1
|
Cook S, Hooser BN, Williams DC, Kortz G, Aleman M, Minor K, Koziol J, Friedenberg SG, Cullen JN, Shelton GD, Ekenstedt KJ. Canine models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 variants in golden retrievers with congenital hypomyelinating polyneuropathy. Neuromuscul Disord 2023; 33:677-691. [PMID: 37400349 PMCID: PMC10530471 DOI: 10.1016/j.nmd.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Congenital hypomyelinating polyneuropathy (HPN) restricted to the peripheral nervous system was reported in 1989 in two Golden Retriever (GR) littermates. Recently, four additional cases of congenital HPN in young, unrelated GRs were diagnosed via neurological examination, electrodiagnostic evaluation, and peripheral nerve pathology. Whole-genome sequencing was performed on all four GRs, and variants from each dog were compared to variants found across >1,000 other dogs, all presumably unaffected with HPN. Likely causative variants were identified for each HPN-affected GR. Two cases shared a homozygous splice donor site variant in MTMR2, with a stop codon introduced within six codons following the inclusion of the intron. One case had a heterozygous MPZ isoleucine to threonine substitution. The last case had a homozygous SH3TC2 nonsense variant predicted to truncate approximately one-half of the protein. Haplotype analysis using 524 GR established the novelty of the identified variants. Each variant occurs within genes that are associated with the human Charcot-Marie-Tooth (CMT) group of heterogeneous diseases, affecting the peripheral nervous system. Testing a large GR population (n = >200) did not identify any dogs with these variants. Although these variants are rare within the general GR population, breeders should be cautious to avoid propagating these alleles.
Collapse
Affiliation(s)
- Shawna Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Blair N Hooser
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - D Colette Williams
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Gregg Kortz
- VCA Sacramento Veterinary Referral Center, Sacramento CA, USA
| | - Monica Aleman
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Katie Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
3
|
Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol 2017; 133:493-515. [PMID: 27896434 DOI: 10.1007/s00401-016-1645-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A growing number of hereditary neuropathies have been assigned to causative gene defects in recent years. The study of human nerve biopsy samples has contributed substantially to the discovery of many of these neuropathy genes. Genotype-phenotype correlations based on peripheral nerve pathology have provided a comprehensive picture of the consequences of these mutations. Intriguingly, several gene defects lead to distinguishable lesion patterns that can be studied in nerve biopsies. These characteristic features include the loss of certain nerve fiber populations and a large spectrum of distinct structural changes of axons, Schwann cells and other components of peripheral nerves. In several instances the lesion patterns are directly or indirectly linked to the known functions of the mutated gene. The present review is designed to provide an overview on these characteristic patterns. It also considers other aspects important for the manifestation and pathology of hereditary neuropathies including the role of inflammation, effects of chemotherapeutic agents and alterations detectable in skin biopsies.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Leuven, Belgium
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hamid Azzedine
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
4
|
Mathis S, Goizet C, Tazir M, Magdelaine C, Lia AS, Magy L, Vallat JM. Charcot-Marie-Tooth diseases: an update and some new proposals for the classification. J Med Genet 2015; 52:681-90. [PMID: 26246519 DOI: 10.1136/jmedgenet-2015-103272] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease, the most frequent form of inherited neuropathy, is a genetically heterogeneous group of disorders of the peripheral nervous system, but with a quite homogeneous clinical phenotype (progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss and usually decreased tendon reflexes). Our aim was to review the various CMT subtypes identified at the present time. METHODS We have analysed the medical literature and performed a historical retrospective of the main steps from the individualisation of the disease (at the end of the nineteenth century) to the recent knowledge about CMT. RESULTS To date, >60 genes (expressed in Schwann cells and neurons) have been implicated in CMT and related syndromes. The recent advances in molecular genetic techniques (such as next-generation sequencing) are promising in CMT, but it is still useful to recognise some specific clinical or pathological signs that enable us to validate genetic results. In this review, we discuss the diagnostic approaches and the underlying molecular pathogenesis. CONCLUSIONS We suggest a modification of the current classification and explain why such a change is needed.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, University Hospital, Poitiers, France Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| | - Cyril Goizet
- Department of Medical Genetics, University Hospital (CHU Pellegrin), Bordeaux, France
| | - Meriem Tazir
- Department of Neurology, University Hospital Mustapha Bacha, Algiers, Algeria
| | | | - Anne-Sophie Lia
- Department of Genetics, University Hospital, Limoges, France
| | - Laurent Magy
- Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| | - Jean-Michel Vallat
- Department of Neurology (National Reference Center "Neuropathies Périphériques Rares"), University Hospital Dupuytren, Limoges, France
| |
Collapse
|
5
|
Introduzione sugli aspetti genetici delle neuropatie. Neurologia 2015. [DOI: 10.1016/s1634-7072(15)72178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Charcot-Marie-Tooth disease variants-classification, clinical, and genetic features and rational diagnostic evaluation. J Clin Neuromuscul Dis 2014; 15:117-28. [PMID: 24534835 DOI: 10.1097/cnd.0000000000000020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inherited neuropathies are among the most prevalent inherited neurologic disorders, and with current advances in molecular biology and genetic testing, the clinical spectrum of phenotype/genotype has been expanding enormously. Genetic testing is nowadays commercially available to several subtypes although many remain because of unknown genetic defect. A stepwise rational approach, which is shown in , facilitates reaching a specific diagnosis and reduces the cost.
Collapse
|
7
|
|
8
|
Voermans NC, Kleefstra T, Gabreëls-Festen AA, Faas BHW, Kamsteeg EJ, Houlden H, Laurá M, Polke JM, Pandraud A, van Ruissen F, van Engelen BG, Reilly MM. Severe Dejerine-Sottas disease with respiratory failure and dysmorphic features in association with a PMP22 point mutation and a 3q23 microdeletion. J Peripher Nerv Syst 2012; 17:223-5. [PMID: 22734911 DOI: 10.1111/j.1529-8027.2012.00402.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Berciano J, Sevilla T, Casasnovas C, Sivera R, Vílchez J, Infante J, Ramón C, Pelayo-Negro A, Illa I. Guía diagnóstica en el paciente con enfermedad de Charcot-Marie-Tooth. Neurologia 2012; 27:169-78. [DOI: 10.1016/j.nrl.2011.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/31/2023] Open
|
10
|
Berciano J, Sevilla T, Casasnovas C, Sivera R, Vílchez J, Infante J, Ramón C, Pelayo-Negro A, Illa I. Guidelines for molecular diagnosis of Charcot-Marie-Tooth disease. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
Baets J, Deconinck T, De Vriendt E, Zimoń M, Yperzeele L, Van Hoorenbeeck K, Peeters K, Spiegel R, Parman Y, Ceulemans B, Van Bogaert P, Pou-Serradell A, Bernert G, Dinopoulos A, Auer-Grumbach M, Sallinen SL, Fabrizi GM, Pauly F, Van den Bergh P, Bilir B, Battaloglu E, Madrid RE, Kabzińska D, Kochanski A, Topaloglu H, Miller G, Jordanova A, Timmerman V, De Jonghe P. Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain 2011; 134:2664-76. [PMID: 21840889 PMCID: PMC3170533 DOI: 10.1093/brain/awr184] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.
Collapse
Affiliation(s)
- Jonathan Baets
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fusco C, Ucchino V, Barbon G, Bonini E, Mostacciuolo ML, Frattini D, Pisani F, Giustina ED. The homozygous ganglioside-induced differentiation-associated protein 1 mutation c.373C > T causes a very early-onset neuropathy: case report and literature review. J Child Neurol 2011; 26:49-57. [PMID: 21212451 DOI: 10.1177/0883073810373142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene may cause severe early-onset inherited neuropathies. Here, the authors report a clinical and neurophysiological follow-up of a Pakistani child with a very early-onset neuropathy carrying a novel homozygous mutation in the GDAP1gene. They discuss the relationship between the several forms of Charcot-Marie-Tooth disease presenting in the first months of life and focus on the literature of GDAP1-associated early-onset neuropathy. This case further expands on the clinical spectrum and the genetic heterogeneity of early-onset inherited neuropathy due to GDAP1 gene mutations.
Collapse
Affiliation(s)
- Carlo Fusco
- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yum SW, Zhang J, Mo K, Li J, Scherer SS. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy. Ann Neurol 2010; 66:759-70. [PMID: 20039262 DOI: 10.1002/ana.21728] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To report the first cases of a homozygous recessive mutation in NEFL, the gene that encodes the light subunit of neurofilaments. METHODS Clinical and electrophysiologic data were evaluated, and a sural nerve biopsy from one affected child was examined by immunohistochemistry and electron microscopy. The ability of the mutant protein to form filaments was characterized in an established cell culture system. RESULTS Four of five siblings developed of a severe, progressive neuropathy beginning in early childhood. Serial nerve conduction studies showed progressively reduced amplitudes with age and pronounced slowing at all ages. Visual-evoked responses were slowed in three children, indicating that central nervous system axons were subclinically involved. All four affected children were homozygous for a nonsense mutation at glutamate 210 (E210X) in the NEFL gene; both parents were heterozygous carriers. A sural nerve biopsy from an affected patient showed markedly reduced numbers of myelinated axons; the remaining myelinated axons were small and lacked intermediate filaments. The E210X mutant protein did not form an intermediate filament network and did not interfere with the filament formation by wild-type human light subunit of neurofilaments in SW-13 vim(-) cells. INTERPRETATION This is the first demonstration of a recessive NEFL mutation, which appears to cause a simple loss of function, resulting in a severe, early-onset axonal neuropathy with unique features. These results confirm that neurofilaments are the main determinant of axonal caliber and conduction velocity, and demonstrate for the first time that neurofilaments are required for the maintenance of myelinated peripheral nervous system axons.
Collapse
Affiliation(s)
- Sabrina W Yum
- Section of Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA 19134, USA.
| | | | | | | | | |
Collapse
|
14
|
Fusco C, Frattini D, Scarano A, Giustina ED. Congenital pes cavus in a Charcot-Marie-tooth disease type 1A newborn. Pediatr Neurol 2009; 40:461-4. [PMID: 19433282 DOI: 10.1016/j.pediatrneurol.2008.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 10/20/2022]
Abstract
A 3-year-old female infant with Charcot-Marie-Tooth disease type 1A had congenital pes cavus, normal motor development, and duplication of the peripheral myelin protein 22 gene, PMP22. Her father, carrying the same gene duplication, developed neuropathy, tremor, and auditory impairment beginning in early adulthood. This is a case of congenital pes cavus in a Charcot-Marie-Tooth disease type 1A patient. The infant had pes cavus caused by the hereditary sensorimotor neuropathy; the family provides a clear example of clinical anticipation.
Collapse
Affiliation(s)
- Carlo Fusco
- Pediatric Neurology Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | |
Collapse
|
15
|
Al-Thihli K, Rudkin T, Carson N, Poulin C, Melançon S, Der Kaloustian VM. Compound heterozygous deletions of PMP22 causing severe Charcot-Marie-Tooth disease of the Dejerine-Sottas disease phenotype. Am J Med Genet A 2008; 146A:2412-6. [PMID: 18698610 DOI: 10.1002/ajmg.a.32456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dejerine-Sottas disease (DSD) is a particular phenotype of the Charcot-Marie-Tooth (CMT) disease spectrum that is genetically heterogeneous. It represents a severe form of hypertrophic axonal and demyelinating neuropathy. Although it is predominantly inherited as an autosomal recessive condition, autosomal dominant inheritance has also been described. To date, the autosomal recessive forms of DSD are classified into several CMT type 4 (CMT4) subclasses based on allelic heterogeneity. We present a 7-year-old boy with a severe form of CMT disease consistent with the autosomal recessive phenotype of DSD. He was found to be a compound heterozygote for mutations in the PMP22 gene resulting in homozygous deletion of exons 2 and 3. The maternally inherited allele was the typical 1.5 Mb deletion involving PMP22 seen with hereditary neuropathy with liability to pressure palsy (HNPP). The paternally inherited allele was a deletion of exons 2 and 3. Both parents presented with a typical clinical picture of HNPP. To our knowledge, this is the first patient reported with large deletions involving both PMP22 alleles. Our patient has also developed severe gastroesophageal reflux disease (GERD), a clinical feature not previously reported with CMT or DSD. The correlation of the phenotype and the molecular defects observed in this patient may set a new subcategory in the classification of DSD.
Collapse
Affiliation(s)
- Khalid Al-Thihli
- F. Clarke Fraser Clinical Genetics Unit, Division of Medical Genetics, McGill University Health Centre/Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Planté-Bordeneuve V. Introduzione agli aspetti genetici delle neuropatie. Neurologia 2008. [DOI: 10.1016/s1634-7072(08)70524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Ouvrier R, Geevasingha N, Ryan MM. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood. Muscle Nerve 2007; 36:131-43. [PMID: 17410579 DOI: 10.1002/mus.20776] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Collapse
Affiliation(s)
- Robert Ouvrier
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
18
|
Abstract
There has been considerable recent progress in understanding mechanisms by which gene mutations cause degeneration of motoneurons and peripheral nerves. Novel therapies inspired by these insights have begun to yield promising results in mouse models of these genetic diseases. Among these have been the use of small molecules or proteins to suppress gain-of-function mutations (eg, ascorbic acid for Charcot-Marie-Tooth disease type 1A) or to restore enzyme activities that are deficient because of loss-of-function mutations (eg, treatment of Fabry's disease with recombinant alpha-galactosidase or with low-molecular-weight alpha-galactosidase chaperones and treatment of spinal muscular atrophy with phenylbutyrate). Some of these therapies are already being tested in humans. Equally exciting is the prospect that small molecules and proteins will be identified that exert potent therapeutic effects in a broad spectrum of inherited and acquired motoneuron and peripheral nerve disorders.
Collapse
Affiliation(s)
- David Pleasure
- Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 USA.
| |
Collapse
|
19
|
|
20
|
Abstract
Nervous systems are generally composed of two cell types-neurons and glia. Early studies of neurons revealed that these cells can conduct electrical currents, immediately implying that they have roles in the relay of information throughout the nervous system. Roles for glia have, until recently, remained obscure. The importance of glia in regulating neuronal survival had been long recognized. However, this trophic support function has hampered attempts to address additional, more active functions of these cells in the nervous system. In this chapter, recent efforts to reveal some of these additional functions are described. Evidence supporting a role for glia in synaptic development and activity is presented, as well as experiments suggesting glial guidance of neuronal migration and process outgrowth. Roles for glia in influencing the electrical activity of neurons are also discussed. Finally, an exciting system is described for studying glial cells in the nematode C. elegans, in which recent studies suggest that glia are not required for neuronal viability.
Collapse
Affiliation(s)
- Shai Shaham
- The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
21
|
Abstract
Floppiness/hypotonia is a common neurologic symptom in infancy. A variety of neuromuscular disorders and central nervous system (CNS) disorders cause floppy infant syndrome (FIS). CNS disorders are the much more common causes of the syndrome than neuromuscular disorders. On long-term follow up, cerebral palsy and mental retardation turn out to be the 2 most common causes of FIS. This review focuses on neuromuscular causes of FIS. With the advent of molecular diagnosis, a few conditions can be diagnosed by DNA analysis of the peripheral lymphocytes (myotonic dystrophy, spinal muscular atrophy); however, for the most part, electrodiagnostic studies and muscle biopsy remain as essential diagnostic tools for FIS. Immunohistochemical study of the biopsied muscle also improves diagnostic capability. Management for most conditions remains supportive.
Collapse
Affiliation(s)
- Masanori Igarashi
- From the Department of Pediatrics and Neurology, University of Tennessee, Memphis
| |
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
Berciano J, Berciano MT, Combarros O. Original descriptions of peroneal muscular atrophy. Muscle Nerve 2003; 28:251-2. [PMID: 12872334 DOI: 10.1002/mus.10403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|