1
|
Paris MT, Zero AM, Rice CL. Influence of stimulation frequency on early and late phase rate of torque and velocity development. J Appl Physiol (1985) 2024; 137:349-356. [PMID: 38900861 DOI: 10.1152/japplphysiol.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The early (≤50 ms) rate of torque development (RTD) is dependent upon the speed of neuromuscular activation; however, few studies have evaluated the determinants of rate of velocity development (RVD), which may be load-dependent. The purpose here was to explore the relationship between stimulation frequency with the early and late (≥100 ms) phase isometric RTD and isotonic RVD. The knee extensors of 16 (five female) young recreationally active participants were stimulated using 14 frequencies from 1 to 100 Hz during isometric and isotonic ("unloaded" and 7.5% of the isometric maximal voluntary contraction [MVC]) contractions. Isometric RTD and isotonic RVD were evaluated for the early (0-50 ms) and late (0-100 ms) phases from torque and velocity onset, respectively. Sigmoid functions were fit and bilinear regressions were used to examine the slopes of the steep portion of the curve and the plateau frequency. RTD- and RVD-frequency relationships were well described by a sigmoid function (all r2 > 0.96). Compared with the late phase, early isometric RTD, and unloaded RVD displayed lower slopes (all P ≤ 0.001) and higher plateau frequencies (all P < 0.001). In contrast, early and late RVD of a moderately loaded isotonic contraction did not display different slopes (P = 0.055) or plateau frequencies (P = 0.690). Early isometric RTD and unloaded isotonic RVD are more dependent on changes in stimulation frequency compared with late phases. However, RVD for a moderately loaded isotonic contraction displayed similar responses for the early and late phases. Therefore, a high frequency of activation is critical for early torque and velocity generation but dependent upon the load for isotonic contractions.NEW & NOTEWORTHY We show that during an "unloaded" isotonic contraction, the early phase rate of velocity development is more dependent upon a high electrical activation frequency compared with the late phase, similar to isometric torque. However, early and late phase rates of velocity development of moderately loaded isotonic contractions display similar responses. These results indicate that the determinants of isotonic shortening function are dependent on the externally applied load, highlighting the importance of task-specificity of contraction.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Zero AM, Paris MT, Rice CL. Differential effects of stimulation frequency on isometric and concentric isotonic contractile function in human quadriceps. J Appl Physiol (1985) 2024; 137:111-124. [PMID: 38841755 DOI: 10.1152/japplphysiol.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Electrically evoked contractions are used to assess the relationship between frequency input and contractile output to characterize inherent muscle function, and these have been done mostly with isometric contractions (i.e., no joint rotation). The purpose was to compare the electrically stimulated frequency and contractile function relationship during isometric (i.e., torque) with isotonic (i.e., concentric torque, angular velocity, and mechanical power) contractions. The knee extensors of 16 (5 female) young recreationally active participants were stimulated (∼1-2.5 s) at 14 frequencies from 1 to 100 Hz. This was done during four conditions, which were isometric and isotonic at loads of 0 (unloaded), 7.5%, and 15% isometric maximal voluntary contraction (MVC), and repeated on separate days. Comparisons across contractile parameters were made as a % of 100 Hz. Independent of the load, the mechanical power-frequency relationship was rightward shifted compared with isometric torque-frequency, concentric torque-frequency, and velocity-frequency relationships (all P ≤ 0.04). With increasing load (0%-15% MVC), the isotonic concentric torque-frequency relationship was shifted leftward systematically from 15 to 30 Hz (all P ≤ 0.04). Conversely, the same changes in load caused a rightward shift in the velocity-frequency relationship from 1 to 40 Hz (all P ≤ 0.03). Velocity was leftward shifted of concentric torque in the unloaded isotonic condition from 10 to 25 Hz (all P ≤ 0.03), but concentric torque was leftward shifted of velocity at 15% MVC isotonic condition from 10 to 50 Hz (all P ≤ 0.03). Therefore, isometric torque is not a surrogate to evaluate dynamic contractile function. Interpretations of evoked contractile function differ depending on contraction type, load, and frequency, which should be considered relative to the specific task.NEW & NOTEWORTHY In whole human muscle, we showed that the electrically stimulated power-frequency relationship was rightward shifted of the stimulated isometric torque-frequency relationship independent of isotonic load, indicating that higher stimulation frequencies are needed to achieve tetanus. Therefore, interpretations of evoked contractile function differ depending on contraction type (isometric vs. dynamic), load, and frequency. And thus, isometric measures may not be appropriate as a surrogate assessment when evaluating dynamic isotonic contractile function.
Collapse
Affiliation(s)
- Alexander M Zero
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Michael T Paris
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Faculty of Health, School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Charles L Rice
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Cuadra C, Wolf SL, Lyle MA. Heteronymous feedback from quadriceps onto soleus in stroke survivors. RESEARCH SQUARE 2024:rs.3.rs-4540327. [PMID: 38978589 PMCID: PMC11230478 DOI: 10.21203/rs.3.rs-4540327/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. Methods Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% max. Fugl-Myer assessment of lower extremity, 10-meter walk test, and Mini-BESTest were assessed in stroke survivors. Results Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). Conclusions Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.
Collapse
|
4
|
Cuadra C, Wolf SL, Lyle MA. Differential effect of heteronymous feedback from femoral nerve and quadriceps muscle stimulation onto soleus H-reflex. PLoS One 2023; 18:e0290078. [PMID: 37578948 PMCID: PMC10424854 DOI: 10.1371/journal.pone.0290078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
Excitatory feedback from muscle spindles, and inhibitory feedback from Golgi tendon organs and recurrent inhibitory circuits are widely distributed within the spinal cord to modulate activity between human lower limb muscles. Heteronymous feedback is most commonly studied in humans by stimulating peripheral nerves, but the unique effect of non-spindle heteronymous feedback is difficult to determine due to the lower threshold of excitatory spindle axons. A few studies suggest stimulation of the muscle belly preferentially elicits non-spindle heteronymous feedback. However, there remains a lack of consensus on the differential effect of nerve and muscle stimulation onto the H-reflex, and the relation of the heteronymous effects onto H-reflex compared to that onto ongoing EMG has not been determined. In this cross-sectional study, we compared excitatory and inhibitory effects from femoral nerve and quadriceps muscle belly stimulation onto soleus H-reflex size in 15 able-bodied participants and in a subset also compared heteronymous effects onto ongoing soleus EMG at 10% and 20% max. Femoral nerve stimulation elicited greater excitation of the H-reflex compared to quadriceps stimulation. The differential effect was also observed onto ongoing soleus EMG at 20% max but not 10%. Femoral nerve and quadriceps stimulation elicited similar inhibition of the soleus H-reflexes, and these results were better associated with soleus EMG at 20%. The results support surface quadriceps muscles stimulation as a method to preferentially study heteronymous inhibition at least in healthy adults. The primary benefit of using muscle stimulation is expected to be in persons with abnormal, prolonged heteronymous excitation. These data further suggest heteronymous feedback should be evaluated with H-reflex or onto ongoing EMG of at least 20% max to identify group differences or modulation of heteronymous feedback in response to treatment or task.
Collapse
Affiliation(s)
- Cristian Cuadra
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Steven L. Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Senior Research Scientist, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
| | - Mark A. Lyle
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Kim H, Heckman CJ. A dynamic calcium-force relationship model for sag behavior in fast skeletal muscle. PLoS Comput Biol 2023; 19:e1011178. [PMID: 37289805 DOI: 10.1371/journal.pcbi.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
In vitro studies using isolated or skinned muscle fibers suggest that the sigmoidal relationship between the intracellular calcium concentration and force production may depend upon muscle type and activity. The goal of this study was to investigate whether and how the calcium-force relationship changes during force production under physiological conditions of muscle excitation and length in fast skeletal muscles. A computational framework was developed to identify the dynamic variation in the calcium-force relationship during force generation over a full physiological range of stimulation frequencies and muscle lengths in cat gastrocnemius muscles. In contrast to the situation in slow muscles such as the soleus, the calcium concentration for the half-maximal force needed to drift rightward to reproduce the progressive force decline, or sag behavior, observed during unfused isometric contractions at the intermediate length under low-frequency stimulation (i.e., 20 Hz). The slope at the calcium concentration for the half-maximal force was required to drift upward for force enhancement during unfused isometric contractions at the intermediate length under high-frequency stimulation (i.e., 40 Hz). The slope variation in the calcium-force relationship played a crucial role in shaping sag behavior across different muscle lengths. The muscle model with dynamic variations in the calcium-force relationship also accounted for the length-force and velocity-force properties measured under full excitation. These results imply that the calcium sensitivity and cooperativity of force-inducing crossbridge formation between actin and myosin filaments may be operationally altered in accordance with the mode of neural excitation and muscle movement in intact fast muscles.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Biotechnology, Institute of Convergence Research, DGIST, Daegu, Republic of Korea
- Department of Interdisciplinary Studies, DGIST, Daegu, Republic of Korea
| | - Charles J Heckman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Connolly S, Peeling P, Binnie MJ, Goods PSR, Latella C, Taylor JL, Blazevich AJ, Timmerman WP, Abbiss CR. Sprint cycling rate of torque development associates with strength measurement in trained cyclists. Eur J Appl Physiol 2023; 123:1215-1227. [PMID: 36763121 DOI: 10.1007/s00421-023-05143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE A cyclist's rate of force/torque development (RFD/RTD) and peak force/torque can be measured during single-joint or whole-body isometric tests, or during cycling. However, there is limited understanding of the relationship between these measures, and of the mechanisms that contribute to each measure. Therefore, we examined the: (i) relationship between quadriceps central and peripheral neuromuscular function with RFD/RTD in isometric knee extension, isometric mid-thigh pull (IMTP), and sprint cycling; and (ii) relationship among RFD/RTD and peak force/torque between protocols. METHODS Eighteen trained cyclists completed two familiarisation and two experimental sessions. Each session involved an isometric knee extension, IMTP, and sprint cycling protocol, where peak force/torque, average and peak RFD/RTD, and early (0-100 ms) and late (0-200 ms) RFD/RTD were measured. Additionally, measures of quadriceps central and peripheral neuromuscular function were assessed during the knee extension. RESULTS Strong relationships were observed between quadriceps early EMG activity (EMG50/M) and knee extension RTD (r or ρ = 0.51-0.65) and IMTP late RFD (r = 0.51), and between cycling early or late RTD and peak twitch torque (r or ρ = 0.70-0.75). Strong-to-very strong relationships were observed between knee extension, IMTP, and sprint cycling for peak force/torque, early and late RFD/RTD, and peak RFD/RTD (r or ρ = 0.59-0.80). CONCLUSION In trained cyclists, knee extension RTD or IMTP late RFD are related to measures of quadriceps central neuromuscular function, while cycling RTD is related to measures of quadriceps peripheral neuromuscular function. Further, the strong associations among force/torque measures between tasks indicate a level of transferability across tasks.
Collapse
Affiliation(s)
- Shannon Connolly
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia. .,Western Australian Institute of Sport, Mount Claremont, Perth, WA, Australia.
| | - Peter Peeling
- Western Australian Institute of Sport, Mount Claremont, Perth, WA, Australia.,School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Perth, WA, Australia
| | - Martyn J Binnie
- Western Australian Institute of Sport, Mount Claremont, Perth, WA, Australia.,School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Perth, WA, Australia
| | - Paul S R Goods
- Western Australian Institute of Sport, Mount Claremont, Perth, WA, Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Christopher Latella
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neurophysiology Research Laboratory, Edith Cowan University, Perth, WA, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neurophysiology Research Laboratory, Edith Cowan University, Perth, WA, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Wouter P Timmerman
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Chris R Abbiss
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
7
|
Lyle MA, Cuadra C, Wolf SL. Quadriceps muscle stimulation evokes heteronymous inhibition onto soleus with limited Ia activation compared to femoral nerve stimulation. Exp Brain Res 2022; 240:2375-2388. [PMID: 35881156 PMCID: PMC10314715 DOI: 10.1007/s00221-022-06422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Heteronymous excitatory feedback from muscle spindles and inhibitory feedback from Golgi tendon organs and recurrent inhibitory circuits can influence motor coordination. The functional role of inhibitory feedback is difficult to determine, because nerve stimulation, the primary method used in humans, cannot evoke inhibition without first activating the largest diameter muscle spindle axons. Here, we tested the hypothesis that quadriceps muscle stimulation could be used to examine heteronymous inhibition more selectively when compared to femoral nerve stimulation by comparing the effects of nerve and muscle stimulation onto ongoing soleus EMG held at 20% of maximal effort. Motor threshold and two higher femoral nerve and quadriceps stimulus intensities matched by twitch evoked torque magnitudes were examined. We found that significantly fewer participants exhibited excitation during quadriceps muscle stimulation when compared to nerve stimulation (14-29% vs. 64-71% of participants across stimulation intensities) and the magnitude of heteronymous excitation from muscle stimulation, when present, was much reduced compared to nerve stimulation. Muscle and nerve stimulation resulted in heteronymous inhibition that significantly increased with increasing stimulation evoked torque magnitudes. This study provides novel evidence that muscle stimulation may be used to more selectively examine inhibitory heteronymous feedback between muscles in the human lower limb when compared to nerve stimulation.
Collapse
Affiliation(s)
- Mark A Lyle
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA.
| | - Cristian Cuadra
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Steven L Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA
- Senior Research Scientist, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, GA, USA
| |
Collapse
|
8
|
Majdi JA, Acuña SA, Chitnis PV, Sikdar S. Toward a wearable monitor of local muscle fatigue during electrical muscle stimulation using tissue Doppler imaging. WEARABLE TECHNOLOGIES 2022; 3:e16. [PMID: 38486895 PMCID: PMC10936279 DOI: 10.1017/wtc.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 03/17/2024]
Abstract
Electrical muscle stimulation (EMS) is widely used in rehabilitation and athletic training to generate involuntary muscle contractions. However, EMS leads to rapid muscle fatigue, limiting the force a muscle can produce during prolonged use. Currently available methods to monitor localized muscle fatigue and recovery are generally not compatible with EMS. The purpose of this study was to examine whether Doppler ultrasound imaging can assess changes in stimulated muscle twitches that are related to muscle fatigue from electrical stimulation. We stimulated five isometric muscle twitches in the medial and lateral gastrocnemius of 13 healthy subjects before and after a fatiguing EMS protocol. Tissue Doppler imaging of the medial gastrocnemius recorded muscle tissue velocities during each twitch. Features of the average muscle tissue velocity waveforms changed immediately after the fatiguing stimulation protocol (peak velocity: -38%, p = .022; time-to-zero velocity: +8%, p = .050). As the fatigued muscle recovered, the features of the average tissue velocity waveforms showed a return towards their baseline values similar to that of the normalized ankle torque. We also found that features of the average tissue velocity waveform could significantly predict the ankle twitch torque for each participant (R2 = 0.255-0.849, p < .001). Our results provide evidence that Doppler ultrasound imaging can detect changes in muscle tissue during isometric muscle twitch that are related to muscle fatigue, fatigue recovery, and the generated joint torque. Tissue Doppler imaging may be a feasible method to monitor localized muscle fatigue during EMS in a wearable device.
Collapse
Affiliation(s)
- Joseph A. Majdi
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA
- Center for Adaptive Systems of Brain–Body Interactions, George Mason University, Fairfax, Virginia, USA
| | - Samuel A. Acuña
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA
- Center for Adaptive Systems of Brain–Body Interactions, George Mason University, Fairfax, Virginia, USA
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA
- Center for Adaptive Systems of Brain–Body Interactions, George Mason University, Fairfax, Virginia, USA
| | - Siddhartha Sikdar
- Department of Bioengineering, George Mason University, Fairfax, Virginia, USA
- Center for Adaptive Systems of Brain–Body Interactions, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
9
|
Boulain M, Khsime I, Sourioux M, Thoby-Brisson M, Barrière G, Simmers J, Morin D, Juvin L. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. J Physiol 2021; 599:4477-4496. [PMID: 34412148 DOI: 10.1113/jp281861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Stimulation of hindlimb afferent fibres can both stabilize and increase the activity of fore- and hindlimb motoneurons during fictive locomotion. The increase in motoneuron activity is at least partially due to the production of doublets of action potentials in a subpopulation of motoneurons. These results were obtained using an in vitro brainstem/spinal cord preparation of neonatal rat. ABSTRACT Quadrupedal locomotion relies on a dynamic coordination between central pattern generators (CPGs) located in the cervical and lumbar spinal cord, and controlling the fore- and hindlimbs, respectively. It is assumed that this CPG interaction is achieved through separate closed-loop processes involving propriospinal and sensory pathways. However, the functional consequences of a concomitant involvement of these different influences on the degree of coordination between the fore- and hindlimb CPGs is still largely unknown. Using an in vitro brainstem/spinal cord preparation of neonatal rat, we found that rhythmic, bilaterally alternating stimulation of hindlimb sensory input pathways elicited coordinated hindlimb and forelimb CPG activity. During pharmacologically induced fictive locomotion, lumbar dorsal root (DR) stimulation entrained and stabilized an ongoing cervico-lumbar locomotor-like rhythm and increased the amplitude of both lumbar and cervical ventral root bursting. The increase in cervical burst amplitudes was correlated with the occurrence of doublet action potential firing in a subpopulation of motoneurons, enabling the latter to transition between low and high frequency discharge according to the intensity of DR stimulation. Moreover, our data revealed that propriospinal and sensory pathways act synergistically to strengthen cervico-lumbar interactions. Indeed, split-bath experiments showed that fully coordinated cervico-lumbar fictive locomotion was induced by combining pharmacological stimulation of either the lumbar or cervical CPGs with lumbar DR stimulation. This study thus highlights the powerful interactions between sensory and propriospinal pathways which serve to ensure the coupling of the fore- and hindlimb CPGs for effective quadrupedal locomotion.
Collapse
Affiliation(s)
- Marie Boulain
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Mélissa Sourioux
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
10
|
Hessel AL, Monroy JA, Nishikawa KC. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Front Physiol 2021; 12:648019. [PMID: 33854441 PMCID: PMC8039322 DOI: 10.3389/fphys.2021.648019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jenna A Monroy
- W.M. Keck Science Department, Claremont Colleges, Claremont, CA, United States
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
11
|
Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Passive muscle stretching impairs rapid force production and neuromuscular function in human plantar flexors. Eur J Appl Physiol 2019; 119:2673-2684. [PMID: 31650306 DOI: 10.1007/s00421-019-04244-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE We examined the effect of muscle stretching on the ability to produce rapid torque and the mechanisms underpinning the changes. METHODS Eighteen men performed three conditions: (1) continuous stretch (1 set of 5 min), (2) intermittent stretch (5 sets of 1 min with 15-s inter-stretch interval), and (3) control. Isometric plantar flexor rate of torque development was measured during explosive maximal voluntary contractions (MVC) in the intervals 0-100 ms (RTDV100) and 0-200 ms (RTDV200), and in electrically evoked 0.5-s tetanic contractions (20 Hz, 20 Hz preceded by a doublet and 80 Hz). The rate of EMG rise, electromechanical delay during MVC (EMDV) and during a single twitch contraction (EMDtwitch) were assessed. RESULTS RTDV200 was decreased (P < 0.05) immediately after continuous (- 15%) and intermittent stretch (- 30%) with no differences between protocols. The rate of torque development during tetanic stimulations was reduced (P < 0.05) immediately after continuous (- 8%) and intermittent stretch (- 10%), when averaged across stimulation frequencies. Lateral gastrocnemius rate of EMG rise was reduced after intermittent stretch (- 27%), and changes in triceps surae rate of EMG rise were correlated with changes in RTDV200 after both continuous (r = 0.64) and intermittent stretch (r = 0.65). EMDV increased immediately (31%) and 15 min (17%) after intermittent stretch and was correlated with changes in RTDV200 (r = - 0.56). EMDtwitch increased immediately after continuous (4%), and immediately (5.4%), 15 min (6.3%), and 30 min after (6.4%) intermittent stretch (P < 0.05). CONCLUSIONS Reductions in the rate of torque development immediately after stretching were associated with both neural and mechanical mechanisms.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Victoria Park Road, Kelvin Grove, QLD, 4059, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.
| | - Laurent B Seitz
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
12
|
Lin DC, McGowan CP, Blum KP, Ting LH. Yank: the time derivative of force is an important biomechanical variable in sensorimotor systems. ACTA ACUST UNITED AC 2019; 222:222/18/jeb180414. [PMID: 31515280 DOI: 10.1242/jeb.180414] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The derivative of force with respect to time does not have a standard term in physics. As a consequence, the quantity has been given a variety of names, the most closely related being 'rate of force development'. The lack of a proper name has made it difficult to understand how different structures and processes within the sensorimotor system respond to and shape the dynamics of force generation, which is critical for survival in many species. We advocate that ∂[Formula: see text]/∂t be termed 'yank', a term that has previously been informally used and never formally defined. Our aim in this Commentary is to establish the significance of yank in how biological motor systems are organized, evolve and adapt. Further, by defining the quantity in mathematical terms, several measurement variables that are commonly reported can be clarified and unified. In this Commentary, we first detail the many types of motor function that are affected by the magnitude of yank generation, especially those related to time-constrained activities. These activities include escape, prey capture and postural responses to perturbations. Next, we describe the multi-scale structures and processes of the musculoskeletal system that influence yank and can be modified to increase yank generation. Lastly, we highlight recent studies showing that yank is represented in the sensory feedback system, and discuss how this information is used to enhance postural stability and facilitate recovery from postural perturbations. Overall, we promote an increased consideration of yank in studying biological motor and sensory systems.
Collapse
Affiliation(s)
- David C Lin
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA .,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.,Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Craig P McGowan
- Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.,WWAMI Medical Education Program, Moscow, ID 83844, USA
| | - Kyle P Blum
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Kirk BJC, Trajano GS, Pulverenti TS, Rowe G, Blazevich AJ. Neuromuscular Factors Contributing to Reductions in Muscle Force After Repeated, High-Intensity Muscular Efforts. Front Physiol 2019; 10:783. [PMID: 31293449 PMCID: PMC6601466 DOI: 10.3389/fphys.2019.00783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023] Open
Abstract
Multiple neuromuscular processes contribute to the loss of force production following repeated, high-intensity muscular efforts; however, the relative contribution of each process is unclear. In Experiment 1, 16 resistance trained men performed six sets of unilateral isometric plantar flexor contractions of the right leg (3 s contraction/2 s rest; 85% maximal voluntary contraction torque; 90-s inter-set rest) until failure with and without caffeine ingestion (3 mg kg-1) on two separate days. Corticospinal excitability and cortical silent period (cSP) were assessed before and immediately, 10 and 20 min after the exercise. In Experiment 2, electrically evoked tetanic force and persistent inward current (PIC)-mediated facilitation of the motor neuron pool (estimated using neuromuscular electrical stimulation with tendon vibration) were assessed before and after the same exercise intervention in 17 resistance trained men. Results showed decreases in peak plantar flexion torque (Experiment 1: -12.2%, Experiment 2: -16.9%), electrically evoked torque (20 Hz -15.3%, 80 Hz -15.3%, variable-frequency train -17.9%), and cSP (-3.8%; i.e., reduced inhibition) post-exercise which did not recover by 20 min. Electromyographic activity (EMG; -6%), corticospinal excitability (-9%), and PIC facilitation (-24.8%) were also reduced post-exercise but recovered by 10 min. Caffeine ingestion increased torque and EMG but did not notably affect corticospinal excitability, PIC amplification, or electrically evoked torque. The data indicate that a decrease in muscle function largely underpins the loss of force after repeated, high-intensity muscular efforts, but that the loss is exacerbated immediately after the exercise by simultaneous decreases in corticospinal excitability and PIC amplitudes at the motor neurons.
Collapse
Affiliation(s)
- Benjamin J C Kirk
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Timothy S Pulverenti
- Department of Physical Therapy, College of Staten Island, Staten Island, NY, United States
| | - Grant Rowe
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
14
|
Nishikawa KC, Monroy JA, Tahir U. Muscle Function from Organisms to Molecules. Integr Comp Biol 2019; 58:194-206. [PMID: 29850810 DOI: 10.1093/icb/icy023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gaps in our understanding of muscle contraction at the molecular level limit the ability to predict in vivo muscle forces in humans and animals during natural movements. Because muscles function as motors, springs, brakes, or struts, it is not surprising that uncertainties remain as to how sarcomeres produce these different behaviors. Current theories fail to explain why a single extra stimulus, added shortly after the onset of a train of stimuli, doubles the rate of force development. When stretch and doublet stimulation are combined in a work loop, muscle force doubles and work increases by 50% per cycle, yet no theory explains why this occurs. Current theories also fail to predict persistent increases in force after stretch and decreases in force after shortening. Early studies suggested that all of the instantaneous elasticity of muscle resides in the cross-bridges. Subsequent cross-bridge models explained the increase in force during active stretch, but required ad hoc assumptions that are now thought to be unreasonable. Recent estimates suggest that cross-bridges account for only ∼12% of the energy stored by muscles during active stretch. The inability of cross-bridges to account for the increase in force that persists after active stretching led to development of the sarcomere inhomogeneity theory. Nearly all predictions of this theory fail, yet the theory persists. In stretch-shortening cycles, muscles with similar activation and contractile properties function as motors or brakes. A change in the phase of activation relative to the phase of length changes can convert a muscle from a motor into a spring or brake. Based on these considerations, it is apparent that the current paradigm of muscle mechanics is incomplete. Recent advances in our understanding of giant muscle proteins, including twitchin and titin, allow us to expand our vision beyond cross-bridges to understand how muscles contribute to the biomechanics and control of movement.
Collapse
Affiliation(s)
- Kiisa C Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| | - Jenna A Monroy
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711-5916, USA
| | - Uzma Tahir
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| |
Collapse
|
15
|
Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, Hunt KJ. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil 2019; 16:5. [PMID: 30616683 PMCID: PMC6322281 DOI: 10.1186/s12984-018-0471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During functional electrical stimulation (FES) tasks with able-bodied (AB) participants, spatially distributed sequential stimulation (SDSS) has demonstrated substantial improvements in power output and fatigue properties compared to conventional single electrode stimulation (SES). The aim of this study was to compare the properties of SDSS and SES in participants with spinal cord injury (SCI) in a dynamic isokinetic knee extension task simulating knee movement during recumbent cycling. METHOD Using a case-series design, m. vastus lateralis and medialis of four participants with motor and sensory complete SCI (AIS A) were stimulated for 6 min on both legs with both electrode setups. With SES, target muscles were stimulated by a pair of electrodes. In SDSS, the distal electrodes were replaced by four small electrodes giving the same overall stimulation frequency and having the same total surface area. Torque was measured during knee extension by a dynamometer at an angular velocity of 110 deg/s. Mean power of the left and right sides (PmeanL,R) was calculated from all stimulated extensions for initial, final and all extensions. Fatigue is presented as an index value with respect to initial power from 1 to 0, whereby 1 means no fatigue. RESULTS SDSS showed higher PmeanL,R values for all four participants for all extensions (increases of 132% in participant P1, 100% in P2, 36% in P3 and 18% in P4 compared to SES) and for the initial phase (increases of 84%, 59%, 66%, and 16%, respectively). Fatigue resistance was better with SDSS for P1, P2 and P4 but worse for P3 (0.47 vs 0.35, 0.63 vs 0.49, 0.90 vs 0.82 and 0.59 vs 0.77, respectively). CONCLUSION Consistently higher PmeanL,R was observed for all four participants for initial and overall contractions using SDSS. This supports findings from previous studies with AB participants. Fatigue properties were better in three of the four participants. The lower fatigue resistance with SDSS in one participant may be explained by a very low muscle activation level in this case. Further investigation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Marco Laubacher
- Department of Physical Therapy, University of Delaware, Newark, United States of America.
| | - Efe A Aksoez
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Anne K Brust
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Michael Baumberger
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | - Robert Riener
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | | | | |
Collapse
|
16
|
Kryściak K, Celichowski J, Krutki P, Raikova R, Drzymała-Celichowska H. Factors contributing to sag in unfused tetanic contractions of fast motor units in rat medial gastrocnemius. J Electromyogr Kinesiol 2018; 44:70-77. [PMID: 30529806 DOI: 10.1016/j.jelekin.2018.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
The sag phenomenon can be observed in fast motor units (MUs) as a transitional decline in force during unfused tetanic contractions; however, its mechanisms are poorly understood. The study aimed to identify in the rat muscle factors that contribute to sag in two types of fast MUs: fast fatigable (FF) and fast resistant to fatigue (FR). First, we performed mathematical decomposition of sagging tetanic contractions of FF and FR MUs into twitch-like responses to consecutive stimuli. This process indicated an increase in the amplitudes of a few initial responses (up to the 2nd-3rd for FF and up to the 2nd-7th for FR MUs), followed by a decrease in the amplitudes of later responses. In comparison to the first twitch, the relative increase in force amplitudes of the several subsequent decomposed responses was smaller, and their contraction and relaxation times were shorter for FF than for FR units, which corresponded to observed differences in their sag profiles. Additionally, after occlusion of the blood circulation, sag disappeared, but it reappeared after restoration of the blood supply. This indicates that the presence of sag depends on the proper circulation in the muscle.
Collapse
Affiliation(s)
- K Kryściak
- Department of Neurobiology, Poznan University of Physical Education, Poland.
| | - J Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - P Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - R Raikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - H Drzymała-Celichowska
- Department of Neurobiology, Poznan University of Physical Education, Poland; Division of Biochemistry, Poznan University of Physical Education, Poland
| |
Collapse
|
17
|
Barley OR, Chapman DW, Blazevich AJ, Abbiss CR. Acute Dehydration Impairs Endurance Without Modulating Neuromuscular Function. Front Physiol 2018; 9:1562. [PMID: 30450056 PMCID: PMC6224374 DOI: 10.3389/fphys.2018.01562] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction/Purpose: This study examined the influence of acute dehydration on neuromuscular function. Methods: On separate days, combat sports athletes experienced in acute dehydration practices (n = 14) completed a 3 h passive heating intervention (40°C, 63% relative humidity) to induce dehydration (DHY) or a thermoneutral euhydration control (25°C, 50% relative humidity: CON). In the ensuing 3 h ad libitum fluid and food intake was allowed, after which participants performed fatiguing exercise consisting of repeated unilateral knee extensions at 85% of their maximal voluntary isometric contraction (MVIC) torque until task failure. Both before and after the fatiguing protocol participants performed six MVICs during which measures of central and peripheral neuromuscular function were made. Urine and whole blood samples to assess urine specific gravity, urine osmolality, haematocrit and serum osmolality were collected before, immediately and 3 h after intervention. Results: Body mass was reduced by 3.2 ± 1.1% immediately after DHY (P < 0.001) but recovered by 3 h. Urine and whole blood markers indicated dehydration immediately after DHY, although blood markers were not different to CON at 3 h. Participants completed 28% fewer knee extensions at 85% MVIC (P < 0.001, g = 0.775) and reported a greater perception of fatigue (P = 0.012) 3 h after DHY than CON despite peak torque results being unaffected. No between-condition differences were observed in central or peripheral indicators of neuromuscular function at any timepoint. Conclusion: Results indicate that acute dehydration of 3.2% body mass followed by 3 h of recovery impairs muscular strength-endurance and increases fatigue perception without changes in markers of central or peripheral function. These findings suggest that altered fatigue perception underpins muscular performance decrements in recovery from acute dehydration.
Collapse
Affiliation(s)
- Oliver R Barley
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dale W Chapman
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
18
|
Sober SJ, Sponberg S, Nemenman I, Ting LH. Millisecond Spike Timing Codes for Motor Control. Trends Neurosci 2018; 41:644-648. [PMID: 30274598 DOI: 10.1016/j.tins.2018.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
Millisecond variations in spiking patterns can radically alter motor behavior, suggesting that traditional rate-based theories of motor control require revision. The importance of spike timing in sensorimotor control arises from dynamic interactions between the nervous system, muscles, and the body. New mechanisms, model systems, and theories are revealing how these interactions shape behavior.
Collapse
Affiliation(s)
- Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Simon Sponberg
- School of Physics, School of Biological Sciences, Georgia Tech, Atlanta, GA 30332
| | - Ilya Nemenman
- Department of Physics, Department of Biology, and Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA 30322
| | - Lena H Ting
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory; Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322.
| |
Collapse
|
19
|
Surround inhibition can instantly be modulated by changing the attentional focus. Sci Rep 2018; 8:1085. [PMID: 29348536 PMCID: PMC5773585 DOI: 10.1038/s41598-017-19077-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/20/2017] [Indexed: 12/05/2022] Open
Abstract
To further investigate the mechanism of surround inhibition (SI) and to determine whether adopting different attentional strategies might have an impact on the modulation of SI, the effects of adopting an external (EF) or internal focus of attention (IF) on SI and motor performance were investigated. While performing an index flexion with either an EF or IF, transcranial magnetic stimulation was applied at various time points in 14 healthy subjects. When adopting an EF compared to an IF, the results show an improved motor performance (+14.7% in MVC) and a reduced bEMG in the adjacent APB (−22.3%) during maximal index flexion. This was accompanied by an increased SI in the APB with an EF (+26.4%). Additionally, the decrease in bEMG correlated with the magnitude of SI in APB. The current results demonstrate an efficient way to modulate SI by changing the attentional focus in healthy subjects and might, at least in part, explain the better motor performance being associated with an EF. The present findings help to better understand the positive mechanisms of an EF on SI in the healthy motor system and may also points towards a treatment strategy in pathologies with disturbed SI such as focal hand dystonia.
Collapse
|
20
|
Rodríguez-Rosell D, Pareja-Blanco F, Aagaard P, González-Badillo JJ. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging 2017; 38:743-762. [DOI: 10.1111/cpf.12495] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Affiliation(s)
- David Rodríguez-Rosell
- Centro de Investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, Seville, Spain
| | - Fernando Pareja-Blanco
- Centro de Investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, Seville, Spain
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
21
|
Barss TS, Ainsley EN, Claveria-Gonzalez FC, Luu MJ, Miller DJ, Wiest MJ, Collins DF. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review. Arch Phys Med Rehabil 2017; 99:779-791. [PMID: 28935232 DOI: 10.1016/j.apmr.2017.08.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Emily N Ainsley
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Francisca C Claveria-Gonzalez
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - M John Luu
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Doll BD, Kirsch NA, Bao X, Dicianno BE, Sharma N. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model. Muscle Nerve 2017; 57:634-641. [PMID: 28833237 DOI: 10.1002/mus.25777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Optimal frequency modulation during functional electrical stimulation (FES) may minimize or delay the onset of FES-induced muscle fatigue. METHODS An offline dynamic optimization method, constrained to a modified Hill-Huxley model, was used to determine the minimum number of pulses that would maintain a constant desired isometric contraction force. RESULTS Six able-bodied participants were recruited for the experiments, and their quadriceps muscles were stimulated while they sat on a leg extension machine. The force-time (F-T) integrals and peak forces after the pulse train was delivered were found to be statistically significantly greater than the force-time integrals and peak forces obtained after a constant frequency train was delivered. DISCUSSION Experimental results indicated that the optimized pulse trains induced lower levels of muscle fatigue compared with constant frequency pulse trains. This could have a potential advantage over current FES methods that often choose a constant frequency stimulation train. Muscle Nerve 57: 634-641, 2018.
Collapse
Affiliation(s)
- Brian D Doll
- Bechtel Marine Propulsion Corporation, Pittsburgh, Pennsylvania, USA
| | | | - Xuefeng Bao
- Department of Mechanical Engineering and Materials Science, 636 Benedum Hall, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Brad E Dicianno
- Department of Physical Medicine and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nitin Sharma
- Department of Mechanical Engineering and Materials Science, 636 Benedum Hall, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Bakker AJ, Cully TR, Wingate CD, Barclay CJ, Launikonis BS. Doublet stimulation increases Ca 2+ binding to troponin C to ensure rapid force development in skeletal muscle. J Gen Physiol 2017; 149:323-334. [PMID: 28209802 PMCID: PMC5339514 DOI: 10.1085/jgp.201611727] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
Fast-twitch skeletal muscle fibers are often exposed to motor neuron double discharges (≥200 Hz), which markedly increase both the rate of contraction and the magnitude of the resulting force responses. However, the mechanism responsible for these effects is poorly understood, likely because of technical limitations in previous studies. In this study, we measured cytosolic Ca2+ during doublet activation using the low-affinity indicator Mag-Fluo-4 at high temporal resolution and modeled the effects of doublet stimulation on sarcoplasmic reticulum (SR) Ca2+ release, binding of Ca2+ to cytosolic buffers, and force enhancement in fast-twitch fibers. Single isolated fibers respond to doublet pulses with two clear Ca2+ spikes, at doublet frequencies up to 1 KHz. A 200-Hz doublet at the start of a tetanic stimulation train (70 Hz) decreases the drop in free Ca2+ between the first three Ca2+ spikes of the transient, maintaining a higher overall free Ca2+ level during first 20-30 ms of the response. Doublet stimulation also increased the rate of force development in isolated fast-twitch muscles. We also modeled SR Ca2+ release rates during doublet stimulation and showed that Ca2+-dependent inactivation of ryanodine receptor activity is rapid, occurring ≤1ms after initial release. Furthermore, we modeled Ca2+ binding to the main intracellular Ca2+ buffers of troponin C (TnC), parvalbumin, and the SR Ca2+ pump during Ca2+ release and found that the main effect of the second response in the doublet is to more rapidly increase the occupation of the second Ca2+-binding site on TnC (TnC2), resulting in earlier activation of force. We conclude that doublet stimulation maintains high cytosolic Ca2+ levels for longer in the early phase of the Ca2+ response, resulting in faster saturation of TnC2 with Ca2+, faster initiation of cross-bridge cycling, and more rapid force development.
Collapse
Affiliation(s)
- Anthony J Bakker
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Tanya R Cully
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine D Wingate
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Christopher J Barclay
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Moss RL, Lynch TL, Fitzsimons DP. Acting on an impulse (or two): Advantages of high-frequency tetanic onset in skeletal muscle. J Gen Physiol 2017; 149:297-300. [PMID: 28213459 PMCID: PMC5339515 DOI: 10.1085/jgp.201711763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Moss et al. highlight why high-frequency bursts at the onset of tetany increase force development in fast-twitch skeletal muscle fibers.
Collapse
Affiliation(s)
- Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Thomas L Lynch
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Daniel P Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
25
|
Srivastava S, Kao PC, Reisman DS, Scholz JP, Agrawal SK, Higginson JS. Robotic Assist-As-Needed as an Alternative to Therapist-Assisted Gait Rehabilitation. ACTA ACUST UNITED AC 2016; 4. [PMID: 28580370 DOI: 10.4172/2329-9096.1000370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Body Weight Supported Treadmill Training (BWSTT) with therapists' assistance is often used for gait rehabilitation post-stroke. However, this training method is labor-intensive, requiring at least one or as many as three therapists at once for manual assistance. Previously, we demonstrated that providing movement guidance using a performance-based robot-aided gait training (RAGT) that applies a compliant, assist-as-needed force-field improves gait pattern and functional walking ability in people post-stroke. In the current study, we compared the effects of assist-as-needed RAGT combined with functional electrical stimulation and visual feedback with BWSTT to determine if RAGT could serve as an alternative for locomotor training. METHODS Twelve stroke survivors were randomly assigned to one of the two groups, either receiving BWSTT with manual assistance or RAGT with functional electrical stimulation and visual feedback. All subjects received fifteen 40-minutes training sessions. RESULTS Clinical measures, kinematic data, and EMG data were collected before and immediately after the training for fifteen sessions. Subjects receiving RAGT demonstrated significant improvements in their self-selected over-ground walking speed, Functional Gait Assessment, Timed Up and Go scores, swing-phase peak knee flexion angle, and muscle coordination pattern. Subjects receiving BWSTT demonstrated significant improvements in the Six-minute walk test. However, there was an overall trend toward improvement in most measures with both interventions, thus there were no significant between-group differences in the improvements following training. CONCLUSION The current findings suggest that RAGT worked at least as well as BWSTT and thus may be used as an alternative rehabilitation method to improve gait pattern post-stroke as it requires less physical effort from the therapists compared to BWSTT.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pei Chun Kao
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
| | - John P Scholz
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, Columbia University, USA
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, USA
| |
Collapse
|
26
|
Gittings W, Bunda J, Stull JT, Vandenboom R. Interaction of posttetanic potentiation and the catchlike property in mouse skeletal muscle. Muscle Nerve 2016; 54:308-16. [PMID: 26802366 DOI: 10.1002/mus.25053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Posttetanic potentiation (PTP) and the catchlike property (CLP) enhance contractile function in skeletal muscle. We investigated the CLP during dynamic performance in mouse hindlimb muscles with (wild-type) and without (skMLCK(-/-) ) the primary mechanism for PTP (myosin phosphorylation) (in vitro, 25°C). METHODS Extensor digitorum longus muscles of both genotypes were stimulated with constant frequency and catchlike trains (CFT and CLT), before and after a potentiating stimulus (PS). RESULTS Before the PS, the CLT increased concentric force/work relative to the CFT, but this effect was greater for skMLCK(-/-) than wild-type muscles. After the PS, the catchlike effect was reduced in wild-type muscles but unchanged in skMLCK(-/-) muscles that did not display PTP. CONCLUSIONS These data suggest that PTP interferes with the CLP during concentric force development at moderate speeds of shortening. We conclude that the physiological utility of each mechanism and their interactions provide important modulations to fast skeletal muscle function. Muscle Nerve 54: 308-316, 2016.
Collapse
Affiliation(s)
- William Gittings
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jordan Bunda
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
27
|
Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol 2016; 116:1091-116. [PMID: 26941023 PMCID: PMC4875063 DOI: 10.1007/s00421-016-3346-6] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022]
Abstract
The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50–75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.
Collapse
Affiliation(s)
- Nicola A Maffiuletti
- Human Performance Lab, Schulthess Clinic, Lengghalde 6, 8008, Zurich, Switzerland.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Jonathan Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Neale Tillin
- Department of Life Sciences, University of Roehampton, London, UK
| | - Jacques Duchateau
- Laboratory of Applied Biology, ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
28
|
Contribution of Corticospinal Modulation and Total Electrical Energy for Peripheral-Nerve-Stimulation-Induced Neuroplasticity as Indexed by Additional Muscular Force. Brain Stimul 2016; 9:133-40. [DOI: 10.1016/j.brs.2015.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/17/2023] Open
|
29
|
Zhou YX, Wang HP, Bao XL, Lü XY, Wang ZG. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features. J Neural Eng 2015; 13:016004. [DOI: 10.1088/1741-2560/13/1/016004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Catania KC. An Optimized Biological Taser: Electric Eels Remotely Induce or Arrest Movement in Nearby Prey. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:38-47. [PMID: 26398438 DOI: 10.1159/000435945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite centuries of interest in electric eels, few studies have investigated the mechanism of the eel's attack. Here, I review and extend recent findings that show eel electric high-voltage discharges activate prey motor neuron efferents. This mechanism allows electric eels to remotely control their targets using two different strategies. When nearby prey have been detected, eels emit a high-voltage volley that causes whole-body tetanus in the target, freezing all voluntary movement and allowing the eel to capture the prey with a suction feeding strike. When hunting for cryptic prey, eels emit doublets and triplets, inducing whole-body twitch in prey, which in turn elicits an immediate eel attack with a full volley and suction feeding strike. Thus, by using their modified muscles (electrocytes) as amplifiers of their own motor efferents, eel's motor neurons remotely activate prey motor neurons to cause movement (twitch and escape) or immobilization (tetanus) facilitating prey detection and capture, respectively. These results explain reports that human movement is 'frozen' by eel discharges and shows the mechanism to resemble a law-enforcement Taser.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tenn., USA
| |
Collapse
|
31
|
Wegrzyk J, Fouré A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, Place N, Bendahan D, Gondin J. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol 2015; 126:1400-12. [DOI: 10.1016/j.clinph.2014.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
32
|
Trajano GS, Nosaka K, B Seitz L, Blazevich AJ. Intermittent stretch reduces force and central drive more than continuous stretch. Med Sci Sports Exerc 2014; 46:902-10. [PMID: 24121249 DOI: 10.1249/mss.0000000000000185] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The relative contributions of central versus peripheral factors to the force loss induced by acute continuous and intermittent plantarflexor stretches were studied. METHODS Eighteen healthy young men with no apparent tissue stiffness limitations randomly performed 1) one 5-min stretch (continuous stretch [CS]), 2) five 1-min stretches (intermittent stretch [IS]), and 3) a control condition, on three separate days. The stretches were constant-torque ankle stretches performed on an isokinetic dynamometer. Gastrocnemius medialis oxygenation status was quantified during stretch using near-infrared spectroscopy. Measures of isometric plantarflexor peak torque (Tpeak), voluntary activation (%VA; interpolated twitch technique), EMG amplitude normalized by Mmax (EMG:M), V-wave amplitude, and excitation-contraction (E-C) coupling efficiency (torque ratio between 20- and 80-Hz tetanic stimulations [20:80]) were taken before, immediately, and 15 and 30 min after each condition. RESULTS IS caused substantial cyclic variations in tissue oxygenation, but CS resulted in a greater decrease in oxyhemoglobin concentration. Voluntary Tpeak decreased more after IS (-23.8%) than CS (-14.3%) and remained significantly depressed until 30 min after IS only (-5.6%). EMG:M (-27.7%) and %VA (-15.9%) were reduced only after IS. After CS and IS, the magnitude of decrease in Tpeak was correlated with decreases in EMG:M (r = 0.81 and 0.89, respectively), %VA (r = 0.78 and 0.93), and V-wave (r = 0.51, only after IS). Tetanic torque values (20 and 80 Hz) were decreased after IS (-13.1% and -6.4%, respectively) and CS (-10.9% and -6.7%, respectively), but 20:80 was not different from the control group. CONCLUSION These results suggest that IS reduced Tpeak more than CS, and these reductions were strongly associated with a depression in central drive.
Collapse
Affiliation(s)
- Gabriel S Trajano
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, AUSTRALIA
| | | | | | | |
Collapse
|
33
|
Srivastava S, Kao PC, Kim SH, Stegall P, Zanotto D, Higginson JS, Agrawal SK, Scholz JP. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. IEEE Trans Neural Syst Rehabil Eng 2014; 23:956-63. [PMID: 25314703 DOI: 10.1109/tnsre.2014.2360822] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel robot-aided assist-as-needed gait training paradigm has been developed recently. This paradigm encourages subjects' active participation during training. Previous pilot studies demonstrated that assist-as-needed robot-aided gait training (RAGT) improves treadmill walking performance post-stroke. However, it is not known if there is an over-ground transfer of the training effects from RAGT on treadmill or long-term retention of the effects. The purpose of the current study was to examine the effects of assist-as-needed RAGT on over-ground walking pattern post-stroke. Nine stroke subjects received RAGT with visual feedback of each subject's instantaneous ankle malleolus position relative to a target template for 15 40-minute sessions. Clinical evaluations and gait analyses were performed before, immediately after, and 6 months post-training. Stroke subjects demonstrated significant improvements and some long-term retention of the improvements in their self-selected over-ground walking speed, Dynamic Gait Index, Timed Up and Go, peak knee flexion angle during swing phase and total hip joint excursion over the whole gait cycle for their affected leg . These preliminary results demonstrate that subjects improved their over-ground walking pattern and some clinical gait measures post-training suggesting that assist-as-needed RAGT including visual feedback may be an effective approach to improve over-ground walking pattern post-stroke.
Collapse
|
34
|
Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke. J Neurol Phys Ther 2014; 37:159-65. [PMID: 24189337 DOI: 10.1097/npt.0000000000000020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE In rehabilitation, examining how variables change over time can help define the minimal number of training sessions required to produce a desired change. The purpose of this study was to identify the time course of changes in gait biomechanics and walking function in persons with chronic stroke. METHODS Thirteen persons who were more than 6 months poststroke participated in 12 weeks of fast treadmill training combined with plantar- and dorsiflexor muscle functional electrical stimulation (FastFES). All participants completed testing before the start of intervention, after 4, 8, and 12 weeks of FastFES locomotor training. RESULTS Peak limb paretic propulsion, paretic limb propulsive integral, peak paretic limb knee flexion (P < 0.05 for all), and peak paretic trailing limb angle (P < 0.01) improved from pretraining to 4 weeks but not between 4 and 12 weeks. Self-selected walking speed and 6-minute walk test distance improved from pretraining to 4 weeks and from 4 to 12 weeks (P < 0.01 and P < 0.05, respectively for both). Timed Up & Go test time did not improve between pretraining and 4 weeks, but improved by 12 weeks (P = 0.24 and P < 0.01, respectively). DISCUSSION AND CONCLUSIONS The results demonstrate that walking function improves with a different time course compared with gait biomechanics in response to a locomotor training intervention in persons with chronic stroke. Thirty-six training sessions were necessary to achieve an increase in walking speed that exceeded the minimally clinically important difference. These findings should be considered when designing locomotor training interventions after stroke.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A63) for more insights from the authors.
Collapse
|
35
|
Harwood B, Rice CL. Short interspike intervals and double discharges of anconeus motor unit action potentials for the production of dynamic elbow extensions. J Neurophysiol 2014; 111:2039-46. [PMID: 24554783 DOI: 10.1152/jn.00412.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Incidence of double discharges (DDs; >100 Hz) and short interspike intervals (ISIs; >50 to <100 Hz) is reported to vary widely among different muscles and tasks, with a higher incidence in motor unit (MU) trains of fast muscles and for the production of fast contractions in humans. However, it is unclear whether human muscles with a large composition of slower motor units exhibit DDs or short ISIs when activated with maximal synaptic drive, such as those required for maximal velocity dynamic contractions. Thus the purpose of this study was to determine the effect of increasing peak contraction velocity on the incidence of DDs and short ISIs in the anconeus muscle. Seventeen anconeus MUs in 10 young males were recorded across dynamic elbow extensions ranging from low submaximal velocities (16% of maximal velocity) up to maximal velocities. A low incidence of DDs (4%) and short ISIs (29%) was observed among the 583 MU trains recorded. Despite the low incidence in individual MU trains, a majority (71% and 94%, respectively) of MUs exhibited at least one DD or short ISI. The number of short ISIs shared no variance with MU recruitment threshold (R(2) = 0.02), but their distribution was skewed toward higher peak velocities (G = -1.26) and a main effect of peak elbow extension velocity was observed (P < 0.05). Although a greater number of short ISIs was observed with increasing velocity, the low incidence of DDs and short ISIs in the anconeus muscle is likely related to the function of the anconeus as a stabilizer rather than voluntary elbow extensor torque and velocity production.
Collapse
Affiliation(s)
- B Harwood
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - C L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Papaiordanidou M, Billot M, Varray A, Martin A. Neuromuscular fatigue is not different between constant and variable frequency stimulation. PLoS One 2014; 9:e84740. [PMID: 24392155 PMCID: PMC3879309 DOI: 10.1371/journal.pone.0084740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
This study compared fatigue development of the triceps surae induced by two electrical stimulation protocols composed of constant and variable frequency trains (CFTs, VFTs, 450 trains, 30 Hz, 167 ms ON, 500 ms OFF and 146 ms ON, 500 ms OFF respectively). For the VFTs protocol a doublet (100 Hz) was used at the beginning of each train. The intensity used evoked 30% of a maximal voluntary contraction (MVC) and was defined using CFTs. Neuromuscular tests were performed before and after each protocol. Changes in excitation-contraction coupling were assessed by analysing the M-wave [at rest (Mmax) and during MVC (Msup)] and associated peak twitch (Pt). H-reflex [at rest (Hmax) and during MVC (Hsup)] and the motor evoked potential (MEP) during MVC were studied to assess spinal and corticospinal excitability of the soleus muscle. MVC decrease was similar between the protocols (−8%, P<0.05). Mmax, Msup and Pt decreased after both protocols (P<0.01). Hmax/Mmax was decreased (P<0.05), whereas Hsup/Msup and MEP/Msup remained unchanged after both protocols. The results indicate that CFTs and VFTs gave rise to equivalent neuromuscular fatigue. This fatigue resulted from alterations taking place at the muscular level. The finding that cortical and spinal excitability remained unchanged during MVC indicates that spinal and/or supraspinal mechanisms were activated to compensate for the loss of spinal excitability at rest.
Collapse
Affiliation(s)
- Maria Papaiordanidou
- Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
- Movement to Health Laboratory, Euromov, Montpellier 1 University, Montpellier, France
- * E-mail:
| | - Maxime Billot
- Movement to Health Laboratory, Euromov, Montpellier 1 University, Montpellier, France
- GRAME, Faculté de Médecine, Département de Kinésiologie, Université Laval, Québec, Canada
| | - Alain Varray
- Movement to Health Laboratory, Euromov, Montpellier 1 University, Montpellier, France
| | - Alain Martin
- INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Université de Bourgogne, UFR STAPS, Dijon, France
| |
Collapse
|
37
|
Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil 2013; 95:840-8. [PMID: 24378803 DOI: 10.1016/j.apmr.2013.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/26/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. DESIGN Single group pre-post preliminary study investigating a novel locomotor intervention. SETTING Research laboratory. PARTICIPANTS Individuals (N=13) with locomotor deficits after stroke. INTERVENTION FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. MAIN OUTCOME MEASURES Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. RESULTS Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each P<.02)-all of which were maintained at 3-month follow-up. Eleven of the 12 subjects achieved meaningful functional improvements. Baseline impairment was predictive of absolute, but not relative, functional change after training. CONCLUSIONS This report demonstrates the safety and feasibility of the FastFES intervention and supports further study of this promising locomotor intervention for persons poststroke.
Collapse
|
38
|
Ferrante S, Schauer T, Ferrigno G, Raisch J, Molteni F. The effect of using variable frequency trains during functional electrical stimulation cycling. Neuromodulation 2013; 11:216-26. [PMID: 22151099 DOI: 10.1111/j.1525-1403.2008.00169.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives. This paper describes an experimental investigation of variable frequency stimulation patterns as a means of increasing torque production and, hence, performance in cycling induced by functional electrical stimulation. Materials and Methods. Experiments were conducted on six able-bodied subjects stimulating both quadriceps during isokinetic trials. Constant-frequency trains (CFT) with 50-msec interpulse intervals and four catchlike-inducing trains (CIT) were tested. The CITs had an initial, brief, high-frequency burst of two pulses at the onset of or within a subtetanic low-frequency stimulation train. Each stimulation train consisted of the same number of pulses. The active torques produced by each train were compared. Parametric main effect ANOVA tests were performed on the active torque-time integral (TTI), on the active torque peaks and on the time needed to reach those peaks (T2P). Results. The electrical stimulation of the quadriceps produced active torques with mean peak values in the range of 1.6-3.5 Nm and a standard error below 0.2 Nm. CITs produced a significant increase of TTI and torque peaks compared with CFTs in all the experimental conditions. In particular, during the postfatigue trials, the CITs with the doublet placed in the middle of the train produced TTIs and torque peaks about 61% and 28% larger than the CFT pattern, respectively. In addition, the CITs showed the lowest reduction of the performance between prefatigue and postfatigue conditions. Conclusions. The use of CITs improves the functional electrical stimulation cycling performance compared with CFT stimulation. This application might have a relevant clinical importance for individuals with stroke where the residual sensation is still present and thus the maximization of the performance without an excessive increase of the stimulation intensity is advisable. Therefore, exercise intensity can be increased yielding a better muscle strength and endurance that may be beneficially for later gait training in individuals with stroke.
Collapse
Affiliation(s)
- Simona Ferrante
- Neuroengineering and Medical Robotics Laboratory, Bioengineering Department, Politecnico di Milano, Milano, Italy; Technische Universität Berlin, Fachgebiet Regelungssysteme (Control Systems Group), Berlin, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Systems and Control Theory Group, Magdeburg, Germany; and Centro di Riabilitazione Villa Beretta, Ospedale Valduce, Costa Masnaga, Lecco, Italy
| | | | | | | | | |
Collapse
|
39
|
Trajano GS, Seitz L, Nosaka K, Blazevich AJ. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors. J Appl Physiol (1985) 2013; 115:212-8. [PMID: 23661620 DOI: 10.1152/japplphysiol.00333.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present research was to identify the contribution of central vs. peripheral factors to the force loss after passive muscle stretching. Thirteen men randomly performed both a 5-min constant-torque stretch of the plantar flexors on an isokinetic dynamometer and a resting condition on 2 separate days. The triceps surae electromyogram (EMG) was recorded simultaneously with plantar flexor isometric torque. Measures of central drive, including the EMG amplitude normalized to the muscle compound action potential amplitude (EMG/M), percent voluntary activation and first volitional wave amplitude, and measures of peripheral function, including the twitch peak torque, 20-to-80-Hz tetanic torque ratio and torque during 20-Hz stimulation preceded by a doublet, were taken before and immediately and 15 min after each condition. Peak torque (-15.7%), EMG/M (-8.2%), and both twitch (-9.4%) and 20-Hz peak torques (-11.5%) were reduced immediately after stretch but recovered by 15 min. There were strong correlations between the torque loss and the reductions in central drive parameters (r = 0.65-0.93). Torque recovery was also strongly correlated with the recovery in EMG/M and percent voluntary activation (r = 0.77-0.81). The moderate decreases in measures of peripheral function were not related to the torque loss or recovery. These results suggest that 1) central factors were strongly related to the torque reduction immediately after stretch and during torque recovery; and 2) the muscle's contractile capacity was moderately reduced, although these changes were not associated with the torque reduction, and changes in excitation-contraction coupling efficiency were not observed.
Collapse
Affiliation(s)
- Gabriel S Trajano
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | |
Collapse
|
40
|
Magalhães FH, de Toledo DR, Kohn AF. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans. J Neuroeng Rehabil 2013; 10:32. [PMID: 23531240 PMCID: PMC3621298 DOI: 10.1186/1743-0003-10-32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.
Collapse
Affiliation(s)
- Fernando Henrique Magalhães
- Neuroscience Program and Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n,158, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
41
|
Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue. Am J Phys Med Rehabil 2011; 90:999-1011. [PMID: 22019979 DOI: 10.1097/phm.0b013e318238a2cf] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. DESIGN Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. RESULTS The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P < 0.001) than did the 90% burst duty cycle pattern. There was no significant interaction effect (P = 0.392) of electrical stimulation patterns and fatigue on the electrically induced contraction levels. CONCLUSIONS The lower burst duty cycle (10%) patterns of electrical stimulation produced stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.
Collapse
|
42
|
Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats. J Neurosci 2011; 31:5579-88. [PMID: 21490198 DOI: 10.1523/jneurosci.6641-10.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extra forces or torques are defined as forces or torques that are larger than would be expected from the input or stimuli, which can be mediated by properties intrinsic to motoneurons and/or to the muscle. The purpose of this study was to determine whether extra forces/torques evoked during electrical stimulation of the muscle or its nerve with variable frequency stimulation are modulated by muscle length/joint angle. A secondary aim was to determine whether extra forces/torques are generated by an intrinsic neuronal or muscle property. Experiments were conducted in 14 able-bodied human subjects and in eight adult decerebrate cats. Torque and force were measured in human and cat experiments, respectively. Extra forces/torques were evoked by stimulating muscles with surface electrodes (human experiments) or by stimulating the nerve with cuff electrodes (cat experiments). In humans and cats, extra forces/torques were larger at short muscle lengths, indicating that a similar regulatory mechanism is involved. In decerebrate cats, extra forces and length-dependent modulation were unaffected by intrathecal methoxamine injections, despite evidence of increased spinal excitability, and by transecting the sciatic nerve proximal to the nerve stimulations. Anesthetic nerve block experiments in two human subjects also failed to abolish extra torques and the length-dependent modulation. Therefore, these data indicate that extra forces/torques evoked during electrical stimulation of the muscle or nerve are muscle length-dependent and primarily mediated by an intrinsic muscle property.
Collapse
|
43
|
Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, Binder-Macleod SA. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 2011; 33:309-13. [PMID: 21183351 PMCID: PMC3042540 DOI: 10.1016/j.gaitpost.2010.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 11/13/2010] [Accepted: 11/28/2010] [Indexed: 02/02/2023]
Abstract
Gait dysfunctions are highly prevalent in individuals post-stroke and affect multiple lower extremity joints. Recent evidence suggests that treadmill walking at faster than self-selected speeds can help improve post-stroke gait impairments. Also, the combination of functional electrical stimulation (FES) and treadmill training has emerged as a promising post-stroke gait rehabilitation intervention. However, the differential effects of combining FES with treadmill walking at the fast versus a slower, self-selected speed have not been compared previously. In this study, we compared the immediate effects on gait while post-stroke individuals walked on a treadmill at their self-selected speed without FES (SS), at the SS speed with FES (SS-FES), at the fastest speed they are capable of attaining (FAST), and at the FAST speed with FES (FAST-FES). During SS-FES and FAST-FES, FES was delivered to paretic ankle plantarflexors during terminal stance and to paretic dorsiflexors during swing phase. Our results showed improvements in peak anterior ground reaction force (AGRF) and trailing limb angle during walking at FAST versus SS. FAST-FES versus SS-FES resulted in greater peak AGRF, trailing limb angle, and swing phase knee flexion. FAST-FES resulted in further increase in peak AGRF compared to FAST. We posit that the enhancement of multiple aspects of post-stroke gait during FAST-FES suggest that FAST-FES may have potential as a post-stroke gait rehabilitation intervention.
Collapse
Affiliation(s)
- Trisha M. Kesar
- Department of Physical Therapy, University of Delaware, Newark, DE, Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Darcy S. Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE, Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Ramu Perumal
- Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE
| | | | - Jill S Higginson
- Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, Department of Mechanical Engineering, University of Delaware, Newark, DE
| | - Katherine S. Rudolph
- Department of Physical Therapy, University of Delaware, Newark, DE, Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE
| | - Stuart A. Binder-Macleod
- Department of Physical Therapy, University of Delaware, Newark, DE, Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE
| |
Collapse
|
44
|
Harwood B, Davidson AW, Rice CL. Motor unit discharge rates of the anconeus muscle during high-velocity elbow extensions. Exp Brain Res 2010; 208:103-13. [PMID: 21107544 DOI: 10.1007/s00221-010-2463-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Motor unit recruitment and motor unit discharge rate (MUDR) have been widely studied in isometric conditions but minimally during velocity-dependent contractions. For isometric contractions, surface electromyography (EMG) activity of the elbow extensors plateaus at near maximal torques (Le Bozec et al. 1980; Le Bozec and Maton 1982). One study (Maton and Bouisset 1975) recorded single motor unit (MU) activity at maximal velocities; however, only the rate of the first interspike interval (ISI) was reported and likely was not representative of the average MUDR of the MU train. The purpose was to calculate average MUDRs of the anconeus during loaded velocity-dependent contractions from zero velocity (isometric) up to maximal velocity (V(max25)) through a large range of motion. A Biodex dynamometer was used to record elbow extension torque, position, and velocity. Single MU potentials were collected from the anconeus with intramuscular EMG, and surface EMG was sampled from the lateral head of the triceps brachii during maximal voluntary isometric contractions (MVCs) and velocity-dependent contractions loaded at 25% MVC over 120° range of motion at five target velocities (0, 25, 50, 75, 100%V(max25)). Elbow extension velocities ranged from 93 to 494°/s and average MUDR ranged from 11.8 Hz at 25%MVC to 39.0 Hz at 100%V(max25.) Overall average MUDRs increased as a function of velocity, although the root mean square of triceps brachii surface EMG plateaued at 50%V(max25). Piecewise regression analysis revealed two distinct linear ranges each described by a unique equation, suggesting that MUDRs of the anconeus enter a secondary range of firing, characterized by a steeper slope as velocity approaches maximum.
Collapse
Affiliation(s)
- B Harwood
- Canadian Centre for Activity and Aging, Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | | | | |
Collapse
|
45
|
Kamavuako EN, Farina D. Time-dependent effects of pre-conditioning activation on muscle fiber conduction velocity and twitch torque. Muscle Nerve 2010; 42:547-55. [DOI: 10.1002/mus.21726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther 2010; 90:55-66. [PMID: 19926681 PMCID: PMC2802826 DOI: 10.2522/ptj.20090140] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Foot drop is a common gait impairment after stroke. Functional electrical stimulation (FES) of the ankle dorsiflexor muscles during the swing phase of gait can help correct foot drop. Compared with constant-frequency trains (CFTs), which typically are used during FES, novel stimulation patterns called variable-frequency trains (VFTs) have been shown to enhance isometric and nonisometric muscle performance. However, VFTs have never been used for FES during gait. OBJECTIVE The purpose of this study was to compare knee and ankle kinematics during the swing phase of gait when FES was delivered to the ankle dorsiflexor muscles using VFTs versus CFTs. DESIGN A repeated-measures design was used in this study. PARTICIPANTS Thirteen individuals with hemiparesis following stroke (9 men, 4 women; age=46-72 years) participated in the study. METHODS Participants completed 20- to 40-second bouts of walking at their self-selected walking speeds. Three walking conditions were compared: walking without FES, walking with dorsiflexor muscle FES using CFTs, and walking with dorsiflexor FES using VFTs. RESULTS Functional electrical stimulation using both CFTs and VFTs improved ankle dorsiflexion angles during the swing phase of gait compared with walking without FES (X+/-SE=-2.9 degrees +/- 1.2 degrees). Greater ankle dorsiflexion in the swing phase was generated during walking with FES using VFTs (X+/-SE=2.1 degrees +/- 1.5 degrees) versus CFTs (X+/-SE=0.3+/-1.3 degrees). Surprisingly, dorsiflexor FES resulted in reduced knee flexion during the swing phase and reduced ankle plantar flexion at toe-off. CONCLUSIONS The findings suggest that novel FES systems capable of delivering VFTs during gait can produce enhanced correction of foot drop compared with traditional FES systems that deliver CFTs. The results also suggest that the timing of delivery of FES during gait is critical and merits further investigation.
Collapse
|
47
|
Kesar TM, Perumal R, Reisman DS, Jancosko A, Rudolph KS, Higginson JS, Binder-Macleod SA. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait. Stroke 2009; 40:3821-7. [PMID: 19834018 DOI: 10.1161/strokeaha.109.560375] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Functional electrical stimulation (FES) is a popular poststroke gait rehabilitation intervention. Although stroke causes multijoint gait deficits, FES is commonly used only for the correction of swing-phase foot drop. Ankle plantarflexor muscles play an important role during gait. The aim of the current study was to test the immediate effects of delivering FES to both ankle plantarflexors and dorsiflexors on poststroke gait. METHODS Gait analysis was performed as subjects (N=13) with chronic poststroke hemiparesis walked at their self-selected walking speeds during walking with and without FES. RESULTS Compared with delivering FES to only the ankle dorsiflexor muscles during the swing phase, delivering FES to both the paretic ankle plantarflexors during terminal stance and dorsiflexors during the swing phase provided the advantage of greater swing-phase knee flexion, greater ankle plantarflexion angle at toe-off, and greater forward propulsion. Although FES of both the dorsiflexor and plantarflexor muscles improved swing-phase ankle dorsiflexion compared with noFES, the improvement was less than that observed by stimulating the dorsiflexors alone, suggesting the need to further optimize stimulation parameters and timing for the dorsiflexor muscles during gait. CONCLUSIONS In contrast to the typical FES approach of stimulating ankle dorsiflexor muscles only during the swing phase, delivering FES to both the plantarflexor and dorsiflexor muscles can help to correct poststroke gait deficits at multiple joints (ankle and knee) during both the swing and stance phases of gait. Our study shows the feasibility and advantages of stimulating the ankle plantarflexors during FES for poststroke gait.
Collapse
Affiliation(s)
- Trisha M Kesar
- Department of Physical Therapy, University of Delaware, Newark, DE 19702, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback. J Neurol Phys Ther 2009; 32:192-202. [PMID: 19265761 DOI: 10.1097/npt.0b013e31818e8fc2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RATIONALE This case report describes the application of a novel gait retraining approach to an individual with poststroke hemiparesis. The rehabilitation protocol combined a specially designed leg orthosis (the gravity-balanced orthosis), treadmill walking, and functional electrical stimulation to the ankle muscles with the application of motor learning principles. CASE The participant was a 58-year-old man who had a stroke more than three years before the intervention. He underwent gait retraining over a period of five weeks for a total of 15 sessions during which the gravity compensation provided by the gravity-balanced orthosis and visual feedback about walking performance was gradually reduced. OUTCOMES At the end of five weeks, he decreased the time required to complete the Timed Up and Go test; his gait speed increased during overground walking; gait was more symmetrical; stride length, hip and knee joint excursions on the affected side increased. Except for gait symmetry, all other improvements were maintained one month post-intervention. CONCLUSIONS This case report describes possible advantages of judiciously combining different treatment techniques in improving the gait of chronic stroke survivors. Further studies are planned to evaluate the effectiveness of different components of this training in both the subacute and chronic stages of stroke recovery.
Collapse
|
49
|
Perumal R, Wexler AS, Binder-Macleod SA. Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion. J Neuroeng Rehabil 2008; 5:33. [PMID: 19077188 PMCID: PMC2615438 DOI: 10.1186/1743-0003-5-33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 12/10/2008] [Indexed: 11/26/2022] Open
Abstract
Background Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle. Methods An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters. Results Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively. Conclusion The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.
Collapse
Affiliation(s)
- Ramu Perumal
- Department of Physical Therapy, University of Delaware, Newark, DE, USA.
| | | | | |
Collapse
|
50
|
Calcium and the role of motoneuronal doublets in skeletal muscle control. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:159-73. [DOI: 10.1007/s00249-008-0364-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/26/2022]
|