1
|
Hsieh CY, Lai YC, Lu KY, Lin G. Advancements, Challenges, and Future Prospects in Clinical Hyperpolarized Magnetic Resonance Imaging: A Comprehensive Review. Biomed J 2024:100802. [PMID: 39442802 DOI: 10.1016/j.bj.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/21/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized (HP) magnetic resonance imaging (MRI) is a groundbreaking imaging platform advancing from research to clinical practice, offering new possibilities for real-time, non-invasive metabolic imaging. This review explores the latest advancements, challenges, and future directions of HP MRI, emphasizing its transformative impact on both translational research and clinical applications. By employing techniques such as dissolution Dynamic Nuclear Polarization (dDNP), Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and Spin-Exchange Optical Pumping (SEOP), HP MRI achieves enhanced nuclear spin polarization, enabling in vivo visualization of metabolic pathways with exceptional sensitivity. Current challenges, such as limited imaging windows, complex pre-scan protocols, and data processing difficulties, are addressed through innovative solutions like advanced pulse sequences, bolus tracking, and kinetic modeling. We highlight the evolution of HP MRI technology, focusing on its potential to revolutionize disease diagnosis and monitoring by revealing metabolic processes beyond the reach of conventional MRI and positron emission tomography (PET). Key advancements include the development of novel tracers like [2-13C]pyruvate and [1-13C]-alpha-ketoglutarate and improved data analysis techniques, broadening the scope of clinical metabolic imaging. Future prospects emphasize integrating artificial intelligence, standardizing imaging protocols, and developing new hyperpolarized agents to enhance reproducibility and expand clinical capabilities particularly in oncology, cardiology, and neurology. Ultimately, we envisioned HP MRI as a standardized modality for dynamic metabolic imaging in clinical practice.
Collapse
Affiliation(s)
- Ching-Yi Hsieh
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Gigin Lin
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
2
|
McBride SJ, MacCulloch K, TomHon P, Browning A, Meisel S, Abdulmojeed M, Goodson BM, Chekmenev EY, Theis T. Carbon-13 Hyperpolarization of α-Ketocarboxylates with Parahydrogen in Reversible Exchange. ChemMedChem 2024:e202400378. [PMID: 39363703 DOI: 10.1002/cmdc.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a relatively simple and fast hyperpolarization technique that has been used to hyperpolarize the α-ketocarboxylate pyruvate, a central metabolite and the leading hyperpolarized MRI contrast agent. In this work, we show that SABRE can readily be extended to hyperpolarize 13C nuclei at natural abundance on many other α-ketocarboxylates. Hyperpolarization is observed and optimized on pyruvate (P13C=17 %) and 2-oxobutyrate (P13C=25 %) with alkyl chains in the R-group, oxaloacetate (P13C=11 %) and alpha-ketoglutarate (P13C=13 %) with carboxylate moieties in the R group, and phenylpyruvate (P13C=2 %) and phenylglyoxylate (P13C=2 %) with phenyl rings in the R-group. New catalytically active SABRE binding motifs of the substrates to the hyperpolarization transfer catalyst - particularly for oxaloacetate - are observed. We experimentally explore the connection between temperature and exchange rates for all of these SABRE systems and develop a theoretical kinetic model, which is used to fit the hyperpolarization build-up and decay during SABRE activity.
Collapse
Affiliation(s)
- Stephen J McBride
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Keilian MacCulloch
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Patrick TomHon
- Vizma Life Sciences, 400 South Elliot Rd., Suite D-178, Chapel Hill, NC, 27514, USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Samantha Meisel
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Integrative Biosciences, Department of Chemistry, Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave., Detroit, MI, 48202, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
- Department of Physics, North Carolina State University, 2401 Stinson Dr., Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Sahin S, Garnæs MF, Bennett A, Dwork N, Tang S, Liu X, Vaidya M, Wang ZJ, Larson PE. A pharmacokinetic model for hyperpolarized 13C-pyruvate MRI when using metabolite-specific bSSFP sequences. Magn Reson Med 2024; 92:1698-1713. [PMID: 38775035 PMCID: PMC11262974 DOI: 10.1002/mrm.30142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Metabolite-specific balanced SSFP (MS-bSSFP) sequences are increasingly used in hyperpolarized [1-13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and rate constant maps do not account for differences in the signal evolution of MS-bSSFP acquisitions. METHODS In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate constants for these experiments. The model was validated in vivo using paired animal (healthy rat kidneys n = 8, transgenic adenocarcinoma of the mouse prostate n = 3) and human renal cell carcinoma (n = 3) datasets. Gradient echo (GRE) acquisitions were used with a previous GRE model to compare to the results of the proposed GRE-bSSFP model. RESULTS Within simulations, the proposed GRE-bSSFP model fits the simulated data well, whereas a GRE model shows bias because of model mismatch. For the in vivo datasets, the estimated conversion rate constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. CONCLUSION The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other applications, for example, estimating rate constants with other hyperpolarized reagents or multi-echo bSSFP.
Collapse
Affiliation(s)
- Sule Sahin
- UC Berkeley – UCSF Graduate Program in Bioengineering
- Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Anna Bennett
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Nicholas Dwork
- Biomedical Informatics and Radiology, University of Colorado Anschutz Medical Campus
| | | | - Xiaoxi Liu
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Manushka Vaidya
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peder E.Z. Larson
- UC Berkeley – UCSF Graduate Program in Bioengineering
- Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
4
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin SI, Crane JC, Olson MP, Chen HY, Bernard JML, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2627-2634. [PMID: 38710970 PMCID: PMC11522264 DOI: 10.1007/s10278-024-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth, it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper, we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies, and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Sule I Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Jason C Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jenna M L Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
| |
Collapse
|
5
|
Mu C, Liu X, Riselli A, Slater J, Escobar E, Dang D, Drapeau S, Delos Santos R, Andosca S, Nguyen H, Larson PEZ, Bok R, Vigneron DB, Kurhanewicz J, Wilson DM, Flavell RR. Protocol for producing hyperpolarized 13C-bicarbonate for clinical MRI of extracellular pH in aggressive tumors. STAR Protoc 2024; 5:103091. [PMID: 38943645 PMCID: PMC11261128 DOI: 10.1016/j.xpro.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 07/01/2024] Open
Abstract
Tumor acidosis is one of the hallmarks indicating the initiation and progression of various cancers. Here, we present a protocol for preparing a hyperpolarized (HP) 13C-bicarbonate tissue pH MRI imaging contrast agent to detect aggressive tumors. We describe the steps for the formulation and polarization of a precursor molecule 13C-glycerol carbonate (13C-GLC), the post-dissolution reaction, and converting HP 13C-GLC to an injectable HP 13C-bicarbonate solution. We then detail procedures for MRI data acquisition to generate tumor pH maps for assessing tumor aggressiveness. For complete details on the use and execution of this protocol, please refer to Mu et al.1.
Collapse
Affiliation(s)
- Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Riselli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evelyn Escobar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Duy Dang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Drapeau
- Makers Lab, Library, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stacy Andosca
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Larson PEZ, Bernard JML, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D. Current methods for hyperpolarized [1- 13C]pyruvate MRI human studies. Magn Reson Med 2024; 91:2204-2228. [PMID: 38441968 PMCID: PMC10997462 DOI: 10.1002/mrm.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 03/07/2024]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
Affiliation(s)
- Peder EZ Larson
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Jenna ML Bernard
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center,
Houston, TX, USA
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto,
Ontario, Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, Canada
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North
Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14,
24118, Kiel, Germany
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School
of Medicine, Baltimore, MD, USA
| | - Mary A McLean
- Department of Radiology, University of Cambridge,
Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Center, Cambridge, United Kingdom
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine,
Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich,
Germany
| | - James Slater
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | | |
Collapse
|
7
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin S, Crane J, Olson MP, Chen HY, Bernard J, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. ARXIV 2024:arXiv:2405.03147v1. [PMID: 38764595 PMCID: PMC11100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM Attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Sule Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jason Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jenna Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
Lai YC, Hsieh CY, Juan YH, Lu KY, Lee HJ, Ng SH, Wan YL, Lin G. Hyperpolarized Carbon-13 Magnetic Resonance Imaging: Technical Considerations and Clinical Applications. Korean J Radiol 2024; 25:459-472. [PMID: 38685736 PMCID: PMC11058429 DOI: 10.3348/kjr.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.
Collapse
Affiliation(s)
- Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Yi Hsieh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsien-Ju Lee
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
12
|
MacCulloch K, Browning A, Bedoya DOG, McBride SJ, Abdulmojeed MB, Dedesma C, Goodson BM, Rosen MS, Chekmenev EY, Yen YF, TomHon P, Theis T. Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1- 13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100129. [PMID: 38090022 PMCID: PMC10715622 DOI: 10.1016/j.jmro.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - David O. Guarin Bedoya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen J. McBride
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | | | - Carlos Dedesma
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Matthew S. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick TomHon
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Hu JY, Vaziri S, Bøgh N, Kim Y, Autry AW, Bok RA, Li Y, Laustsen C, Xu D, Larson PEZ, Chang S, Vigneron DB, Gordon JW. Investigating cerebral perfusion with high resolution hyperpolarized [1- 13 C]pyruvate MRI. Magn Reson Med 2023; 90:2233-2241. [PMID: 37665726 PMCID: PMC10543485 DOI: 10.1002/mrm.29844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To investigate high-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring cerebral perfusion in the human brain. METHODS HP [1-13 C]pyruvate MRI was acquired in five healthy volunteers with a multi-resolution EPI sequence with 7.5 × 7.5 mm2 resolution for pyruvate. Perfusion parameters were calculated from pyruvate MRI using block-circulant singular value decomposition and compared to relative cerebral blood flow calculated from arterial spin labeling (ASL). To examine regional perfusion patterns, correlations between pyruvate and ASL perfusion were performed for whole brain, gray matter, and white matter voxels. RESULTS High resolution 7.5 × 7.5 mm2 pyruvate images were used to obtain relative cerebral blood flow (rCBF) values that were significantly positively correlated with ASL rCBF values (r = 0.48, 0.20, 0.28 for whole brain, gray matter, and white matter voxels respectively). Whole brain voxels exhibited the highest correlation between pyruvate and ASL perfusion, and there were distinct regional patterns of relatively high ASL and low pyruvate normalized rCBF found across subjects. CONCLUSION Acquiring HP 13 C pyruvate metabolic images at higher resolution allows for finer spatial delineation of brain structures and can be used to obtain cerebral perfusion parameters. Pyruvate perfusion parameters were positively correlated to proton ASL perfusion values, indicating a relationship between the two perfusion measures. This HP 13 C study demonstrated that hyperpolarized pyruvate MRI can assess cerebral metabolism and perfusion within the same study.
Collapse
Affiliation(s)
- Jasmine Y. Hu
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Nikolaj Bøgh
- MR Research Center, Department of Clinical Medicine, Aarhus
University, Aarhus, Denmark
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Adam W. Autry
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical Medicine, Aarhus
University, Aarhus, Denmark
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Susan Chang
- Department of Neurological Surgery, University of
California San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley,
California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Mu C, Liu X, Kim Y, Riselli A, Korenchan DE, Bok RA, Delos Santos R, Sriram R, Qin H, Nguyen H, Gordon JW, Slater J, Larson PEZ, Vigneron DB, Kurhanewicz J, Wilson DM, Flavell RR. Clinically Translatable Hyperpolarized 13C Bicarbonate pH Imaging Method for Use in Prostate Cancer. ACS Sens 2023; 8:4042-4054. [PMID: 37878761 PMCID: PMC10683509 DOI: 10.1021/acssensors.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Solid tumors such as prostate cancer (PCa) commonly develop an acidic microenvironment with pH 6.5-7.2, owing to heterogeneous perfusion, high metabolic activity, and rapid cell proliferation. In preclinical prostate cancer models, disease progression is associated with a decrease in tumor extracellular pH, suggesting that pH imaging may reflect an imaging biomarker to detect aggressive and high-risk disease. Therefore, we developed a hyperpolarized carbon-13 MRI method to image the tumor extracellular pH (pHe) and prepared it for clinical translation for detection and risk stratification of PCa. This method relies on the rapid breakdown of hyperpolarized (HP) 1,2-glycerol carbonate (carbonyl-13C) via base-catalyzed hydrolysis to produce HP 13CO32-, which is neutralized and converted to HP H13CO3-. After injection, HP H13CO3- equilibrates with HP 13CO2 in vivo and enables the imaging of pHe. Using insights gleaned from mechanistic studies performed in the hyperpolarized state, we solved issues of polarization loss during preparation in a clinical polarizer system. We successfully customized a reaction apparatus suitable for clinical application, developed clinical standard operating procedures, and validated the radiofrequency pulse sequence and imaging data acquisition with a wide range of animal models. The results demonstrated that we can routinely produce a highly polarized and safe HP H13CO3- contrast agent suitable for human injection. Preclinical imaging studies validated the reliability and accuracy of measuring acidification in healthy kidney and prostate tumor tissue. These methods were used to support an Investigational New Drug application to the U.S. Food and Drug Administration. This methodology is now ready to be implemented in human trials, with the ultimate goal of improving the management of PCa.
Collapse
Affiliation(s)
- Changhua Mu
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Xiaoxi Liu
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Yaewon Kim
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Andrew Riselli
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - David E. Korenchan
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Robert A. Bok
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Romelyn Delos Santos
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Renuka Sriram
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Hecong Qin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Hao Nguyen
- Department
of Urology, University of California, San Francisco, California 94143, United States
| | - Jeremy W. Gordon
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - James Slater
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Peder E. Z. Larson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Daniel B. Vigneron
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - John Kurhanewicz
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94107, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Larson PE, Bernard JM, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D, Group THCMC. Current Methods for Hyperpolarized [1-13C]pyruvate MRI Human Studies. ARXIV 2023:arXiv:2309.04040v2. [PMID: 37731660 PMCID: PMC10508833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the HP 13C MRI Consensus Group as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
|
16
|
Arponen O, Wodtke P, Gallagher FA, Woitek R. Hyperpolarised 13C-MRI using 13C-pyruvate in breast cancer: A review. Eur J Radiol 2023; 167:111058. [PMID: 37666071 DOI: 10.1016/j.ejrad.2023.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Tumour metabolism can be imaged with a novel imaging technique termed hyperpolarised carbon-13 (13C)-MRI using probes, i.e., endogenously found molecules that are labeled with 13C. Hyperpolarisation of the 13C label increases the sensitivity to a level that allows dynamic imaging of the distribution and metabolism of the probes. Dynamic imaging of [1-13C]pyruvate metabolism is of particular biological interest in cancer because of the Warburg effect resulting in the intratumoural accumulation of [1-13C]pyruvate and conversion to [1-13C]lactate. Numerous preclinical studies in breast cancer and other tumours have shown that hyperpolarised 13C-pyruvate has potential for metabolic phenotyping and response assessment at earlier timepoints than the current clinical imaging techniques allow. The clinical feasibility of hyperpolarised 13C-MRI after the injection of pyruvate in patients with breast cancer has now been demonstrated, with increased 13C-label exchange between pyruvate and lactate present in higher grade tumours with associated increased expression of the monocarboxylate transporter 1 (MCT1), the transmembrane transporter mediating intracellular pyruvate uptake, and lactate dehydrogenase (LDH) as the enzyme catalysing the conversion of pyruvate to lactate. Furthermore, a study in patients with breast cancer undergoing neoadjuvant chemotherapy suggested that early changes in 13C-label exchange can distinguish between patients who reach pathologic complete response (pCR) and those who do not. This review summarises the current literature on preclinical and clinical research on hyperpolarised 13C-MRI with [1-13C]-pyruvate in breast cancer imaging.
Collapse
Affiliation(s)
- Otso Arponen
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom.
| | - Pascal Wodtke
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Center, Cambridge, United Kingdom; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, Krems, Austria
| |
Collapse
|
17
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Liu X, Tang S, Cui D, Bok RA, Chen HY, Gordon JW, Wang ZJ, Larson PEZ. A metabolite specific 3D stack-of-spirals bSSFP sequence for improved bicarbonate imaging in hyperpolarized [1- 13C]Pyruvate MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107518. [PMID: 37402333 PMCID: PMC10498937 DOI: 10.1016/j.jmr.2023.107518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
13C-bicarbonate is a crucial measure of pyruvate oxidation and TCA cycle flux, but is challenging to measure due to its relatively low concentration and thus will greatly benefit from improved signal-to-noise ratio (SNR). To address this, we developed and investigated the feasibility of a 3D stack-of-spirals metabolite-specific balanced steady-state free precession (MS-bSSFP) sequence for improving the SNR and spatial resolution of dynamic 13C-bicarbonate imaging in hyperpolarized [1-13C]pyruvate studies. The bicarbonate MS-bSSFP sequence was evaluated by simulations, phantoms studies, preclinical studies on five rats, brain studies on two healthy volunteers and renal study on one renal cell carcinoma patient. The simulations and phantom results showed that the bicarbonate-specific pulse had minimal perturbation of other metabolites (<1%). In the animal studies, the MS-bSSFP sequence provided an approximately 2.6-3 × improvement in 13C-bicarbonate SNR compared to a metabolite-specific gradient echo (MS-GRE) sequence without altering the bicarbonate or pyruvate kinetics, and the shorter spiral readout in the MS-bSSFP approach reduced blurring. Using the SNR ratio between MS-bSSFP and MS-GRE, the T2 values of bicarbonate and lactate in the rat kidneys were estimated as 0.5 s and 1.1 s, respectively. The in-vivo feasibility of bicarbonate MS-bSSFP sequence was demonstrated in two human brain studies and one renal study. These studies demonstrate the potential of the sequence for in-vivo applications, laying the foundation for future studies to observe this relatively low concentration metabolite with high-quality images and improve measurements of pyruvate oxidation.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Vandergrift LA, Wang N, Zhu M, Li B, Chen S, Habbel P, Nowak J, Mason RP, Grant A, Wang Y, Malloy C, Cheng LL. 13 C NMR quantification of polyamine syntheses in rat prostate. NMR IN BIOMEDICINE 2023:e4931. [PMID: 36939957 DOI: 10.1002/nbm.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Currently, many prostate cancer patients, detected through the prostate specific antigen test, harbor organ-confined indolent disease that cannot be differentiated from aggressive cancer according to clinically and pathologically known measures. Spermine has been considered as an endogenous inhibitor for prostate-confined cancer growth and its expression has shown correlation with prostate cancer growth rates. If established clinically, measurements of spermine bio-synthesis rates in prostates may predict prostate cancer growth and patient outcomes. Using rat models, we tested the feasibility of quantifying spermine bio-synthesis rates with 13 C NMR. Male Copenhagen rats (10 weeks, n = 6) were injected with uniformly 13 C-labeled L-ornithine HCl, and were sacrificed in pairs at 10, 30, and 60 min after injection. Another two rats were injected with saline and sacrificed at 30 min as controls. Prostates were harvested and extracted with perchloric acid and the neutralized solutions were examined by 13 C NMR at 600 MHz. 13 C NMR revealed measurable ornithine, as well as putrescine-spermidine-spermine syntheses in rat prostates, allowing polyamine bio-synthetic and ornithine bio-catabolic rates to be calculated. Our study demonstrated the feasibility of 13 C NMR for measuring bio-synthesis rates of ornithine to spermine enzymatic reactions in rat prostates. The current study established a foundation upon which future investigations of protocols that differentiate prostate cancer growth rates according to the measure of ornithine to spermine bio-synthetic rates may be developed.
Collapse
Affiliation(s)
- Lindsey A Vandergrift
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nanbu Wang
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miry Zhu
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bailing Li
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuyi Chen
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Piet Habbel
- Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Johannes Nowak
- Radiology Gotha, SRH Poliklinik Gera GmbH, Gotha, Germany
| | | | - Aaron Grant
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Wang
- Nanjing University, Nanjing, China
| | - Craig Malloy
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Leo L Cheng
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|