1
|
Koh ES, Lim JY. Impacts of whole-body vibration on denervated skeletal-muscle atrophy in rats. J Orthop Res 2023; 41:2579-2587. [PMID: 37132369 DOI: 10.1002/jor.25589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Whole-body vibration has been considered as a countermeasure against muscle atrophy. However, its effects on muscle atrophy are poorly understood. We evaluated the effects of whole-body vibration on denervated skeletal muscle atrophy. Whole-body vibration was performed on rats from Day 15 to 28 after denervation injury. Motor performance was evaluated using an inclined-plane test. Compound muscle action potentials of the tibial nerve were examined. Muscle wet weight and muscle fiber cross-sectional area were measured. Myosin heavy chain isoforms were analyzed in both muscle homogenates and single myofibers. Whole-body vibration resulted in a significantly decreased inclination angle and muscle weight, but not muscle fiber cross-sectional area of fast-twitch gastrocnemius compared to denervation only. In denervated gastrocnemius, a fast-to-slow shift was observed in myosin heavy chain isoform composition following whole-body vibration. There were no significant changes in muscle weight, muscle fiber cross-sectional area, and myosin heavy chain isoform composition in denervated slow-twitch soleus. These results imply that whole-body vibration does not promote recovery of denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Rehabilitation Medicine, National Medical Center, Seoul, Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
3
|
Galbiati M, Meroni M, Boido M, Cescon M, Rusmini P, Crippa V, Cristofani R, Piccolella M, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Cozzi M, Mina F, Cicardi ME, Pedretti S, Mitro N, Caretto A, Risè P, Sala A, Lieberman AP, Bonaldo P, Pennuto M, Vercelli A, Poletti A. Bicalutamide and Trehalose Ameliorate Spinal and Bulbar Muscular Atrophy Pathology in Mice. Neurotherapeutics 2023; 20:524-545. [PMID: 36717478 PMCID: PMC10121997 DOI: 10.1007/s13311-023-01343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 02/01/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is characterized by motor neuron (MN) degeneration that leads to slowly progressive muscle weakness. It is considered a neuromuscular disease since muscle has a primary role in disease onset and progression. SBMA is caused by a CAG triplet repeat expansion in the androgen receptor (AR) gene. The translated poly-glutamine (polyQ) tract confers a toxic gain of function to the mutant AR altering its folding, causing its aggregation into intracellular inclusions, and impairing the autophagic flux. In an in vitro SBMA neuronal model, we previously showed that the antiandrogen bicalutamide and trehalose, a natural disaccharide stimulating autophagy, block ARpolyQ activation, reduce its nuclear translocation and toxicity and facilitate the autophagic degradation of cytoplasmic AR aggregates. Here, in a knock-in SBMA mouse model (KI AR113Q), we show that bicalutamide and trehalose ameliorated SBMA pathology. Bicalutamide reversed the formation of the AR insoluble forms in KI AR113Q muscle, preventing autophagic flux blockage. We demonstrated that apoptosis is activated in KI AR113Q muscle, and that both compounds prevented its activation. We detected a decrease of mtDNA and an increase of OXPHOS enzymes, already at early symptomatic stages; these alterations were reverted by trehalose. Overall, bicalutamide and/or trehalose led to a partial recovery of muscle morphology and function, and improved SBMA mouse motor behavior, inducing an extension of their survival. Thus, bicalutamide and trehalose, by counteracting ARpolyQ toxicity in skeletal muscle, are valuable candidates for future clinical trials in SBMA patients.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| | - Marco Meroni
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretto
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Patrizia Risè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Angelo Sala
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
5
|
Changes of Functional, Morphological, and Inflammatory Reactions in Spontaneous Peripheral Nerve Reinnervation after Thermal Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9927602. [PMID: 35154578 PMCID: PMC8826209 DOI: 10.1155/2022/9927602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/25/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022]
Abstract
In recent decades, the use of energy-based devices has substantially increased the incidence of iatrogenic thermal injury to nerves (cauterization, etc.). While recovery of the nerve after thermal injury is important, the changes in neural structure, function, and peripheral inflammatory reactions postinjury remain unclear. This study is aimed at demonstrating the changes mentioned above during the acute, subacute, and chronic stages of nerve reinnervation after thermal injury. Spontaneous reinnervation was evaluated, including the neural structures, nerve conduction abilities, and muscle regeneration. These effects vary depending on the severity of thermal injury (slight, moderate, and severe). Peripheral inflammatory reactions, as impediments to reinnervation, were found in significant numbers 3 days after thermal injury, exhibiting high expression of IL-1β and TNF-α, but low expression of IL-10. Our findings reveal the pathogenesis of peripheral nerve reinnervation after thermal injury, which will assist in selecting appropriate treatments in further research.
Collapse
|
6
|
Danielsson O, Häggqvist B, Gröntoft L, Öllinger K, Ernerudh J. Apoptosis in idiopathic inflammatory myopathies with partial invasion; a role for CD8+ cytotoxic T cells? PLoS One 2020; 15:e0239176. [PMID: 32936839 PMCID: PMC7494097 DOI: 10.1371/journal.pone.0239176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
Polymyositis and inclusion body myositis are idiopathic inflammatory myopathies, with a pathology characterized by partial invasion of non-necrotic muscle fibres by CD8+ cytotoxic T-cells, leading to fibre degeneration. Although the main effector pathway of CD8+ T-cells is to induce apoptosis of target cells, it has remained unclear if apoptosis occurs in these diseases, and if so, if it is mediated by CD8+ T-cells. In consecutive biopsy sections from 10 patients with partial invasion, muscle fibres and inflammatory cells were assessed by immunohistochemistry and apoptotic nuclei by the TUNEL assay. Analysis of muscle fibre morphology, staining pattern and quantification were performed on digital images, and they were compared with biopsies from 10 dermatomyositis patients and 10 controls without muscle disease. Apoptotic myonuclei were found in muscle with partial invasion, but not in the invaded fibres. Fibres with TUNEL positive nuclei were surrounded by CD8+ T-cells, granzyme B+ cells and macrophages, but lacked FAS receptor expression. In contrast, apoptotic myonuclei were rare in dermatomyositis and absent in controls. The findings confirm that apoptosis occurs in idiopathic inflammatory myopathies and support that it is mediated by CD8+ cytotoxic T- cells, acting in parallel to the process of partial invasion.
Collapse
Affiliation(s)
- Olof Danielsson
- Division of Neurology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| | - Bo Häggqvist
- Division of Neurology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Liv Gröntoft
- Division of Neurology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Division of Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Division of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Bohnert KL, Hastings MK, Sinacore DR, Johnson JE, Klein SE, McCormick JJ, Gontarz P, Meyer GA. Skeletal Muscle Regeneration in Advanced Diabetic Peripheral Neuropathy. Foot Ankle Int 2020; 41:536-548. [PMID: 32059624 PMCID: PMC8783612 DOI: 10.1177/1071100720907035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Decreased lean muscle mass in the lower extremity in diabetic peripheral neuropathy (DPN) is thought to contribute to altered joint loading, immobility, and disability. However, the mechanism behind this loss is unknown and could derive from a reduction in size of myofibers (atrophy), destruction of myofibers (degeneration), or both. Degenerative changes require participation of muscle stem (satellite) cells to regenerate lost myofibers and restore lean mass. Determining the degenerative state and residual regenerative capacity of DPN muscle will inform the utility of regeneration-targeted therapeutic strategies. METHODS Biopsies were acquired from 2 muscles in 12 individuals with and without diabetic neuropathy undergoing below-knee amputation surgery. Biopsies were subdivided for histological analysis, transcriptional profiling, and satellite cell isolation and culture. RESULTS Histological analysis revealed evidence of ongoing degeneration and regeneration in DPN muscles. Transcriptional profiling supports these findings, indicating significant upregulation of regeneration-related pathways. However, regeneration appeared to be limited in samples exhibiting the most severe structural pathology as only extremely small, immature regenerated myofibers were found. Immunostaining for satellite cells revealed a significant decrease in their relative frequency only in the subset with severe pathology. Similarly, a reduction in fusion in cultured satellite cells in this group suggests impairment in regenerative capacity in severe DPN pathology. CONCLUSION DPN muscle exhibited features of degeneration with attempted regeneration. In the most severely pathological muscle samples, regeneration appeared to be stymied and our data suggest that this may be partly due to intrinsic dysfunction of the satellite cell pool in addition to extrinsic structural pathology (eg, nerve damage). CLINICAL RELEVANCE Restoration of DPN muscle function for improved mobility and physical activity is a goal of surgical and rehabilitation clinicians. Identifying myofiber degeneration and compromised regeneration as contributors to dysfunction suggests that adjuvant cell-based therapies may improve clinical outcomes.
Collapse
Affiliation(s)
| | - Mary K. Hastings
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - David R. Sinacore
- Department of Physical Therapy, High Point University, High Point, NC, USA
| | - Jeffrey E. Johnson
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Sandra E. Klein
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Jeremy J. McCormick
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Gretchen A. Meyer
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Departments of Neurology and Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
8
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
9
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
10
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Komrakova M, Fiebig J, Hoffmann DB, Krischek C, Lehmann W, Stuermer KM, Sehmisch S. The Advantages of Bilateral Osteotomy Over Unilateral Osteotomy for Osteoporotic Bone Healing. Calcif Tissue Int 2018; 103:80-94. [PMID: 29352329 DOI: 10.1007/s00223-018-0392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Most models of osteoporotic bone fractures are performed unilaterally (UL). We investigated healing of tibia osteotomy performed either UL or bilaterally (BL) in ovariectomized rats. Behavior of animals and muscle structure were assessed. Three-month-old female Sprague-Dawley rats were ovariectomized (n = 32). After 10 weeks, half the rats underwent UL osteotomy of tibia metaphysis (right limb) with plate osteosynthesis. The other rats were osteotomized BL. Half of the rats in each group received either standard pain treatment with carprofen (5 mg/kg body weight (BW), 1x/day for 2 days) or carprofen and buprenorphine (5 mg/kg BW, 1x/day and 0.03 mg/kg BW, 2x/day for 5 days) after osteotomy. The UL rats started to load the injured limb from day 27 ± 9; BL rats did this from day 4 ± 4 onward. The UL rats more frequently loaded only one hind limb; BL rats more often loaded both hind limbs. Osteotomy was not bridged in 20% of UL rats and in 4% of BL rats. Callus volume and bone volume fraction were lower in UL group. Weight and fiber size of UL-intact limb muscles were enhanced, compared to the osteotomized limb and those in BL group. Most of the other parameters which assess physiology, activity, body posture, head, or coat were not different. The effect of two pain therapies was not significant on any variable studied. Welfare of the animals was acceptable in all rats. In UL rats, bone healing was delayed. The more advanced healing in BL rats suggested a positive effect of earlier loading. In studies on bone healing, it is advisable to perform BL osteotomy.
Collapse
Affiliation(s)
- M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany.
| | - J Fiebig
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - C Krischek
- Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Goettingen, Germany
- Institute of Food Quality and Safety, Foundation University of Veterinary Medicine, Bischofsholer Damm 15, 30173, Hanover, Germany
| | - W Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - K M Stuermer
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center, Robert-Koch 40, 37075, Goettingen, Germany
| |
Collapse
|
12
|
Koh ES, Kim HC, Lim JY. The effects of electromyostimulation application timing on denervated skeletal muscle atrophy. Muscle Nerve 2017; 56:E154-E161. [PMID: 28345221 DOI: 10.1002/mus.25656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In this study we evaluated the effect of electromyostimulation (EMS) on myosin heavy chain (MHC) isoform expression in denervated rat muscles to determine the optimal timing for EMS application. METHODS EMS was initiated on post-injury day 1 for the group with denervation receiving immediate EMS (DIEMS) and on post-injury day 15 for the group with denervation receiving delayed EMS (DDEMS) in rat denervated muscles. Muscle wet weight and muscle fiber cross-sectional area (FCSA) were measured. MHC isoforms were analyzed in both protein homogenates and single muscle fibers. RESULTS The expression levels of IIx and IIb isoforms of MHC were significantly lower and higher, respectively, in the gastrocnemius muscles of the DIEMS group, but not the DDEMS group. The DIEMS group also showed larger FCSA and a lower proportion of hybrid single fibers compared with the DDEMS group. DISCUSSION These results indicate that immediate EMS is more effective than delayed EMS for aiding recovery of denervation-induced MHC changes. Muscle Nerve 56: E154-E161, 2017.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Rehabilitation Medicine, National Medical Center, Seoul, Republic of Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Young Lim
- Mechanic & Molecular Myology Laboratory, Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, 173-82, Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| |
Collapse
|
13
|
Carotenuto F, Coletti D, Di Nardo P, Teodori L. α-Linolenic Acid Reduces TNF-Induced Apoptosis in C2C12 Myoblasts by Regulating Expression of Apoptotic Proteins. Eur J Transl Myol 2016; 26:6033. [PMID: 28078067 PMCID: PMC5220214 DOI: 10.4081/ejtm.2016.6033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions such as adjuvant strategy for preventing these conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested as having a positive impact on muscle diseases. We recently demonstrated that a diet enriched with plant derived n3-fatty acid, α-linolenic acid (ALA), exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we here investigate on the expression level of the anti- and pro-apoptotic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of tumor necrosis factor-α (TNF). The results demonstrated that ALA protective effect on C2C12 myoblasts was associated with a decrease in caspase-3 activity and an increase of the Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescuing Bcl-2 expression and to revert Bax translocation to mitochondria both affected in an opposite way by TNF, a major pro-inflammatory cytokine expressed in damaged skeletal muscle. Therefore, ALA counteracts inflammatory signals in the muscle microenvironment and may represent a valuable strategy for ameliorating skeletal muscle pathologies.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Department Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA-Frascati, Rome, Italy
| | - Dario Coletti
- Department of Biological Adaptation and Aging B2A, University Pierre et Marie Curie Paris 06, Paris, France; Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy
| | - Paolo Di Nardo
- Department Clinical Sciences and Translational Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Laura Teodori
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, ENEA-Frascati , Rome, Italy
| |
Collapse
|
14
|
Lee G, Lim JY, Frontera WR. Apoptosis in young and old denervated rat skeletal muscle. Muscle Nerve 2016; 55:262-269. [DOI: 10.1002/mus.25221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Gangpyo Lee
- Department of Rehabilitation Medicine; Seoul National University Bundang Hospital, Seoul National University College of Medicine; 82, Gumi-ro 173, Bundang-gu, Seongnam-si Gyeonggi-do 13620 Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine; Seoul National University Bundang Hospital, Seoul National University College of Medicine; 82, Gumi-ro 173, Bundang-gu, Seongnam-si Gyeonggi-do 13620 Republic of Korea
| | - Walter R. Frontera
- Department of Physical Medicine and Rehabilitation; Vanderbilt University Medical Center; Nashville Tennessee USA
- Department of Physiology; University of Puerto Rico School of Medicine; San Juan Puerto Rico
| |
Collapse
|
15
|
Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, Mitne-Neto M, Carvalho VM, Zatz M. Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use. Stem Cells Dev 2016; 26:206-214. [PMID: 27762666 DOI: 10.1089/scd.2016.0218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.
Collapse
Affiliation(s)
- Amanda Assoni
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Giuliana Coatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Marcos C Valadares
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Melinda Beccari
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Juliana Gomes
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Mayra Pelatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Miguel Mitne-Neto
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil .,2 Fleury Group (Research and Development Department), São Paulo, Brazil
| | | | - Mayana Zatz
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| |
Collapse
|
16
|
Schwartz LM, Brown C, McLaughlin K, Smith W, Bigelow C. The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death. Am J Physiol Cell Physiol 2016; 311:C607-C615. [PMID: 27558160 DOI: 10.1152/ajpcell.00176.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022]
Abstract
Skeletal muscle mass can increase during hypertrophy or decline dramatically in response to normal or pathological signals that trigger atrophy. Many reports have documented that the number of nuclei within these cells is also plastic. It has been proposed that a yet-to-be-defined regulatory mechanism functions to maintain a relatively stable relationship between the cytoplasmic volume and nuclear number within the cell, a phenomenon known as the "myonuclear domain" hypothesis. While it is accepted that hypertrophy is typically associated with the addition of new nuclei to the muscle fiber from stem cells such as satellite cells, the loss of myonuclei during atrophy has been controversial. The intersegmental muscles from the tobacco hawkmoth Manduca sexta are composed of giant syncytial cells that undergo sequential developmental programs of atrophy and programmed cell death at the end of metamorphosis. Since the intersegmental muscles lack satellite cells or regenerative capacity, the tissue is not "contaminated" by these nonmuscle nuclei. Consequently, we monitored muscle mass, cross-sectional area, nuclear number, and cellular DNA content during atrophy and the early phases of cell death. Despite a ∼75-80% decline in muscle mass and cross-sectional area during the period under investigation, there were no reductions in nuclear number or DNA content, and the myonuclear domain was reduced by ∼85%. These data suggest that the myonuclear domain is not an intrinsic property of skeletal muscle and that nuclei persist through atrophy and programmed cell death.
Collapse
Affiliation(s)
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Kevin McLaughlin
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Wendy Smith
- Department of Biology, Northeastern University, Boston, Massachusetts; and
| | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
17
|
Taivassalo T, Hussain SN. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD. Chest 2016; 149:1302-12. [DOI: 10.1016/j.chest.2015.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/09/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
|
18
|
Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ 2016; 23:927-37. [PMID: 26868912 DOI: 10.1038/cdd.2015.171] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
The skeletal muscle is an immunologically unique tissue. Leukocytes, virtually absent in physiological conditions, are quickly recruited into the tissue upon injury and persist during regeneration. Apoptosis, necrosis and autophagy coexist in the injured/regenerating muscles, including those of patients with neuromuscular disorders, such as inflammatory myopathies, dystrophies, metabolic and mitochondrial myopathies and drug-induced myopathies. Macrophages are able to alter their function in response to microenvironment conditions and as a consequence coordinate changes within the tissue from the early injury throughout regeneration and eventual healing, and regulate the activation and the function of stem cells. Early after injury, classically activated macrophages ('M1') dominate the picture. Alternatively activated M2 macrophages predominate during resolution phases and regulate the termination of the inflammatory responses. The dynamic M1/M2 transition is increasingly felt to be the key to the homeostasis of the muscle. Recognition and clearance of debris originating from damaged myofibers and from dying stem/progenitor cells, stromal cells and leukocytes are fundamental actions of macrophages. Clearance of apoptotic cells and M1/M2 transition are causally connected and represent limiting steps for muscle healing. The accumulation of apoptotic cells, which reflects their defective clearance, has been demonstrated in various tissues to prompt autoimmunity against intracellular autoantigens. In the muscle, in the presence of type I interferon, apoptotic myoblasts indeed cause the production of autoantibodies, lymphocyte infiltration and continuous cycles of muscle injury and regeneration, mimicking human inflammatory myopathies. The clearance of apoptotic cells thus modulates the homeostatic response of the skeletal muscle to injury. Conversely, defects in the process may have deleterious local effects, guiding maladaptive tissue remodeling with collagen and fat accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle.
Collapse
|
19
|
Barzilai-Tutsch H, Bodanovsky A, Maimon H, Pines M, Halevy O. Halofuginone promotes satellite cell activation and survival in muscular dystrophies. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1-11. [PMID: 26454207 DOI: 10.1016/j.bbadis.2015.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022]
Abstract
Halofuginone is a leading agent in preventing fibrosis and inflammation in various muscular dystrophies. We hypothesized that in addition to these actions, halofuginone directly promotes the cell-cycle events of satellite cells in the mdx and dysf(-/-) mouse models of early-onset Duchenne muscular dystrophy and late-onset dysferlinopathy, respectively. In both models, addition of halofuginone to freshly prepared single gastrocnemius myofibers derived from 6-week-old mice increased BrdU incorporation at as early as 18h of incubation, as well as phospho-histone H3 (PHH3) and MyoD protein expression in the attached satellite cells, while having no apparent effect on myofibers derived from wild-type mice. BrdU incorporation was abolished by an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated protein kinase, suggesting involvement of this pathway in mediating halofuginone's effects on cell-cycle events. In cultures of myofibers and myoblasts isolated from dysf(-/-) mice, halofuginone reduced Bax and induced Bcl2 expression levels and induced Akt phosphorylation in a time-dependent manner. Addition of an inhibitor of the phosphinositide-3-kinase/Akt pathway reversed the halofuginone-induced cell survival, suggesting this pathway's involvement in mediating halofuginone's effects on survival. Thus, in addition to its known role in inhibiting fibrosis and inflammation, halofuginone plays a direct role in satellite cell activity and survival in muscular dystrophies, regardless of the mutation. These actions are of the utmost importance for improving muscle pathology and function in muscular dystrophies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Survival/drug effects
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/drug therapy
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Quinazolinones/pharmacology
- Quinazolinones/therapeutic use
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anna Bodanovsky
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hadar Maimon
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Mark Pines
- Institute of Animal Science, The Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Cantuti-Castelvetri L, Maravilla E, Marshall M, Tamayo T, D'auria L, Monge J, Jeffries J, Sural-Fehr T, Lopez-Rosas A, Li G, Garcia K, van Breemen R, Vite C, Garcia J, Bongarzone ER. Mechanism of neuromuscular dysfunction in Krabbe disease. J Neurosci 2015; 35:1606-16. [PMID: 25632136 PMCID: PMC4308604 DOI: 10.1523/jneurosci.2431-14.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/26/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
The atrophy of skeletal muscles in patients with Krabbe disease is a major debilitating manifestation that worsens their quality of life and limits the clinical efficacy of current therapies. The pathogenic mechanism triggering muscle wasting is unknown. This study examined structural, functional, and metabolic changes conducive to muscle degeneration in Krabbe disease using the murine (twitcher mouse) and canine [globoid cell leukodystrophy (GLD) dog] models. Muscle degeneration, denervation, neuromuscular [neuromuscular junction (NMJ)] abnormalities, and axonal death were investigated using the reporter transgenic twitcher-Thy1.1-yellow fluorescent protein mouse. We found that mutant muscles had significant numbers of smaller-sized muscle fibers, without signs of regeneration. Muscle growth was slow and weak in twitcher mice, with decreased maximum force. The NMJ had significant levels of activated caspase-3 but limited denervation. Mutant NMJ showed reduced surface areas and lower volumes of presynaptic terminals, with depressed nerve control, increased miniature endplate potential (MEPP) amplitude, decreased MEPP frequency, and increased rise and decay rate constants. Twitcher and GLD dog muscles had significant capacity to store psychosine, the neurotoxin that accumulates in Krabbe disease. Mechanistically, muscle defects involved the inactivation of the Akt pathway and activation of the proteasome pathway. Our work indicates that muscular dysfunction in Krabbe disease is compounded by a pathogenic mechanism involving at least the failure of NMJ function, activation of proteosome degradation, and a reduction of the Akt pathway. Akt, which is key for muscle function, may constitute a novel target to complement in therapies for Krabbe disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axons/metabolism
- Axons/pathology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- Dogs
- Galactosylceramidase/genetics
- Gene Expression Regulation/genetics
- Leukodystrophy, Globoid Cell/complications
- Leukodystrophy, Globoid Cell/genetics
- Leukodystrophy, Globoid Cell/pathology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Contraction/genetics
- Muscle, Skeletal/growth & development
- Neuromuscular Diseases/etiology
- Neuromuscular Diseases/metabolism
- Neuromuscular Diseases/pathology
- Psychosine/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Synaptic Potentials/drug effects
- Synaptic Potentials/genetics
Collapse
Affiliation(s)
| | | | - Michael Marshall
- Departments of Anatomy and Cell Biology, Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Tammy Tamayo
- Physiology and Biophysics, and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | | | | | | | | | | - Guannan Li
- Medicinal Chemistry and Pharmacognosy and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | | | - Richard van Breemen
- Medicinal Chemistry and Pharmacognosy and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Charles Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
21
|
Halofuginone improves muscle-cell survival in muscular dystrophies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1339-47. [PMID: 24703880 DOI: 10.1016/j.bbamcr.2014.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/21/2022]
Abstract
Halofuginone has been shown to prevent fibrosis via the transforming growth factor-β/Smad3 pathway in muscular dystrophies. We hypothesized that halofuginone would reduce apoptosis--the presumed cause of satellite-cell depletion during muscle degradation-in the mdx mouse model of Duchenne muscular dystrophy. Six-week-old mdx mouse diaphragm exhibited fourfold higher numbers of apoptotic nuclei compared with wild-type mice as determined by a TUNEL assay. Apoptotic nuclei were found in macrophages and in Pax7-expressing cells; some were located in centrally-nucleated regenerating myofibers. Halofuginone treatment of mdx mice reduced the apoptotic nuclei number in the diaphragm, together with reduction in Bax and induction in Bcl2 levels in myofibers isolated from these mice. A similar effect was observed when halofuginone was added to cultured myofibers. No apparent effect of halofuginone was observed in wild-type mice. Inhibition of apoptosis or staurosporine-induced apoptosis by halofuginone in mdx primary myoblasts and C2 myogenic cell line, respectively, was reflected by less pyknotic/apoptotic cells and reduced Bax expression. This reduction was reversed by a phosphinositide-3-kinase and mitogen-activated protein kinase/extracellular signal-regulated protein kinase inhibitors, suggesting involvement of these pathways in mediating halofuginone's effects on apoptosis. Halofuginone increased apoptosis in α smooth muscle actin- and prolyl 4-hydroxylase β-expressing cells in mdx diaphragm and in myofibroblasts, the major source of extracellular matrix. The data suggest an additional mechanism by which halofuginone improves muscle pathology and function in muscular dystrophies.
Collapse
|
22
|
Valladares D, Almarza G, Contreras A, Pavez M, Buvinic S, Jaimovich E, Casas M. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy. PLoS One 2013; 8:e75340. [PMID: 24282497 PMCID: PMC3839923 DOI: 10.1371/journal.pone.0075340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/11/2013] [Indexed: 12/20/2022] Open
Abstract
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Denisse Valladares
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Almarza
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ariel Contreras
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Pavez
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sonja Buvinic
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
23
|
Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013; 45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
24
|
Skuk D, Tremblay JP. Necrosis, sarcolemmal damage and apoptotic events in myofibers rejected by CD8+ lymphocytes: Observations in nonhuman primates. Neuromuscul Disord 2012; 22:997-1005. [PMID: 22749896 DOI: 10.1016/j.nmd.2012.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/29/2012] [Accepted: 05/14/2012] [Indexed: 11/16/2022]
Abstract
To detect the mechanisms of death in allogeneic myofibers rejected by the immune system, myoblasts were allotransplanted in muscles of macaques immunosuppressed with tacrolimus. Immunosuppression was stopped 1month later to induce a massive rejection of allogeneic myofibers. Grafted sites were biopsied at 2-week intervals and analyzed by histology. The loss of allogeneic myofibers was rapid and concomitant with an intense infiltration of CD8+ lymphocytes. Several necrotic myofibers were observed in the lymphocyte accumulations by intracellular complement immunodetection. Dystrophin and spectrin immunodetection showed sarcolemmal damage in myofibers surrounded and invaded by CD8+ lymphocytes. Active caspase-3 was immunodetected in some myofibers surrounded by CD8+ lymphocytes. This is the first evidence that the collapse of myofibers attacked by T lymphocytes occurs by necrosis possibly due to damage of the sarcolemma. Caspase 3 is activated at least in some myofibers, but there was no evidence of a complete classical process of apoptosis.
Collapse
Affiliation(s)
- Daniel Skuk
- Neurosciences Division - Human Genetics, CHUQ Research Center - CHUL, Quebec, QC, Canada.
| | | |
Collapse
|
25
|
Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K. No change in myonuclear number during muscle unloading and reloading. J Appl Physiol (1985) 2012; 113:290-6. [PMID: 22582213 DOI: 10.1152/japplphysiol.00436.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
26
|
Jeudy S, Wardrop KE, Alessi A, Dominov JA. Bcl-2 inhibits the innate immune response during early pathogenesis of murine congenital muscular dystrophy. PLoS One 2011; 6:e22369. [PMID: 21850221 PMCID: PMC3151242 DOI: 10.1371/journal.pone.0022369] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022] Open
Abstract
Laminin α2 (LAMA2)-deficient congenital muscular dystrophy is a severe, early-onset disease caused by abnormal levels of laminin 211 in the basal lamina leading to muscle weakness, transient inflammation, muscle degeneration and impaired mobility. In a Lama2-deficient mouse model for this disease, animal survival is improved by muscle-specific expression of the apoptosis inhibitor Bcl-2, conferred by a MyoD-hBcl-2 transgene. Here we investigated early disease stages in this model to determine initial pathological events and effects of Bcl-2 on their progression. Using quantitative immunohistological and mRNA analyses we show that inflammation occurs very early in Lama2-deficient muscle, some aspects of which are reduced or delayed by the MyoD-hBcl-2 transgene. mRNAs for innate immune response regulators, including multiple Toll-like receptors (TLRs) and the inflammasome component NLRP3, are elevated in diseased muscle compared with age-matched controls expressing Lama2. MyoD-hBcl-2 inhibits induction of TLR4, TLR6, TLR7, TLR8 and TLR9 in Lama2-deficient muscle compared with non-transgenic controls, and leads to reduced infiltration of eosinophils, which are key death effector cells. This congenital disease model provides a new paradigm for investigating cell death mechanisms during early stages of pathogenesis, demonstrating that interactions exist between Bcl-2, a multifunctional regulator of cell survival, and the innate immune response.
Collapse
Affiliation(s)
- Sheila Jeudy
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Katherine E. Wardrop
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Amy Alessi
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Janice A. Dominov
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
|
28
|
Hao Y, Jackson JR, Wang Y, Edens N, Pereira SL, Alway SE. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R701-15. [PMID: 21697520 DOI: 10.1152/ajpregu.00840.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.
Collapse
Affiliation(s)
- Yanlei Hao
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology,West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chang LR, Liu JP, Song YZ, Lu T, Lu G, Wu Y. Expression of caspase-8 and caspase-9 in rat hippocampus during postnatal development. Microsc Res Tech 2011; 74:153-8. [DOI: 10.1002/jemt.20886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Dobrowolny G, Aucello M, Musarò A. Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle 2011; 1:3. [PMID: 21798081 PMCID: PMC3143901 DOI: 10.1186/2044-5040-1-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 11/17/2022] Open
Abstract
Background The most remarkable feature of skeletal muscle is the capacity to adapt its morphological, biochemical and molecular properties in response to several factors. Nonetheless, under pathological conditions, skeletal muscle loses its adaptability, leading to atrophy or wasting. Several signals might function as physiopathological triggers of muscle atrophy. However, the specific mechanisms underlying the atrophic phenotype under different pathological conditions remain to be fully elucidated. In this paper, we address the involvement of caspases in the induction of muscle atrophy in experimental models of amyotrophic lateral sclerosis (ALS) expressing the mutant SOD1G93A transgene either locally or ubiquitously. Results We demonstrate that SOD1G93A-mediated muscle atrophy is independent from caspase activity. In particular, the expression of SOD1G93A promotes a reduction of the phosphatidylinositol 3-kinase/Akt pathway associated with activation of forkhead box O3. In contrast, the activation of caspases occurs later and is causally linked to motor neuron degeneration, which is associated with exacerbation of the atrophic phenotype and a shift in fiber-type composition. Conclusion This study suggests that muscle atrophy induced by the toxic effect of SOD1G93A is independent from the activation of apoptotic markers and that caspase-mediated apoptosis is a process activated upon muscle denervation.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Via A. Scarpa, 14 Rome I-00161, Italy
| | - Michela Aucello
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Via A. Scarpa, 14 Rome I-00161, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM; Sapienza University of Rome, Via A. Scarpa, 14 Rome I-00161, Italy.,School of Biomedical & Sports Science; Unit of Human Biology, Edith Cowan University, Western Australia, Australia
| |
Collapse
|
31
|
Verzola D, Procopio V, Sofia A, Villaggio B, Tarroni A, Bonanni A, Mannucci I, De Cian F, Gianetta E, Saffioti S, Garibotto G. Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease. Kidney Int 2011; 79:773-82. [PMID: 21228768 DOI: 10.1038/ki.2010.494] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis and myostatin are major mediators of muscle atrophy and might therefore be involved in the wasting of uremia. To examine whether they are expressed in the skeletal muscle of patients with chronic kidney disease (CKD), we measured muscle apoptosis and myostatin mRNA and their related intracellular signal pathways in rectus abdominis biopsies obtained from 22 consecutive patients with stage 5 CKD scheduled for peritoneal dialysis. Apoptotic loss of myonuclei, determined by anti-single-stranded DNA antibody and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, was significantly increased three to fivefold, respectively. Additionally, myostatin and interleukin (IL)-6 gene expressions were significantly upregulated, whereas insulin-like growth factor-I mRNA was significantly lower than in controls. Phosphorylated JNK (c-Jun amino-terminal kinase) and its downstream effector, phospho-c-Jun, were significantly upregulated, whereas phospho-Akt was markedly downregulated. Multivariate analysis models showed that phospho-Akt and IL-6 contributed individually and significantly to the prediction of apoptosis and myostatin gene expression, respectively. Thus, our study found activation of multiple pathways that promote muscle atrophy in the skeletal muscle of patients with CKD. These pathways appear to be associated with different intracellular signals, and are likely differently regulated in patients with CKD.
Collapse
Affiliation(s)
- Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine, Azienda Ospedale Università San Martino, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
33
|
McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R. Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 2010; 46:23-9. [PMID: 20883771 DOI: 10.1016/j.exger.2010.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function and is characterized by a reduction in muscle mass and fiber cross-sectional area, alterations in muscle fiber type and mitochondrial functional changes. In rhesus monkeys, calorie restriction (CR) without malnutrition improves survival and delays the onset of age-associated diseases and disorders including sarcopenia. We present a longitudinal study on the impact of CR on early stage sarcopenia in the upper leg of monkeys from ~16 years to ~22 years of age. Using dual-energy X-ray absorptiometry we show that CR delayed the development of maximum muscle mass and, unlike Control animals, muscle mass of the upper leg was preserved in CR animals during early phase sarcopenia. Histochemical analyses of vastus lateralis muscle biopsies revealed that CR opposed age-related changes in the proportion of Type II muscle fibers and fiber cross-sectional area. In contrast the number of muscle fibers with mitochondrial electron transport system enzyme abnormalities (ETS(ab)) was not significantly affected by CR. Laser capture microdissection of ETS(ab) fibers and subsequent PCR analysis of the mitochondrial DNA revealed large deletion mutations in fibers with abnormal mitochondrial enzyme activities. CR did not prevent stochastic mitochondrial deletion mutations in muscle fibers but CR may have contributed to the maintenance of affected fibers.
Collapse
Affiliation(s)
- Susan H McKiernan
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States.
| | | | | | | | | | | | | |
Collapse
|
34
|
Lim JY, Han TR. Effect of electromyostimulation on apoptosis-related factors in denervation and reinnervation of rat skeletal muscles. Muscle Nerve 2010; 42:422-30. [PMID: 20589896 DOI: 10.1002/mus.21719] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electromyostimulation (EMS) has been utilized to reduce muscle atrophy, but its effect on denervated muscles is controversial. This study was performed to determine the effect of EMS on intramuscular changes and apoptosis during denervation and reinnervation following nerve damage. Rat sciatic nerves were denervated completely (CD) or partially (PD), and EMS was applied for 2 weeks. The same numbers of cases were followed without EMS. Nerve conduction studies, muscle weights, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to measure apoptotic changes, and Western blot were done 4, 8, and 12 weeks after injury. TUNEL-positive nuclei of CD muscles (18.6 +/- 5.5%) were more prevalent than those of PD muscles (7.5 +/- 3.3%). The EMS group showed greater muscle weight, fewer positive nuclei (4.7 +/- 1.9%), and lower BAX and Bcl-2 expression levels compared with the non-EMS group at 4 weeks after PD but not after CD. Denervated muscle atrophy delayed by EMS may be linked with enhanced anti-apoptosis under the control of apoptosis-related factors.
Collapse
Affiliation(s)
- Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | | |
Collapse
|
35
|
Abstract
This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is ‘The trainee consistently demonstrates a knowledge of the pathophysiology of various specific impairments including lower motor neuron weakness’ and ‘management approaches for specific impairments including lower motor neuron weakness’. This article explores weakness as a lower motor symptom. Weakness as a primary impairment of neuromuscular diseases is addressed, with recognition of the phenomenon of disuse atrophy, and how weakness impacts on the functional abilities of people with myopathy and neuropathy. Interventions to reduce weakness or address the functional consequences of weakness are evaluated with consideration of safety and clinical application. Learning outcomes: This paper will allow readers to: (1) appraise the contribution of research in rehabilitation of lower motor neuron weakness to clinical decision making and (2) engage with the issues that arise when researching rehabilitation interventions for lower motor neuron weakness. Aim of article: Impairments associated with neuromuscular conditions can lead to significant functional difficulties that can impact on a person’s daily participation. This article focuses on the primary impairment of weakness and explores the research evidence for rehabilitation interventions that directly influence weakness or address the impact of weakness on function.
Collapse
Affiliation(s)
- Gita M Ramdharry
- St George's School of Physiotherapy, Faculty of Health and Social Care Sciences, St George's University of London and Kingston University, UK,
| |
Collapse
|
36
|
Quadrilatero J, Bombardier E, Norris SM, Talanian JL, Palmer MS, Logan HM, Tupling AR, Heigenhauser GJF, Spriet LL. Prolonged moderate-intensity aerobic exercise does not alter apoptotic signaling and DNA fragmentation in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E534-47. [PMID: 19996388 DOI: 10.1152/ajpendo.00678.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apoptosis in skeletal muscle plays an important role in age- and disease-related tissue dysfunction. Physical activity can influence apoptotic signaling; however, this process has not been well studied in human skeletal muscle. The purpose of this study was to perform a comprehensive analysis of apoptosis-related proteins/enzymes, DNA fragmentation, and oxidative stress in skeletal muscle of humans during an acute bout of prolonged moderate-intensity exercise. Eight healthy, recreationally active individuals (age 20.8 +/- 0.5 yr, Vo(2peak) 51.2 +/- 0.9 ml . kg(-1) . min(-1), BMI 21.5 +/- 0.8 kg/m(2)) exercised on a cycle ergometer at approximately 60% Vo(2peak) for 2 h. Muscle biopsies were obtained at rest as well as at 60 and 120 min of exercise. Although exercise was associated with a significant whole body and muscle metabolic response, there were no significant changes in the content of antiapoptotic (ARC, Bcl-2, Hsp70, XIAP) and proapoptotic (AIF, Bax, Smac) proteins, activity of proteolytic enzymes (caspase-3, caspase-8, caspase-9), DNA fragmentation, or TUNEL-positive nuclei in skeletal muscle. Furthermore, the protein levels of several antioxidant enzymes (catalase, CuZnSOD, MnSOD), concentrations of GSH and GSSG, and degree of ROS generation in skeletal muscle were not altered by exercise. Fiber type-specific analysis also revealed that ARC (P < 0.001) and Hsp70 (P < 0.05) protein were significantly higher in type I compared with type IIA and type IIAX/X fibers; however, protein levels were not affected by exercise. These findings suggest that a single bout of prolonged moderate-intensity aerobic exercise is not sufficient to alter apoptotic signaling in skeletal muscle of healthy humans.
Collapse
|
37
|
Lagirand-Cantaloube J, Cornille K, Csibi A, Batonnet-Pichon S, Leibovitch MP, Leibovitch SA. Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 2009; 4:e4973. [PMID: 19319192 PMCID: PMC2656614 DOI: 10.1371/journal.pone.0004973] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/27/2009] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.
Collapse
Affiliation(s)
- Julie Lagirand-Cantaloube
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, Montpellier, France
| | - Karen Cornille
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, Montpellier, France
| | - Alfredo Csibi
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, Montpellier, France
| | | | - Marie Pierre Leibovitch
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, Montpellier, France
| | - Serge A. Leibovitch
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, Montpellier, France
- * E-mail:
| |
Collapse
|
38
|
Bruusgaard JC, Gundersen K. In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest 2008; 118:1450-7. [PMID: 18317591 DOI: 10.1172/jci34022] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 01/09/2008] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have suggested that muscle atrophy is accompanied by apoptotic loss of myonuclei and therefore recovery would require replenishment by muscle stem cells. We used in vivo time-lapse microscopy to observe the loss and replenishment of myonuclei in murine muscle fibers following induced muscle atrophy. To our surprise, imaging of single fibers for up to 28 days did not support the concept of nuclear loss during atrophy. Muscles were inactivated by denervation, nerve impulse block, or mechanical unloading. Nuclei were stained in vivo either acutely by intracellular injection of fluorescent oligonucleotides or in time-lapse studies after transfection with a plasmid encoding GFP with a nuclear localization signal. We observed no loss of myonuclei in fast- or slow-twitch muscle fibers despite a greater than 50% reduction in fiber cross-sectional area. TUNEL labeling of fragmented DNA on histological sections revealed high levels of apoptotic nuclei in inactive muscles. However, when costained for laminin and dystrophin, virtually none of the TUNEL-positive nuclei could be classified as myonuclei; apoptosis was confined to stromal and satellite cells. We conclude that disuse atrophy is not a degenerative process, but is rather a change in the balance between protein synthesis and proteolysis in a permanent cell syncytium.
Collapse
Affiliation(s)
- Jo C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
39
|
Abstract
Striated skeletal is subject to nonlethal cycles of atrophy in response to a variety of physiological and pathological stimuli, including: starvation, disuse, denervation and inflammation. These cells can also undergo cell death in response to appropriate developmental signals or specific pathological insults. Most of the insights gained into the control of vertebrate skeletal muscle atrophy and death have resulted from experimental interventions rather than natural processes. In contrast, the intersegmental muscles (ISMs) of moths are giant cells that initiate sequential and distinct programs of atrophy and death at the end of metamorphosis as a normal component of development. This model has provided fundamental information about the control, biochemistry, molecular biology and anatomy of naturally occurring atrophy and death in vivo. The ISMs have provided a good complement to studies in vertebrates and may provide insights into clinically relevant disorders.
Collapse
|
40
|
Gundersen K, Bruusgaard JC. Nuclear domains during muscle atrophy: nuclei lost or paradigm lost? J Physiol 2008; 586:2675-81. [PMID: 18440990 DOI: 10.1113/jphysiol.2008.154369] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
According to the current paradigm, muscle nuclei serve a certain cytoplasmic domain. To preserve the domain size, it is believed that nuclei are injected from satellite cells fusing to fibres undergoing hypertrophy, and lost by apoptosis during atrophy. Based on single fibre observations in and ex vivo we suggest that nuclear domains are not as constant as is often indicated. Moreover, recent time lapse in vivo imaging of single fibres suggests that at least for the first few weeks, atrophy is not accompanied by any loss of nuclei. Apoptosis is abundant in muscle tissue during atrophy conditions, but in our opinion it has not been unequivocally demonstrated that such nuclei are myonuclei. As we see it, the preponderance of current evidence suggests that disuse atrophy is not accompanied by loss of nuclei, at least not for the first 2 months. Moreover, it has not been proven that myonuclear apoptosis does occur in permanent fibres undergoing atrophy; it seems more likely that it is confined to stromal cells and satellite cells. If muscle atrophy is not related to loss of nuclei, design of intervention therapies should focus on protein metabolism rather than regeneration from stem cells.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, N-0316 Oslo, Norway.
| | | |
Collapse
|
41
|
Mitchell RG, Duscha BD, Robbins JL, Redfern SI, Chung J, Bensimhon DR, Kraus WE, Hiatt WR, Regensteiner JG, Annex BH. Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease. Vasc Med 2008; 12:285-90. [PMID: 18048464 DOI: 10.1177/1358863x07084858] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intermittent claudication (IC) is the major clinical manifestation of peripheral arterial disease (PAD). Apoptosis has been linked to skeletal muscle pathophysiology in other chronic diseases such as congestive heart failure. This study tested the hypothesis that there would be increased levels of apoptosis in the skeletal muscle of patients with PAD compared with control individuals. In total, 26 individuals with PAD and 28 age-appropriate controls underwent studies of peak oxygen consumption (peak VO2) and a gastrocnemius muscle biopsy in the most symptomatic leg. Muscle biopsies were analyzed for apoptosis and caspase-3 activity. Patients with PAD had a reduced peak VO2 compared with controls. Apoptosis was increased in those with PAD compared with age-appropriate controls (3.83% +/- 2.6 vs 1.53% +/- 0.96; p < 0.001). In conclusion, PAD is associated with increased levels of apoptosis in the peripheral skeletal muscle. Further study is required to ascertain whether apoptosis plays a role in decreased functional capacity.
Collapse
Affiliation(s)
- Robert G Mitchell
- Division of Cardiology, Department of Medicine, Durham VA and Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
SMAC-expression in denervated human skeletal muscle as a potential inhibitor of coexpressed inhibitor-of-apoptosis proteins. Appl Immunohistochem Mol Morphol 2008; 16:66-70. [PMID: 18091317 DOI: 10.1097/pai.0b013e318030b32e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In multinucleated skeletal muscle fibers, apoptotic muscle fiber loss is mediated by a consecutive disassembly of single fiber segments. During this period of time, proapoptotic and antiapoptotic factors compete for promotion or inhibition of apoptotic fiber degradation. In 16 patients with a neurogenic muscular atrophy, we studied the immunohistochemical expression of the inhibitor-of-apoptosis proteins (IAP) survivin, cIAP1, and XIAP and also of second mitochondria-derived activator of caspase (SMAC), which is released during apoptosis and binds to IAPs to prevent them from inhibiting caspases. Although normal control muscle fibers show no expression of SMAC and IAPs, there was a distinct sarcoplasmic expression of SMAC (12.0%+/-3.5%), survivin (10.2%+/-4.0%), cIAP1 (9.0%+/-3.1%), and XIAP (11.0%+/-4.6%) in varying numbers of muscle fibers in neurogenic muscular atrophy. Coexpression of SMAC and IAPs varied. Some denervated muscle fibers displayed up-regulation of either SMAC or IAPs. Other groups of atrophic muscle fibers showed coexpression of SMAC and IAPs. All factors were exclusively up-regulated in atrophic muscle fibers. These findings indicate that IAPs may inhibit apoptotic degradation of denervated muscle fibers. However, IAPs are finally insufficient to counterbalance and prevent muscle fiber apoptosis, as up-regulated expression of SMAC can antagonize this antiapoptotic potential and promote apoptotic muscle fiber disassembly and loss. The interplay between IAPs and SMAC may represent a threshold for muscle fiber-degrading caspase activities. If this bears a therapeutic potential in the prevention of loss of denervated muscle fibers, it remains highly speculative.
Collapse
|
43
|
The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal 2008; 2:1254-64. [DOI: 10.1017/s1751731108002310] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Sinha-Hikim I, Braga M, Shen R, Sinha Hikim AP. Involvement of c-Jun NH2-terminal kinase and nitric oxide-mediated mitochondria-dependent intrinsic pathway signaling in cardiotoxin-induced muscle cell death: role of testosterone. Apoptosis 2007; 12:1965-78. [PMID: 17786558 DOI: 10.1007/s10495-007-0120-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To test the hypothesis that c-Jun NH2-terminal kinase (JNK) and nitric oxide (NO)-mediated signaling plays an important role in muscle cell apoptosis, we examined the contribution of these molecules in muscle cell apoptosis during cardiotoxin (ctx)-induced muscle injury in mice. Compared to controls, where no apoptosis was detected, the percent of muscle cell apoptosis rose significantly (P < 0.05) at 4 h (27%) after ctx-treatment and increased further progressively up to 16 h posttreatment (80%), before it fell again at 24 h posttreatment (38%). Initiation of apoptosis was preceded by JNK activation and elevated levels of B-cell lymphoma-2 (BCL-2) in the mitochondrial fractions (BAX levels remained unaffected). Ctx treatment also resulted in the inactivation of BCL-2 through phosphorylation at serine 70, thereby perturbing the BAX/BCL-2 rheostat, and the subsequent activation of the cytochrome c-mediated death pathway. Concomitant administration of SP600125, a selective JNK inhibitor, or aminoguanidine (AG), a selected inducible nitric oxide synthase (iNOS) inhibitor, effectively diminished BCL-2 phosphorylation, suppressed cytochrome c release from mitochondria and caspase activation, and significantly prevented ctx-induced muscle cell apoptosis. In additional studies, we examined the role of testosterone in preventing such ctx-induced muscle cell apoptosis. Collectively, the present study emphasizes the role of a new signal transduction pathway involving JNK and iNOS that promotes ctx-induced myocyte apoptosis by provoking BCL-2 phosphorylation, leading to its inactivation, and subsequent activation of the intrinsic pathway signaling. Testosterone therapy has no protective effect in acute muscle injury associated with increased muscle cell death after ctx-treatment.
Collapse
Affiliation(s)
- Indrani Sinha-Hikim
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA.
| | | | | | | |
Collapse
|
45
|
Zanin M, Germinario E, Dalla Libera L, Sandonà D, Sabbadini RA, Betto R, Danieli-Betto D. Trophic action of sphingosine 1-phosphate in denervated rat soleus muscle. Am J Physiol Cell Physiol 2007; 294:C36-46. [PMID: 17942639 DOI: 10.1152/ajpcell.00164.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) mediates a number of cellular responses, including growth and proliferation. Skeletal muscle possesses the full enzymatic machinery to generate S1P and expresses the transcripts of S1P receptors. The aim of this work was to localize S1P receptors in rat skeletal muscle and to investigate whether S1P exerts a trophic action on muscle fibers. RT-PCR and Western blot analyses demonstrated the expression of S1P(1) and S1P(3) receptors by soleus muscle. Immunofluorescence revealed that S1P(1) and S1P(3) receptors are localized at the cell membrane of muscle fibers and in the T-tubule membranes. The receptors also decorate the nuclear membrane. S1P(1) receptors were also present at the neuromuscular junction. The possible trophic action of S1P was investigated by utilizing the denervation atrophy model. Rat soleus muscle was analyzed 7 and 14 days after motor nerve cut. During denervation, S1P was continuously delivered to the muscle through a mini osmotic pump. S1P and its precursor, sphingosine (Sph), significantly attenuated the progress of denervation-induced muscle atrophy. The trophic effect of Sph was prevented by N,N-dimethylsphingosine, an inhibitor of Sph kinase, the enzyme that converts Sph into S1P. Neutralization of circulating S1P by a specific antibody further demonstrated that S1P was responsible for the trophic effects of S1P during denervation atrophy. Denervation produced the down regulation of S1P(1) and S1P(3) receptors, regardless of the presence of the receptor agonist. In conclusion, the results suggest that S1P acts as a trophic factor of skeletal muscle.
Collapse
Affiliation(s)
- Marika Zanin
- Department of Human Anatomy and Physiology, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113:461-87. [PMID: 17258813 DOI: 10.1016/j.pharmthera.2006.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
47
|
Kemp CM, Bardsley RG, Parr T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle1. J Anim Sci 2006; 84:2841-6. [PMID: 16971587 DOI: 10.2527/jas.2006-163] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the protease family caspases in skeletal muscle and their potential contribution to postmortem proteolysis and meat tenderization. Ten Large White gilts were slaughtered, and samples of LM were taken at 0, 2, 4, 8, 16, 32, and 192 h after slaughter and immediately snap frozen in liquid nitrogen. Samples were subsequently analyzed for caspase 3/7 and caspase 9 activity, protein levels of known caspase substrates, alpha II spectrin and poly (ADP-ribose) polymerase (PARP), as well as, at 192 h, shear force. Specific degradation products of alpha II spectrin and PARP, which are known indicators of caspase activity, and apoptosis were detected on immunoblots of muscle samples taken over the postmortem period. The relationships between the changes observed in caspase activities and protein levels of PARP and spectrin across the entire postmortem conditioning period were investigated (n = 70). Protein levels of alpha II spectrin cleavage products across the conditioning period were found to correlate positively to caspase 3/7 activity (r = 0.38, P = 0.003) and caspase 9 activity (r = 0.32, P = 0.012), indicating that caspase-mediated cleavage was occurring in situ. There was a negative relationship between shear force and the 0 to 32 h ratio of caspase 3/7 (r = -0.62, P = 0.053) and caspase 9 activities (r = -0.68, P = 0.044). In addition, there was also a negative relationship between shear force and the level of the caspase-generated alpha II spectrin 120 kDa degradation product (r = -0.75, P = 0.012). The findings of this study indicate that changes in caspase activity and caspase-mediated cleavage take place in muscle during the conditioning period, and this could be associated with the development of tender meat.
Collapse
Affiliation(s)
- C M Kemp
- Division of Nutritional Sciences, School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Leicestershire, LE12 5RD, UK.
| | | | | |
Collapse
|
48
|
Pelletier M, Rossignol J, Oliver L, Zampieri M, Fontaine-Pérus J, Vallette FM, Lescaudron L. Soluble factors from neuronal cultures induce a specific proliferation and resistance to apoptosis of cognate mouse skeletal muscle precursor cells. Neurosci Lett 2006; 407:20-5. [PMID: 16959418 DOI: 10.1016/j.neulet.2006.06.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/07/2006] [Accepted: 06/07/2006] [Indexed: 12/13/2022]
Abstract
The mechanisms or the physiological events, which control the regeneration of skeletal muscle through muscle precursor cell multiplication and differentiation, are still largely unknown. To address the question of the involvement of neurons in this process, skeletal muscle progenitors were grown in the presence of conditioned media obtained from 3-day-old cultures of embryonic neurons (derived from either the dorsal or the ventral region of 11-day-old mouse embryos) or media conditioned with satellite cells. Strikingly, only satellite cells cultured in medium conditioned from ventral embryonic neurons exhibited increased proliferation, as well as resistance to staurosporine (STS)-induced apoptosis. Our results suggest the existence of specific anti-apoptogenic neural soluble signals, which could be involved in skeletal muscle regeneration pathways.
Collapse
|
49
|
Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci 2006; 74:44-58. [DOI: 10.1016/j.meatsci.2006.05.010] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/27/2006] [Accepted: 05/08/2006] [Indexed: 01/25/2023]
|
50
|
|