lipids from other components. RESULTS When the APTw signal is positive using high saturation amplitudes (e.g., 2-3 μT), the contributions from amines/guanidines are significant and cannot be ignored. The APTw signal from the dialyzed homogenates and the controls has negligible changes, indicating that it primarily originates from macromolecules rather than small metabolites. Additionally, the APTw signals with low saturation amplitudes (e.g., 1 μT) were negative in tissue homogenates but positive in their supernatants, suggesting that proteins contribute positively to APTw signals, whereas lipids contribute negatively to it. CONCLUSION The positive APTw signal using high saturation amplitudes could have significant contributions from soluble proteins through CEST, including amide/amine/guanidine proton transfer effects. In contrast, the negative APTw signal using low saturation amplitudes has significant contribution from lipids through rNOE.
Collapse
Affiliation(s)
- Casey Sun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
47
|
Park SW, Lai JHC, Han X, Leung VWM, Xiao P, Huang J, Chan KWY. Preclinical Application of CEST MRI to Detect Early and Regional Tumor Response to Local Brain Tumor Treatment. Pharmaceutics 2024; 16:101. [PMID: 38258112 PMCID: PMC10820766 DOI: 10.3390/pharmaceutics16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Treating glioblastoma and monitoring treatment response non-invasively remain challenging. Here, we developed a robust approach using a drug-loaded liposomal hydrogel that is mechanically compatible with the brain, and, simultaneously, we successfully monitored early tumor response using Chemical Exchange Saturation Transfer (CEST) MRI. This CEST-detectable liposomal hydrogel was optimized based on a sustainable drug release and a soft hydrogel for the brain tumor, which is unfavorable for tumor cell proliferation. After injecting the hydrogel next to the tumor, three distinctive CEST contrasts enabled the monitoring of tumor response and drug release longitudinally at 3T. As a result, a continuous tumor volume decrease was observed in the treatment group along with a significant decrease in CEST contrasts relating to the tumor response at 3.5 ppm (Amide Proton Transfer; APT) and at -3.5 ppm (relayed Nuclear Overhauser Effect; rNOE) when compared to the control group (p < 0.05). Interestingly, the molecular change at 3.5 ppm on day 3 (p < 0.05) was found to be prior to the significant decrease in tumor volume on day 5. An APT signal also showed a strong correlation with the number of proliferating cells in the tumors. This demonstrated that APT detected a distinctive decrease in mobile proteins and peptides in tumors before the change in tumor morphology. Moreover, the APT signal showed a regional response to the treatment, associated with proliferating and apoptotic cells, which allowed an in-depth evaluation and prediction of the tumor treatment response. This newly developed liposomal hydrogel allows image-guided brain tumor treatment to address clinical needs using CEST MRI.
Collapse
Affiliation(s)
- Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Vivian W. M. Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China;
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
48
|
Wu Q, Qi Y, Gong P, Huang B, Cheng G, Liang D, Zheng H, Sun PZ, Wu Y. Fast and robust pulsed chemical exchange saturation transfer (CEST) MRI using a quasi-steady-state (QUASS) algorithm at 3 T. Magn Reson Imaging 2024; 105:29-36. [PMID: 37898416 DOI: 10.1016/j.mri.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Chemical exchange saturation transfer (CEST) has emerged as a powerful technique to image dilute labile protons. However, its measurement depends on the RF saturation duration (Tsat) and relaxation delay (Trec). Although the recently developed quasi-steady-state (QUASS) solution can reconstruct equilibrium CEST effects under continuous-wave RF saturation, it does not apply to pulsed-CEST MRI on clinical scanners with restricted hardware or specific absorption rate limits. This study proposed a QUASS algorithm for pulsed-CEST MRI and evaluated its performance in muscle CEST measurement. An approximated expression of a steady-state pulsed-CEST signal was incorporated in the off-resonance spin-lock model, from which the QUASS pulsed-CEST effect was derived. Numerical simulation, creatine phantom, and healthy volunteer scans were conducted at 3 T. The CEST effect was quantified with asymmetry analysis in the simulation and phantom experiments. CEST effects of creatine, amide proton transfer, phosphocreatine, and combined magnetization transfer and nuclear Overhauser effects were isolated from a multi-pool Lorentzian model in muscles. Apparent and QUASS CEST measurements were compared under different Tsat/Trec and duty cycles. Paired Student's t-test was employed with P < 0.05 as statistically significant. The simulation, phantom, and human studies showed the strong impact of Tsat/Trec on apparent CEST measurements, which were significantly smaller than the corresponding QUASS CEST measures, especially under short Tsat/Trec times. In comparison, the QUASS algorithm mitigates such impact and enables accurate CEST measurements under short Tsat/Trec times. In conclusion, the QUASS algorithm can accelerate robust pulsed-CEST MRI, promising the efficient detection and evaluation of muscle diseases in clinical settings.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yulong Qi
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
49
|
Chan RW, Lam WW, Chen H, Murray L, Zhang B, Theriault A, Endre R, Moon S, Liebig P, Maralani PJ, Tseng CL, Myrehaug S, Detsky J, Lim-Fat MJ, Roberto K, Djayakarsana D, Lingamoorthy B, Mehrabian H, Khan BM, Sahgal A, Soliman H, Stanisz GJ. Is pulsed saturation transfer sufficient for differentiating radiation necrosis from tumor progression in brain metastases? Neurooncol Adv 2024; 6:vdae132. [PMID: 39220250 PMCID: PMC11364936 DOI: 10.1093/noajnl/vdae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Stereotactic radiosurgery (SRS) for the treatment of brain metastases delivers a high dose of radiation with excellent local control but comes with the risk of radiation necrosis (RN), which can be difficult to distinguish from tumor progression (TP). Magnetization transfer (MT) and chemical exchange saturation transfer (CEST) are promising techniques for distinguishing RN from TP in brain metastases. Previous studies used a 2D continuous-wave (ie, block radiofrequency [RF] saturation) MT/CEST approach. The purpose of this study is to investigate a 3D pulsed saturation MT/CEST approach with perfusion MRI for distinguishing RN from TP in brain metastases. Methods The study included 73 patients scanned with MT/CEST MRI previously treated with SRS or fractionated SRS who developed enhancing lesions with uncertain diagnoses of RN or TP. Perfusion MRI was acquired in 49 of 73 patients. Clinical outcomes were determined by at least 6 months of follow-up or via pathologic confirmation (in 20% of the lesions). Results Univariable logistic regression resulted in significant variables of the quantitative MT parameter 1/(RA·T2A), with 5.9 ± 2.7 for RN and 6.5 ± 2.9 for TP. The highest AUC of 75% was obtained using a multivariable logistic regression model for MT/CEST parameters, which included the CEST parameters of AREXAmide,0.625µT (P = .013), AREXNOE,0.625µT (P = .008), 1/(RA·T2A) (P = .004), and T1 (P = .004). The perfusion rCBV parameter did not reach significance. Conclusions Pulsed saturation transfer was sufficient for achieving a multivariable AUC of 75% for differentiating between RN and TP in brain metastases, but had lower AUCs compared to previous studies that used a block RF approach.
Collapse
Affiliation(s)
- Rachel W Chan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Wilfred W Lam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Leedan Murray
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Beibei Zhang
- Department of Medical Physics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Aimee Theriault
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Ruby Endre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sangkyu Moon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Pejman J Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Katrina Roberto
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Daniel Djayakarsana
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Hatef Mehrabian
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benazir Mir Khan
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
50
|
Chen X, Wu J, Yang Y, Chen H, Zhou Y, Lin L, Wei Z, Xu J, Chen Z, Chen L. Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial-spectral redundancy-based denoising method. NMR IN BIOMEDICINE 2024; 37:e5027. [PMID: 37644611 DOI: 10.1002/nbm.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
Collapse
Affiliation(s)
- Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|