1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Batten K, Bhattacharya K, Simar D, Broderick C. Exercise testing and prescription in patients with inborn errors of muscle energy metabolism. J Inherit Metab Dis 2023; 46:763-777. [PMID: 37350033 DOI: 10.1002/jimd.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.
Collapse
Affiliation(s)
- Kiera Batten
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| | - Kaustuv Bhattacharya
- The Children's Hospital at Westmead, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - David Simar
- School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Carolyn Broderick
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
Collapse
|
4
|
Forny P, Footitt E, Davison JE, Lam A, Woodward CE, Batzios S, Bhate S, Chakrapani A, Cleary M, Gissen P, Grunewald S, Hurst JA, Scott R, Heales S, Jacques TS, Cullup T, Rahman S. Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era. NEUROLOGY-GENETICS 2021; 7:e597. [PMID: 34056100 PMCID: PMC8161540 DOI: 10.1212/nxg.0000000000000597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Objective We hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis. Methods We investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies. Results We established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies. Conclusions We propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result. Classification of Evidence This is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.
Collapse
Affiliation(s)
- Patrick Forny
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Emma Footitt
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - James E Davison
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Amanda Lam
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Cathy E Woodward
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Spyros Batzios
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Sanjay Bhate
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Anupam Chakrapani
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Maureen Cleary
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Paul Gissen
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Stephanie Grunewald
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Jane A Hurst
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Richard Scott
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Simon Heales
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Thomas S Jacques
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Thomas Cullup
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| | - Shamima Rahman
- Mitochondrial Research Group (P.F., S.R.), UCL Great Ormond Street Institute of Child Health; Metabolic Medicine Department (P.F., E.F., J.E.D., S. Batzios, A.C., M.C., P.G., S.G., S.R.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurometabolic Unit (A.L., S.H.), National Hospital for Neurology and Neurosurgery; Department of Chemical Pathology (A.L., S.H.), Great Ormond Street Hospital for Children NHS Foundation Trust; Neurogenetics Unit (C.E.W.), National Hospital for Neurology and Neurosurgery; Department of Neurology (S. Bhate), Department of Clinical Genetics (J.A.H., R.S.), North East Thames Regional Genetics Service, DBC Programme (T.S.J.), UCL Great Ormond Street Institute of Child Health and Department of Histopathology, and London North Genomic Laboratory Hub (T.C.), Great Ormond Street Hospital for Children NHS Foundation Trust, United Kingdom
| |
Collapse
|
5
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
6
|
Tarulli A. Proximal and Generalized Weakness. Neurology 2021. [DOI: 10.1007/978-3-030-55598-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Levy MA, Kerkhof J, Belmonte FR, Kaufman BA, Bhai P, Brady L, Bursztyn LLCD, Tarnopolsky M, Rupar T, Sadikovic B. Validation and clinical performance of a combined nuclear-mitochondrial next-generation sequencing and copy number variant analysis panel in a Canadian population. Am J Med Genet A 2020; 185:486-499. [PMID: 33300680 DOI: 10.1002/ajmg.a.61998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Diagnosing mitochondrial disorders is a challenge due to the heterogeneous clinical presentation and large number of associated genes. A custom next generation sequencing (NGS) panel was developed incorporating the full mitochondrial genome (mtDNA) plus 19 nuclear genes involved in structural mitochondrial defects and mtDNA maintenance. This assay is capable of simultaneously detecting small gene sequence variations and larger copy number variants (CNVs) in both the nuclear and mitochondrial components along with heteroplasmy detection down to 5%. We describe technical validations of this panel and its implementation for clinical testing in a Canadian reference laboratory, and report its clinical performance in the initial 950 patients tested. Using this assay, we demonstrate a diagnostic yield of 18.1% of patients with known pathogenic variants. In addition to the common 5 kb mtDNA deletion, we describe significant contribution of pathogenic CNVs in both the mitochondrial genome and nuclear genes in this patient population.
Collapse
Affiliation(s)
- Michael A Levy
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Frances R Belmonte
- Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brett A Kaufman
- Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disease, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disease, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Tony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Departments of Biochemistry and Paediatrics, Schulich School of Medicine & Dentistry, Western University, and Biochemical Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
8
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
9
|
Carvalho AAS, Christofolini DM, Perez MM, Alves BCA, Rodart I, Figueiredo FWS, Turke KC, Feder D, Junior MCF, Nucci AM, Fonseca FLA. PYGM mRNA expression in McArdle disease: Demographic, clinical, morphological and genetic features. PLoS One 2020; 15:e0236597. [PMID: 32735634 PMCID: PMC7394413 DOI: 10.1371/journal.pone.0236597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION McArdle disease presents clinical and genetic heterogeneity. There is no obvious association between genotype and phenotype. PYGM (muscle glycogen phosphorylase gene) mRNA expression and its association with clinical, morphological, and genetic aspects of the disease as a set have not been studied previously. METHODS We investigated genetic variation in PYGM considering the number of PTCs (premature termination codon) per sample and compared mRNA expression in skeletal muscle samples from 15 patients with McArdle disease and 16 controls to PTCs number and different aspects of the disease. RESULTS The main variant found was c.148C>T (PTC-premature termination codon). Patients with two PTCs showed 42% mRNA expression compared to the control group. Most cases showed an inversely proportional relation among PTCs and mRNA expression. Association between mRNA expression and other aspects of the disease showed no statistically significant difference (p> 0.05). DISCUSSION mRNA expression is not useful as a predictor factor for the prognosis and severity of the disease. Different mechanisms as post-transcriptional events, epigenetics factors or protein function may be involved.
Collapse
Affiliation(s)
- Alzira A. S. Carvalho
- Departamento de Neurociências- Laboratório de doenças neuromusculares da Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
- * E-mail:
| | - Denise M. Christofolini
- Instituto Ideia Fértil de Saúde Reprodutiva do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
- Departamento de genética do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | - Matheus M. Perez
- Laboratório de análises clínicas do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | - Beatriz C. A. Alves
- Laboratório de análises clínicas do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | - Itatiana Rodart
- Instituto Ideia Fértil de Saúde Reprodutiva do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | | | - Karine C. Turke
- Medical student of Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | - David Feder
- Departamento de farmacologia da Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| | | | - Ana M. Nucci
- Departamento de Neurologia da UNICAMP, Campinas, SP, Brazil
| | - Fernando L. A. Fonseca
- Laboratório de análises clínicas do Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil
| |
Collapse
|
10
|
Silberman A, Goldman O, Boukobza Assayag O, Jacob A, Rabinovich S, Adler L, Lee JS, Keshet R, Sarver A, Frug J, Stettner N, Galai S, Persi E, Halpern KB, Zaltsman-Amir Y, Pode-Shakked B, Eilam R, Anikster Y, Nagamani SCS, Ulitsky I, Ruppin E, Erez A. Acid-Induced Downregulation of ASS1 Contributes to the Maintenance of Intracellular pH in Cancer. Cancer Res 2018; 79:518-533. [PMID: 30573518 DOI: 10.1158/0008-5472.can-18-1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) by either promoter methylation or by HIF1α is associated with increased metastasis and poor prognosis in multiple cancers. We have previously shown that in normoxic conditions, ASS1 downregulation facilitates cancer cell proliferation by increasing aspartate availability for pyrimidine synthesis by the enzyme complex CAD. Here we report that in hypoxia, ASS1 expression in cancerous cells is downregulated further by HIF1α-mediated induction of miR-224-5p, making the cells more invasive and dependent on upstream substrates of ASS1 for survival. ASS1 was downregulated under acidic conditions, and ASS1-depleted cancer cells maintained a higher intracellular pH (pHi), depended less on extracellular glutamine, and displayed higher glutathione levels. Depletion of substrates of urea cycle enzymes in ASS1-deficient cancers decreased cancer cell survival. Thus, ASS1 levels in cancer are differentially regulated in various environmental conditions to metabolically benefit cancer progression. Understanding these alterations may help uncover specific context-dependent cancer vulnerabilities that may be targeted for therapeutic purposes. SIGNIFICANCE: Cancer cells in an acidic or hypoxic environment downregulate the expression of the urea cycle enzyme ASS1, which provides them with a redox and pH advantage, resulting in better survival.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/3/518/F1.large.jpg.
Collapse
Affiliation(s)
- Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Adi Jacob
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Joo Sang Lee
- Center for Bioinformatics and Computational Biology and Dept. of Computer Science, University of Maryland, College Park, Maryland.,Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alona Sarver
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Frug
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Persi
- Computational Biology and Bioinformatics Branch (CBB), National Library of Medicine, National Center for Biotechnology Information (NCBI), NIH, Bethesda, Maryland
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Ruppin
- Center for Bioinformatics and Computational Biology and Dept. of Computer Science, University of Maryland, College Park, Maryland.,Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Sidhu M, Brady L, Vladutiu GD, Tarnopolsky MA. Novel heterozygous mutations in the PGAM2 gene with negative exercise testing. Mol Genet Metab Rep 2018; 17:53-55. [PMID: 30310767 PMCID: PMC6178239 DOI: 10.1016/j.ymgmr.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Pathogenic variants in the PGAM2 gene are associated with glycogen storage disease type X (GSDX) and is characterized by exercise induced muscle cramping, weakness, myoglobinuria, and often tubular aggregates in skeletal muscle. We report here a patient diagnosed with GSDX at 52 years of age with a normal increase in post-exercise lactate with both anaerobic and aerobic exercise. Genetic testing found two novel PGAM2 variants (c.426C > A, p.Tyr142Ter and c.533delG, p.Gly178Alafs*31).
Collapse
Affiliation(s)
- M Sidhu
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - L Brady
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - G D Vladutiu
- Departments of Pediatrics, Neurology, and Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - M A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
13
|
Noury JB, Zagnoli F, Carré JL, Drouillard I, Petit F, Le Maréchal C, Marcorelles P, Rannou F. Exercise testing-based algorithms to diagnose McArdle disease and MAD defects. Acta Neurol Scand 2018; 138:301-307. [PMID: 29749052 DOI: 10.1111/ane.12957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE As exercise intolerance and exercise-induced myalgia are commonly encountered in metabolic myopathies, functional screening tests are commonly used during the diagnostic work-up. Our objective was to evaluate the accuracy of isometric handgrip test (IHT) and progressive cycle ergometer test (PCET) to identify McArdle disease and myoadenylate deaminase (MAD) deficiency and to propose diagnostic algorithms using exercise-induced lactate and ammonia variations. METHODS A prospective sample of 46 patients underwent an IHT and a PCET as part of their exercise-induced myalgia and intolerance evaluation. The two diagnostics tests were compared against the results of muscle biopsy and/or the presence of mutations in PYGM. A total of 6 patients had McArdle disease, 5 a complete MAD deficiency (MAD absent), 12 a partial MAD deficiency, and 23 patients had normal muscle biopsy and acylcarnitine profile (disease control). RESULTS The two functional tests could diagnose all McArdle patients with statistical significance, combining a low lactate variation (IHT: <1 mmol/L, AUC = 0.963, P < .0001; PCET: <1 mmol/L, AUC = 0.990, P < .0001) and a large ammonia variation (IHT: >100 μmol/L, AUC = 0.944, P = .0005; PCET: >20 μmol/L, AUC = 1). PCET was superior to IHT for MAD absent diagnosis, combining very low ammonia variation (<10 μmol/L, AUC = 0.910, P < .0001) and moderate lactate variation (>1 mmol/L). CONCLUSIONS PCET-based decision tree was more accurate than IHT, with respective generalized squared correlations of 0.796 vs 0.668. IHT and PCET are both interesting diagnostic tools to identify McArdle disease, whereas cycle ergometer exercise is more efficient to diagnose complete MAD deficiency.
Collapse
Affiliation(s)
- J.-B. Noury
- Neurology Department; CHRU Cavale Blanche; Brest France
| | - F. Zagnoli
- Neurology Department; CHRU Cavale Blanche; Brest France
| | - J.-L. Carré
- Biochemistry Department-EA 4685; CHRU Cavale Blanche; Brest France
| | - I. Drouillard
- Biochemistry Department; Clermont-Tonnerre Armed Forces Hospital; Brest France
| | - F. Petit
- Molecular Genetics Department; APHP - GH Antoine Béclère; Clamart France
| | - C. Le Maréchal
- Institut National de la Santé et de la Recherche Médicale- UMR 1078; Brest France
| | - P. Marcorelles
- Pathology Department-EA 4685 LNB; CHRU Morvan; Brest France
| | - F. Rannou
- Physiology Department- EA 4324; CHRU Cavale Blanche; Brest France
| |
Collapse
|
14
|
Abstract
Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards.
Collapse
Affiliation(s)
- Eric S Rawson
- Department of Health, Nutrition and Exercise Science, Messiah College, One College Avenue Suite 4501, Mechanicsburg, PA, 17055, USA.
| | | | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. RECENT FINDINGS The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. SUMMARY Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.
Collapse
|
16
|
Khadilkar SV, Yadav RS, Patel BA. Metabolic Myopathies. Neuromuscul Disord 2018. [DOI: 10.1007/978-981-10-5361-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Mancuso M, McFarland R, Klopstock T, Hirano M. International Workshop:: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. 16-18 November 2016, Rome, Italy. Neuromuscul Disord 2017; 27:1126-1137. [PMID: 29074296 PMCID: PMC6094160 DOI: 10.1016/j.nmd.2017.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Michelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Italy.
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Department of Physiology and Functional Genomics NE1 3BZ, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Klopstock
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU München, Ziemssenstr. 1a, 80336 München, Federal Republic of Germany
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Kaczor JJ, Robertshaw HA, Tarnopolsky MA. Higher oxidative stress in skeletal muscle of McArdle disease patients. Mol Genet Metab Rep 2017. [PMID: 28649515 PMCID: PMC5470535 DOI: 10.1016/j.ymgmr.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
McArdle disease (MCD) is an autosomal recessive condition resulting from skeletal muscle glycogen phosphorylase deficiency. The resultant block in glycogenolysis leads to an increased flux through the xanthine oxidase pathway (myogenic hyperuricemia) and could lead to an increase in oxidative stress. We examined markers of oxidative stress (8-isoprostane and protein carbonyls), NAD(P)H-oxidase, xanthine oxidase and antioxidant enzyme (superoxide dismutase, catalase and glutathione peroxidase) activity in skeletal muscle of MCD patients (N = 12) and controls (N = 12). Eight-isoprostanes and protein carbonyls were higher in MCD patients as compared to controls (p < 0.05). There was a compensatory up-regulation of catalase protein content and activity (p < 0.05), mitochondrial superoxide dismutase (MnSOD) protein content (p < 0.01) and activity (p < 0.05) in MCD patients, yet this increase was not sufficient to protect the muscle against elevated oxidative damage. These results suggest that oxidative stress in McArdle patients occurs and future studies should evaluate a potential role for oxidative stress contributing to acute pathology (rhabdomyolysis) and possibly later onset fixed myopathy.
Collapse
Affiliation(s)
- Jan J Kaczor
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Holly A Robertshaw
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
19
|
The yield of diagnostic work-up of patients presenting with myalgia, exercise intolerance, or fatigue. Neuromuscul Disord 2017; 27:243-250. [DOI: 10.1016/j.nmd.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
|
20
|
Proximal and Generalized Weakness. Neurology 2016. [DOI: 10.1007/978-3-319-29632-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Asplund CA, O'Connor FG. Challenging Return to Play Decisions: Heat Stroke, Exertional Rhabdomyolysis, and Exertional Collapse Associated With Sickle Cell Trait. Sports Health 2015; 8:117-25. [PMID: 26896216 PMCID: PMC4789928 DOI: 10.1177/1941738115617453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Context: Sports medicine providers frequently return athletes to play after sports-related injuries and conditions. Many of these conditions have guidelines or medical evidence to guide the decision-making process. Occasionally, however, sports medicine providers are challenged with complex medical conditions for which there is little evidence-based guidance and physicians are instructed to individualize treatment; included in this group of conditions are exertional heat stroke (EHS), exertional rhabdomyolysis (ER), and exertional collapse associated with sickle cell trait (ECAST). Evidence Acquisition: The MEDLINE (2000-2015) database was searched using the following search terms: exertional heat stroke, exertional rhabdomyolysis, and exertional collapse associated with sickle cell trait. References from consensus statements, review articles, and book chapters were also utilized. Study Design: Clinical review. Level of Evidence: Level 4. Results: These entities are unique in that they may cause organ system damage capable of leading to short- or long-term detriments to physical activity and may not lend to complete recovery, potentially putting the athlete at risk with premature return to play. Conclusion: With a better understanding of the pathophysiology of EHS, ER, and ECAST and the factors associated with recovery, better decisions regarding return to play may be made.
Collapse
Affiliation(s)
- Chad A Asplund
- Athletic Medicine, Division of Health Services, Health and Kinesiology, Georgia Southern University, Statesboro, Georgia
| | - Francis G O'Connor
- Military and Emergency Medicine, Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
22
|
Rannou F, Uguen A, Scotet V, Le Maréchal C, Rigal O, Marcorelles P, Gobin E, Carré JL, Zagnoli F, Giroux-Metges MA. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study. PLoS One 2015. [PMID: 26207760 PMCID: PMC4514803 DOI: 10.1371/journal.pone.0132972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Our aim was to evaluate the accuracy of aerobic exercise testing to diagnose metabolic myopathies. Methods From December 2008 to September 2012, all the consecutive patients that underwent both metabolic exercise testing and a muscle biopsy were prospectively enrolled. Subjects performed an incremental and maximal exercise testing on a cycle ergometer. Lactate, pyruvate, and ammonia concentrations were determined from venous blood samples drawn at rest, during exercise (50% predicted maximal power, peak exercise), and recovery (2, 5, 10, and 15 min). Biopsies from vastus lateralis or deltoid muscles were analysed using standard techniques (reference test). Myoadenylate deaminase (MAD) activity was determined using p-nitro blue tetrazolium staining in muscle cryostat sections. Glycogen storage was assessed using periodic acid-Schiff staining. The diagnostic accuracy of plasma metabolite levels to identify absent and decreased MAD activity was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The study involved 51 patients. Omitting patients with glycogenoses (n = 3), MAD staining was absent in 5, decreased in 6, and normal in 37 subjects. Lactate/pyruvate at the 10th minute of recovery provided the greatest area under the ROC curves (AUC, 0.893 ± 0.067) to differentiate Abnormal from Normal MAD activity. The lactate/rest ratio at the 10th minute of recovery from exercise displayed the best AUC (1.0) for discriminating between Decreased and Absent MAD activities. The resulting decision tree achieved a diagnostic accuracy of 86.3%. Conclusion The present algorithm provides a non-invasive test to accurately predict absent and decreased MAD activity, facilitating the selection of patients for muscle biopsy and target appropriate histochemical analysis.
Collapse
Affiliation(s)
- Fabrice Rannou
- Physiology Department-EA 1274, CHRU Cavale Blanche, Brest, France
- * E-mail:
| | - Arnaud Uguen
- Pathology Department, CHRU Morvan, Brest, France
| | - Virginie Scotet
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Odile Rigal
- Biochemistry Department, Robert Debré Hospital-APHP, Paris, France
| | | | - Eric Gobin
- Pathology Department, CHRU Morvan, Brest, France
| | - Jean-Luc Carré
- Biochemistry Department, CHRU Cavale Blanche, Brest, France
| | - Fabien Zagnoli
- Neurology Department-EA 4685 LNB, Clermont-Tonnerre Armed Forces Hospital, Brest, France
| | | |
Collapse
|
23
|
Hogrel JY, van den Bogaart F, Ledoux I, Ollivier G, Petit F, Koujah N, Béhin A, Stojkovic T, Eymard B, Voermans N, Laforêt P. Diagnostic power of the non-ischaemic forearm exercise test in detecting glycogenosis type V. Eur J Neurol 2015; 22:933-40. [PMID: 25740218 DOI: 10.1111/ene.12685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/29/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This was a retrospective study to assess the diagnostic value of the non-ischaemic forearm exercise test in detecting McArdle's disease. METHODS The study is a retrospective diagnostic study over 15 years (1999-2013) on a referred sample of patients suffering from exercise intolerance and various muscle complaints, generally with elevated creatine kinase (CK). In all, 1226 patients underwent the non-ischaemic forearm exercise test. Blood lactate, ammonia and CK levels were analyzed. DNA analyses and/or muscle biopsies were assessed to confirm the diagnosis of McArdle's disease. The results of 60 volunteers were used to compare with the results of study subjects. RESULTS In this cohort, 40 patients were finally diagnosed with McArdle's disease. Absolute values of lactate and ammonia rise were used to discriminate all McArdle patients from healthy patients. A sensitivity and specificity of respectively 100% and 99.7% were calculated. The 24-h CK level showed no significant difference from the CK level at the day of the test and confirms the safety of the test. CONCLUSIONS This study has formally assessed the diagnostic value of the non-ischaemic forearm exercise test in the detection of McArdle's disease. Very high sensitivity and specificity were observed. Furthermore, the test is easy to set up and to perform, it is non-traumatic and cost effective. It may circumvent a muscle biopsy in McArdle patients presenting the most common mutations. Hence, it is a perfect and safe screening instrument to detect patients with McArdle's disease. Glycogen storage disease type III patients, however, may show similar patterns to McArdle patients.
Collapse
Affiliation(s)
- J-Y Hogrel
- Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohen BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky M, Van Hove JLK, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 2014; 17:689-701. [PMID: 25503498 DOI: 10.1038/gim.2014.177] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. METHODS The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. RESULTS Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease. CONCLUSION The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.
Collapse
Affiliation(s)
- Sumit Parikh
- Department of Neurology, Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Amy Goldstein
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Kay Koenig
- Department of Pediatrics, Division of Child and Adolescent Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Russell Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bruce H Cohen
- Department of Pediatrics, NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, Akron, Ohio, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Greene
- Department of Pediatrics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, DC, USA
| | - Richard Haas
- Department of Neurosciences and Pediatrics, UCSD Medical Center and Rady Children's Hospital San Diego, La Jolla, California, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Phil Morgan
- Department of Anesthesiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Katherine Sims
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Johan L K Van Hove
- Department of Pediatrics, Clinical Genetics and Metabolism, Children's Hospital Colorado, Denver, Colorado, USA
| | - Lynne Wolfe
- National Institutes of Health, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
25
|
Siciliano G, Pasquali L, Mancuso M, Murri L. Molecular diagnostics and mitochondrial dysfunction: a future perspective. Expert Rev Mol Diagn 2014; 8:531-49. [DOI: 10.1586/14737159.8.4.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Szczepanik ME, Heled Y, Capacchione J, Campbell W, Deuster P, O’Connor FG. Exertional Rhabdomyolysis. Curr Sports Med Rep 2014; 13:113-9. [DOI: 10.1249/jsr.0000000000000040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Mouadil A, Debout C, Read MH, Morello R, Allouche S, Chapon F. Blood metabolite data in response to maximal exercise in healthy subjects. Clin Physiol Funct Imaging 2012; 32:274-81. [PMID: 22681604 DOI: 10.1111/j.1475-097x.2012.01122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022]
Abstract
Maximal exercise test with gas exchange measurement evaluates exercise capacities with maximal oxygen uptake (VO(2) max) measurement. Measurements of lactate (L), lactate/pyruvate ratio (L/P) and ammonium (A) during rest, exercise and recovery enhance interpretative power of maximal exercise by incorporating muscular metabolism exploration. Maximal exercise test with gas exchange measurement is standardized in cardiopulmonary evaluations but, no reference data of blood muscular metabolites are available to evaluate the muscular metabolism. We determined normal values of L, L/P and A during a standardized maximal exercise and recovery in 48 healthy sedentary volunteers and compared with results obtained in four patients with exercise intolerance and a mitochondrial disease. In healthy subjects, L, L/P and A rose during exercise. In 98% of them L, L/P or A decreased between the fifth and the fifteenth minutes of recovery. In mitochondrial patients, VO(2) max was normal or low, and L, L/P and A had the same evolution as normal subjects or showed no decrease during recovery. We gave normal L, L/P and A values, which establish references for a maximal exercise test with muscular metabolism exploration. This test is helpful for clinicians in functional evaluation, management and treatment of metabolic myopathy and would be a useful tool in diagnosis of metabolic myopathy.
Collapse
Affiliation(s)
- Amèle Mouadil
- Department of Physiology, CHU de Caen, Caen, France.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Metabolic myopathies are a group of genetic disorders specifically affecting glucose/glycogen, lipid, and mitochondrial metabolism. The main metabolic myopathies that are evaluated in this article are the mitochondrial myopathies, fatty acid oxidation defects, and glycogen storage disease. This article focuses on the usefulness of exercise in the evaluation of genetic metabolic myopathies.
Collapse
Affiliation(s)
- Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
29
|
Tarnopolsky MA. MITOCHONDRIAL CYTOPATHIES IN CHILDREN AND ADULTS. Continuum (Minneap Minn) 2009. [DOI: 10.1212/01.con.0000348880.16694.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Mancuso M, Orsucci D, Ali G, Lo Gerfo A, Fontanini G, Siciliano G. Advances in molecular diagnostics for mitochondrial diseases. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:557-569. [PMID: 23495985 DOI: 10.1517/17530050902967610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Mitochondrial disorders (MD) are diseases caused by impairment of the mitochondrial respiratory chain. Phenotypes are polymorphous and may range from pure myopathy to multisystemic disorders. The genetic defect can be located on mitochondrial or nuclear DNA. At present, diagnosis of MD requires a complex approach: measurement of serum lactate, electromyography, muscle histology and enzymology, and genetic analysis. Magnetic resonance spectroscopy allows the assessment of tissue metabolic alterations, thus providing useful information for the diagnosis and monitoring of MD. Molecular soluble markers of mitochondrial dysfunction, at rest and during exercise, can identify the impairment of the aerobic system in MD, but a reliable biomarker for the screening or diagnosis of MD is still needed. OBJECTIVE Molecular and genetic characterization of MD, together with other experimental approaches, contribute to add new insights to these diseases. Here, the role and advances of diagnostic techniques for MD are reviewed. CONCLUSION Possible applications of the results obtained by new molecular investigative approaches could in future guide therapeutic strategies.
Collapse
Affiliation(s)
- Michelangelo Mancuso
- University of Pisa, Neurological Clinic, Department of Neuroscience, Via Roma 67, 56126 Pisa, Italy +0039 050 992440 ; +0039 050 554808 ;
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Metabolic myopathies are inborn errors of metabolism that result in impaired energy production due to defects in glycogen, lipid, mitochondrial, and possibly adenine nucleotide metabolism. Fatty acid oxidation defects (FAOD), glycogen storage disease, and mitochondrial myopathies represent the 3 main groups of disorders, and some consider myoadenylate deaminase (AMPD1 deficiency) to be a metabolic myopathy. Clinically, a variety of neuromuscular presentations are seen at different ages of life. Newborns and infants commonly present with hypotonia and multisystem involvement (liver and brain), whereas onset later in life usually presents with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, the glycogen storage diseases result in high-intensity exercise intolerance, whereas the FAODs and the mitochondrial myopathies manifest predominately during endurance-type activity or under fasted or other metabolically stressful conditions. The clinical examination is often normal, and testing requires various combinations of exercise stress testing, serum creatine kinase activity and lactate concentration determination, urine organic acids, muscle biopsy, neuroimaging, and specific genetic testing for the diagnosis of a specific metabolic myopathy. Prenatal screening is available in many countries for several of the FAODs through liquid chromatography-tandem mass spectrometry. Early identification of these conditions with lifestyle measures, nutritional intervention, and cofactor treatment is important to prevent or delay the onset of muscle weakness and to avoid potential life-threatening complications such as rhabdomyolysis with resultant renal failure or hepatic failure. This article will review the key clinical features, diagnostic tests, and treatment recommendations for the more common metabolic myopathies, with an emphasis on mitochondrial myopathies.
Collapse
|
32
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Robertshaw HA, Raha S, Kaczor JJ, Tarnopolsky MA. Increased PFK activity and GLUT4 protein content in McArdle's disease. Muscle Nerve 2008; 37:431-7. [DOI: 10.1002/mus.20947] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2006; 37:2086-93. [PMID: 16331134 DOI: 10.1249/01.mss.0000177341.89478.06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial myopathies are caused by genetic mutations that directly influence the functioning of the electron transport chain (ETC). It is estimated that 1 of 8,000 people have pathology inducing mutations affecting mitochondrial function. Diagnosis often requires a multifaceted approach with measurements of serum lactate and pyruvate, urine organic acids, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common but often an overlooked hallmark of mitochondrial myopathies. The muscle consequences of ETC dysfunction include increased reliance on anaerobic metabolism (lactate generation, phosphocreatine degradation), enhanced free radical production, reduced oxygen extraction and electron flux through ETC, and mitochondrial proliferation or biogenesis (see article by Hood in current issue). Treatments have included antioxidants (vitamin E, alpha lipoic acid), electron donors and acceptors (coenzyme Q10, riboflavin), alternative energy sources (creatine monohydrate), lactate reduction strategies (dichloroacetate) and exercise training. Exercise is a particularly important modality in diagnosis as well as therapy (see article by Taivassalo in current issue). Increased awareness of these disorders by exercise physiologists and sports medicine practitioners should lead to more accurate and more rapid diagnosis and the opportunity for therapy and genetic counseling.
Collapse
|
36
|
Tarnopolsky MA. What can metabolic myopathies teach us about exercise physiology? Appl Physiol Nutr Metab 2006; 31:21-30. [PMID: 16604138 DOI: 10.1139/h05-008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise physiologists are interested in metabolic myopathies because they demonstrate how knocking out a component of a specific biochemical pathway can alter cellular metabolism. McArdle's disease (myophosphorylase deficiency) has often been studied in exercise physiology to demonstrate the influence of removing the major anaerobic energy supply to skeletal muscle. Studies of patients with McArdle's disease have shown the increased reliance on blood-borne fuels, the importance of glycogen to maximal aerobic capacity, and the use of nutritional strategies to bypass metabolic defects. Myoadenylate deaminase deficiency is the most common metabolic enzyme deficiency in human skeletal muscle. It is usually compensated for endogenously and does not have a major influence on high-energy power output. Nutritional interventions such as carbohydrate loading and carbohydrate supplementation during exercise are essential components of therapy for patients with fatty acid oxidation defects. Cases of mitochondrial myopathies illustrate the importance of peripheral oxygen extraction for maximal aerobic capacity and show how both exercise and nutritional interventions can partially compensate for these mutations. In summary, metabolic myopathies provide important insights into regulatory and nutritional aspects of the major biochemical pathways of intermediary metabolism in human skeletal muscle. Key words: myoadenylate deaminase deficiency, MELAS syndrome, McArdle's disease, mitochondrial disease, inborn errors of metabolism.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine, Division of Neurology, McMaster University Medical Centre, Hamilton, ON, Canada.
| |
Collapse
|
37
|
Guis S, Mattei JP, Cozzone PJ, Bendahan D. Pathophysiology and clinical presentations of rhabdomyolysis. Joint Bone Spine 2006; 72:382-91. [PMID: 16214072 DOI: 10.1016/j.jbspin.2004.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 04/13/2004] [Indexed: 12/12/2022]
Abstract
Rhabdomyolysis has sparked new interest in recent years. The causes of rhabdomyolysis include drugs and other toxic agents, infections, physical exertion, crush injury, and muscle diseases (dystrophinopathies and metabolic myopathies). Prompt identification of the pathophysiological mechanism is the key to rapid control of the acute episode and to prevention of recurrences. In this update, we discuss the pathophysiological mechanisms and nosology of rhabdomyolysis, as well as diagnostic investigations, with special emphasis on noninvasive methods.
Collapse
Affiliation(s)
- Sandrine Guis
- Rheumatology Department, Conception Hospital, 147, Boulevard Baille, Marseille 13005, France.
| | | | | | | |
Collapse
|
38
|
Guis S, Mattei JP, Cozzone PJ, Bendahan D. Physiopathologie et tableaux cliniques des rhabdomyolyses. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.rhum.2004.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Drouet A. Comment organiser le bilan d’un syndrome d’intolérance musculaire à l’exercice (SIME) ? Rev Neurol (Paris) 2004; 160:1102-12. [PMID: 15602357 DOI: 10.1016/s0035-3787(04)71152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A Drouet
- Service de Neurologie, HIA Desgenettes, Lyon.
| |
Collapse
|
40
|
Rodriguez MC, Rosenfeld J, Tarnopolsky MA. Plasma Malondialdehyde Increases Transiently after Ischemic Forearm Exercise. Med Sci Sports Exerc 2003; 35:1859-65. [PMID: 14600551 DOI: 10.1249/01.mss.0000093609.75937.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Exercise and ischemia-reperfusion (I-R) have previously been shown to induce oxidative stress in skeletal muscle. Previous studies have demonstrated conflicting results when exercise-induced oxidative stress has been measured using plasma carbonyls, specifically malondialdehyde (MDA). These conflicting results likely stem from the timing and method utilized to measure plasma carbonyls. PURPOSE To determine the concentration and timing of aldehyde and ketone generation after ischemic forearm exercise utilizing HPLC analysis. METHODS Plasma carbonyls, including MDA, 17-beta-estradiol, and lactate, were measured after a forearm ischemic exercise test (FIT) in males and females (in both phases of their menstrual cycle). Blood flow was occluded to the forearm, and six cycles of maximal isometric handgrip exercise were executed using a 9:1, duty:rest cycle, for 60 s. Blood samples were collected pre, immediately post, and 1, 3, and 10 min post-FIT. RESULTS Plasma MDA increased similarly for both males and females immediately post and 1 min post-FIT (P<0.05) and returned to baseline levels by 3 min post-FIT. Ischemic exercise did not alter plasma concentrations of other measured carbonyls, and gender and menstrual cycle did not influence any measured variable (P>0.05), except for lactate concentrations, which increased more for males (P<0.05). Force was higher for males at all time points (P<0.05); however, there was no effect of gender on percent fatigue. CONCLUSIONS Future studies must consider sampling times after metabolic stress in order to quantify changes in MDA concentration.
Collapse
|