1
|
Bahadoran Z, Mirmiran P, Ghasemi A. Type 2 diabetes-related sarcopenia: role of nitric oxide. Nutr Metab (Lond) 2024; 21:107. [PMID: 39695784 DOI: 10.1186/s12986-024-00883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Sarcopenia, characterized by progressive and generalized loss of skeletal muscle (SkM) mass, strength, and physical performance, is a prevalent complication in type 2 diabetes (T2D). Nitric oxide (NO), a multifunctional gasotransmitter involved in whole-body glucose and insulin homeostasis, plays key roles in normal SkM physiology and function. Here, we highlight the role of NO in SkM mass maintenance and its potential contribution to the development of T2D-related sarcopenia. Physiologic NO level, primarily produced by sarcolemmal neuronal nitric oxide synthase (nNOSμ isoform), is involved in protein synthesis in muscle fibers and maintenance of SkM mass. The observed effect of nNOSμ on SkM mass is muscle-type specific and sex-dependent. Impaired NO homeostasis [due to a diminished nNOSμ-NO availability and excessive NO production through inducible NOS (iNOS) in response to atrophic stimuli, e.g., inflammatory cytokines] in SkM occurred during the development and progression of T2D, may cause sarcopenia. Theoretically, restoration of NO through nNOS overexpression, supplying NOS substrates (e.g., L-arginine and L-citrulline), phosphodiesterase (PDE) inhibition, and supplementation with NO donors (e.g., inorganic nitrate) may be potential therapeutic approaches to preserve SkM mass and prevents sarcopenia in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
2
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
3
|
Trundle J, Cernisova V, Boulinguiez A, Lu-Nguyen N, Malerba A, Popplewell L. Expression of the Pro-Fibrotic Marker Periostin in a Mouse Model of Duchenne Muscular Dystrophy. Biomedicines 2024; 12:216. [PMID: 38255321 PMCID: PMC10813341 DOI: 10.3390/biomedicines12010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterised by fibrotic tissue deposition in skeletal muscle. We assessed the role of periostin in fibrosis using mdx mice, an established DMD murine model, for which we conducted a thorough examination of periostin expression over a year. RNA and protein levels in diaphragm (DIA) muscles were assessed and complemented by a detailed histological analysis at 5 months of age. In dystrophic DIAs, periostin (Postn) mRNA expression significantly exceeded that seen in wildtype controls at all timepoints analysed, with the highest expression at 5 months of age (p < 0.05). We found Postn to be more consistently highly expressed at the earlier timepoints compared to established markers of fibrosis like transforming growth factor-beta 1 (Tgf-β1) and connective tissue growth factor (Ctgf). Immunohistochemistry confirmed a significantly higher periostin protein expression in 5-month-old mdx mice compared to age-matched healthy controls (p < 0.01), coinciding with a significant fibrotic area percentage (p < 0.0001). RT-qPCR also indicated an elevated expression of Tgf-β1, Col1α1 (collagen type 1 alpha 1) and Ctgf in mdx DIAs compared to wild type controls (p < 0.05) at 8- and 12-month timepoints. Accordingly, immunoblot quantification demonstrated elevated periostin (3, 5 and 8 months, p < 0.01) and Tgf-β1 (8 and 12 months, p < 0.001) proteins in the mdx muscle. These findings collectively suggest that periostin expression is a valuable marker of fibrosis in this relevant model of DMD. They also suggest periostin as a potential contributor to fibrosis development, with an early onset of expression, thereby offering the potential for timely therapeutic intervention and its use as a biomarker in muscular dystrophies.
Collapse
Affiliation(s)
- Jessica Trundle
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Viktorija Cernisova
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Alexis Boulinguiez
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.T.); (V.C.); (A.B.); (N.L.-N.); (L.P.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
4
|
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023; 11:2033. [PMID: 37509672 PMCID: PMC10377666 DOI: 10.3390/biomedicines11072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the severest form of muscular dystrophy, is characterized by progressive muscle weakness with fatal outcomes most often before the fourth decade of life. Despite the recent addition of molecular treatments, DMD remains a disease without a cure, and the need persists for the development of supportive therapies aiming to help improve patients' quality of life. This review focuses on the therapeutical potential of amino acid and derivative supplements, summarizing results obtained in preclinical studies in murine disease models. Several promising compounds have emerged, with L-arginine, N-acetylcysteine, and taurine featuring among the most intensively investigated. Their beneficial effects include reduced inflammatory, oxidative, fibrotic, and necrotic damage to skeletal muscle tissues. Improvement of muscle strength and endurance have been reported; however, mild side effects have also surfaced. More explorative, placebo-controlled and long-term clinical trials would need to be conducted in order to identify amino acid formulae that are safe and of true benefit to DMD patients.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Ghent University & Neuromuscular Reference Center, Ghent University Hospital, Route 830, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Wohlgemuth RP, Feitzinger RM, Henricson KE, Dinh DT, Brashear SE, Smith LR. The extracellular matrix of dystrophic mouse diaphragm accounts for the majority of its passive stiffness and is resistant to collagenase digestion. Matrix Biol Plus 2023; 18:100131. [PMID: 36970609 PMCID: PMC10036937 DOI: 10.1016/j.mbplus.2023.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The healthy skeletal muscle extracellular matrix (ECM) has several functions including providing structural integrity to myofibers, enabling lateral force transmission, and contributing to overall passive mechanical properties. In diseases such as Duchenne Muscular dystrophy, there is accumulation of ECM materials, primarily collagen, which results in fibrosis. Previous studies have shown that fibrotic muscle is often stiffer than healthy muscle, in part due to the increased number and altered architecture of collagen fibers within the ECM. This would imply that the fibrotic matrix is stiffer than the healthy matrix. However, while previous studies have attempted to quantify the extracellular contribution to passive stiffness in muscle, the outcomes are dependent on the type of method used. Thus, the goals of this study were to compare the stiffness of healthy and fibrotic muscle ECM and to demonstrate the efficacy of two methods for quantifying extracellular-based stiffness in muscle, namely decellularization and collagenase digestion. These methods have been demonstrated to remove the muscle fibers or ablate collagen fiber integrity, respectively, while maintaining the contents of the extracellular matrix. Using these methods in conjunction with mechanical testing on wildtype and D2.mdx mice, we found that a majority of passive stiffness in the diaphragm is dependent on the ECM, and the D2.mdx diaphragm ECM is resistant to digestion by bacterial collagenase. We propose that this resistance is due to the increased collagen cross-links and collagen packing density in the ECM of the D2.mdx diaphragm. Taken altogether, while we did not find increased stiffness of the fibrotic ECM, we did observe that the D2.mdx diaphragm conveyed resistance against collagenase digestion. These findings demonstrate how different methods for measuring ECM-based stiffness each have their own limitations and can produce different results.
Collapse
Affiliation(s)
- Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Ryan M. Feitzinger
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Kyle E. Henricson
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
- Department of Chemistry and Biochemistry, University of California Santa Cruz, USA
| | - Daryl T. Dinh
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, USA
- Department of Physical Medicine and Rehabilitation, University of California Davis, USA
| |
Collapse
|
6
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
7
|
Brashear SE, Wohlgemuth RP, Hu LY, Jbeily EH, Christiansen BA, Smith LR. Collagen cross-links scale with passive stiffness in dystrophic mouse muscles, but are not altered with administration of a lysyl oxidase inhibitor. PLoS One 2022; 17:e0271776. [PMID: 36302059 PMCID: PMC9612445 DOI: 10.1371/journal.pone.0271776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a lack of functional dystrophin leads to myofiber instability and progressive muscle damage that results in fibrosis. While fibrosis is primarily characterized by an accumulation of extracellular matrix (ECM) components, there are changes in ECM architecture during fibrosis that relate more closely to functional muscle stiffness. One of these architectural changes in dystrophic muscle is collagen cross-linking, which has been shown to increase the passive muscle stiffness in models of fibrosis including the mdx mouse, a model of DMD. We tested whether the intraperitoneal injections of beta-aminopropionitrile (BAPN), an inhibitor of the cross-linking enzyme lysyl oxidase, would reduce collagen cross-linking and passive stiffness in young and adult mdx mice compared to saline-injected controls. We found no significant differences between BAPN treated and saline treated mice in collagen cross-linking and stiffness parameters. However, we observed that while collagen cross-linking and passive stiffness scaled positively in dystrophic muscles, collagen fiber alignment scaled with passive stiffness distinctly between muscles. We also observed that the dystrophic diaphragm showed the most dramatic fibrosis in terms of collagen content, cross-linking, and stiffness. Overall, we show that while BAPN was not effective at reducing collagen cross-linking, the positive association between collagen cross-linking and stiffness in dystrophic muscles still show cross-linking as a viable target for reducing passive muscle stiffness in DMD or other fibrotic muscle conditions.
Collapse
Affiliation(s)
- Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Lin-Ya Hu
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Elias H. Jbeily
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, California, United States of America
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, California, United States of America
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
L-Arginine/nitric oxide regulates skeletal muscle development via muscle fibre-specific nitric oxide/mTOR pathway in chickens. ANIMAL NUTRITION 2022; 10:68-85. [PMID: 35647326 PMCID: PMC9125674 DOI: 10.1016/j.aninu.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
Abstract
L-Arginine (L-Arg), the precursor of nitric oxide (NO), plays an important role in muscle function. Fast-twitch glycolytic fibres are more susceptible to age-related atrophy than slow-twitch oxidative fibres. The effect of L-Arg/NO on protein metabolism of fast- and slow-twitch muscle fibres was evaluated in chickens. In Exp. 1, 48 chicks at 1 day old were divided into 4 groups of 12 birds and subjected to 4 treatments: basal diet without supplementation or supplemented with 1% L-Arg, and water supplemented with or without L-nitro-arginine methyl ester (L-NAME, 18.5 mM). In Exp. 2, 48 chicks were divided into 4 groups of 12 birds fed with the basal diet and subjected to the following treatments: tap water (control), tap water supplemented with L-NAME (18.5 mM), or molsidomine (MS, 0.1 mM), or 18.5 mM L-NAME + 0.1 mM MS (NAMS). The regulatory effect of L-Arg/NO was further investigated in vitro with myoblasts obtained from chicken embryo pectoralis major (PM) and biceps femoris (BF). In vivo, dietary L-Arg supplementation increased breast (+14.94%, P < 0.05) and thigh muscle mass (+23.40%, P < 0.05); whereas, MS treatment had no detectable influence. However, L-NAME treatment blocked the beneficial influence of L-Arg on muscle development. L-Arg decreased (P < 0.05) protein synthesis rate, phosphorylated mTOR and ribosomal protein S6 kinase beta-1 (p70S6K) levels in breast muscle, which was recovered by L-NAME treatment. In vitro, L-Arg or sodium nitroprusside (SNP) reduced protein synthesis rate, suppressed phosphorylated mTOR/p70S6K and decreased atrogin-1 and muscle RING finger 1 (MuRF1) in myoblasts from PM muscle (P < 0.05). L-NAME abolished the inhibitory effect of L-Arg on protein synthesis and the mTOR/p70S6K pathway. However, myoblasts from BF muscle showed the weak influence. Moreover, blocking the mTOR/p70S6K pathway with rapamycin suppressed protein synthesis of the 2 types of myoblasts; whereas, the protein expression of atrogin-1 and MuRF1 levels were restricted only in myoblasts from PM muscle. In conclusion, L-Arg/NO/mTOR/p70S6K pathway enhances protein accumulation and muscle development in fast-twitch glycolytic muscle in chickens. L-Arg/NO regulates protein turnover in a muscle fibre specific way, which highlights the potential clinical application in fast-twitch glycolytic muscle fibres.
Collapse
|
9
|
Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines 2022; 10:biomedicines10020304. [PMID: 35203514 PMCID: PMC8869250 DOI: 10.3390/biomedicines10020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.
Collapse
|
10
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Gaina G, Popa (Gruianu) A. Muscular dystrophy: Experimental animal models and therapeutic approaches (Review). Exp Ther Med 2021; 21:610. [PMID: 33936267 PMCID: PMC8082581 DOI: 10.3892/etm.2021.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The muscular dystrophies are a heterogeneous group of genetically inherited diseases characterized by muscle weakness and progressive wasting, which can cause premature death in severe forms. Although >30 years have passed since the identification of the first protein involved in a type of muscular dystrophy, there is no effective treatment for these disabling disorders. In the last decade, several novel therapeutic approaches have been developed and investigated as promising therapeutic approaches aimed to ameliorate the dystrophic phenotype either by restoring dystrophin expression or by compensating for dystrophin deficiency. Concurrently, with the development of therapeutic approaches, in addition to naturally occurring animal models, a wide range of genetically engineered animal models has been generated. The use of animals as models of muscular dystrophies has greatly improved the understanding of the pathogenicity of these diseases and has proven useful in gene therapy studies. In this review, we summarize these latest innovative therapeutic approaches to muscular dystrophies and the usefulness of the various most common experimental animal models.
Collapse
Affiliation(s)
- Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Popa (Gruianu)
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| |
Collapse
|
13
|
Dudley RWR, Comtois AS, St-Pierre DH, Danialou G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv 2021; 3:639-651. [PMID: 34377959 PMCID: PMC8332474 DOI: 10.1096/fba.2020-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder that results in the absence of dystrophin, a cytoskeletal protein. Individuals with this disease experience progressive muscle destruction, which leads to muscle weakness. Studies have been conducted to find solutions for the relief of individuals with this disease, several of which have shown that utrophin, a protein closely related to dystrophin, when overexpressed in mdx neonatal mice (the murine model of DMD), is able to prevent the progressive muscle destruction observed in the absence of dystrophin. Furthermore, recent studies have shown that L‐arginine induces utrophin upregulation in adult mdx mice. We hypothesized that L‐arginine treatment also induces utrophin upregulation to prevent the development of muscle weakness in neonatal mdx mice. Hence, L‐arginine should also prevent progressive muscle destruction via utrophin upregulation in mdx neonatal mice. Mdx neonatal mice were injected intraperitoneally daily with 800 mg/kg of L‐arginine for 6 weeks, whereas control mice were injected with a physiological saline. The following experiments were performed on the tibialis anterior (TA) muscle: muscle contractility and resistance to mechanical stress; central nucleation and peripheral nucleation, utrophin, and creatine kinase quantification as well as a nitric oxide (NO) assay. Our findings show that early administration of L‐arginine in mdx neonatal mice prevents the destruction of the tibialis anterior (TA) muscle. However, this improvement was related to nitric oxide (NO) production rather than the expected utrophin upregulation.
Collapse
Affiliation(s)
- Roy W R Dudley
- Meakins Christie Laboratories McGill University Montreal QC Canada
| | - Alain S Comtois
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Groupe de Recherche en Activité Physique Adaptée UQAM Montreal QC Canada.,Centre de Recherche du CHU Sainte-Justine Montréal QC Canada
| | - Gawiyou Danialou
- Meakins Christie Laboratories McGill University Montreal QC Canada.,Département des Sciences de l'Activité Physique Université du Québec à Montréal (UQAM Montreal QC Canada.,Royal Military College Saint-Jean Saint-Jean-sur-Richelieu QC Canada
| |
Collapse
|
14
|
Brashear SE, Wohlgemuth RP, Gonzalez G, Smith LR. Passive stiffness of fibrotic skeletal muscle in mdx mice relates to collagen architecture. J Physiol 2021; 599:943-962. [PMID: 33247944 PMCID: PMC9926974 DOI: 10.1113/jp280656] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The amount of fibrotic material in dystrophic mouse muscles relates to contractile function, but not passive function. Collagen fibres in skeletal muscle are associated with increased passive muscle stiffness in fibrotic muscles. The alignment of collagen is independently associated with passive stiffness in dystrophic skeletal muscles. These outcomes demonstrate that collagen architecture rather than collagen content should be a target of anti-fibrotic therapies to treat muscle stiffness. ABSTRACT Fibrosis is prominent in many skeletal muscle pathologies including dystrophies, neurological disorders, cachexia, chronic kidney disease, sarcopenia and metabolic disorders. Fibrosis in muscle is associated with decreased contractile forces and increased passive stiffness that limits joint mobility leading to contractures. However, the assumption that more fibrotic material is directly related to decreased function has not held true. Here we utilize novel measurement of extracellular matrix (ECM) and collagen architecture to relate ECM form to muscle function. We used mdx mice, a model for Duchenne muscular dystrophy that becomes fibrotic, and wildtype mice. In this model, extensor digitorum longus (EDL) muscle was significantly stiffer, but with similar total collagen, while the soleus muscle did not change stiffness, but increased collagen. The stiffness of the EDL was associated with increased collagen crosslinking as determined by collagen solubility. Measurement of ECM alignment using polarized light microscopy showed a robust relationship between stiffness and alignment for wildtype muscle that broke down in mdx muscles. Direct visualization of large collagen fibres with second harmonic generation imaging revealed their relative abundance in stiff muscles. Collagen fibre alignment was linked to stiffness across all muscles investigated and the most significant factor in a multiple linear regression-based model of muscle stiffness from ECM parameters. This work establishes novel characteristics of skeletal muscle ECM architecture and provides evidence for a mechanical function of collagen fibres in muscle. This finding suggests that anti-fibrotic strategies to enhance muscle function and excessive stiffness should target large collagen fibres and their alignment rather than total collagen.
Collapse
Affiliation(s)
- Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Gabriella Gonzalez
- Department of Neurobiology, Physiology, and Behavior, University of California Davis
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis,Department of Physical Medicine and Rehabilitation, University of California Davis
| |
Collapse
|
15
|
Timpani CA, Mamchaoui K, Butler-Browne G, Rybalka E. Nitric Oxide (NO) and Duchenne Muscular Dystrophy: NO Way to Go? Antioxidants (Basel) 2020; 9:antiox9121268. [PMID: 33322149 PMCID: PMC7764682 DOI: 10.3390/antiox9121268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023] Open
Abstract
The discordance between pre-clinical success and clinical failure of treatment options for Duchenne Muscular Dystrophy (DMD) is significant. The termination of clinical trials investigating the phosphodiesterase inhibitors, sildenafil and tadalafil (which prolong the second messenger molecule of nitric oxide (NO) signaling), are prime examples of this. Both attenuated key dystrophic features in the mdx mouse model of DMD yet failed to modulate primary outcomes in clinical settings. We have previously attempted to modulate NO signaling via chronic nitrate supplementation of the mdx mouse but failed to demonstrate beneficial modulation of key dystrophic features (i.e., metabolism). Instead, we observed increased muscle damage and nitrosative stress which exacerbated MD. Here, we highlight that acute nitrite treatment of human DMD myoblasts is also detrimental and suggest strategies for moving forward with NO replacement therapy in DMD.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne 8001, Victoria, Australia;
- Australian Institute for Musculoskeletal Science, St Albans 3021, Victoria, Australia
- Correspondence: ; Tel.: +61-3-8395-8206
| | - Kamel Mamchaoui
- Institut de Myologie, Sorbonne University, INSERM UMRS974 Paris, France; (K.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Institut de Myologie, Sorbonne University, INSERM UMRS974 Paris, France; (K.M.); (G.B.-B.)
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne 8001, Victoria, Australia;
- Australian Institute for Musculoskeletal Science, St Albans 3021, Victoria, Australia
| |
Collapse
|
16
|
Smith LR, Kok HJ, Zhang B, Chung D, Spradlin RA, Rakoczy KD, Lei H, Boesze-Battaglia K, Barton ER. Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration. Cell Physiol Biochem 2020; 54:333-353. [PMID: 32275813 DOI: 10.33594/000000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Cell migration and extracellular matrix remodeling underlie normal mammalian development and growth as well as pathologic tumor invasion. Skeletal muscle is no exception, where satellite cell migration replenishes nuclear content in damaged tissue and extracellular matrix reforms during regeneration. A key set of enzymes that regulate these processes are matrix metalloproteinases (MMP)s. The collagenase MMP-13 is transiently upregulated during muscle regeneration, but its contribution to damage resolution is unknown. The purpose of this work was to examine the importance of MMP-13 in muscle regeneration and growth in vivo and to delineate a satellite cell specific role for this collagenase. METHODS Mice with total and satellite cell specific Mmp13 deletion were utilized to determine the importance of MMP-13 for postnatal growth, regeneration after acute injury, and in chronic injury from a genetic cross with dystrophic (mdx) mice. We also evaluated insulin-like growth factor 1 (IGF-1) mediated hypertrophy in the presence and absence of MMP-13. We employed live-cell imaging and 3D migration measurements on primary myoblasts obtained from these animals. Outcome measures included muscle morphology and function. RESULTS Under basal conditions, Mmp13-/- mice did not exhibit histological or functional deficits in muscle. However, following acute injury, regeneration was impaired at 11 and 14 days post injury. Muscle hypertrophy caused by increased IGF-1 was blunted with minimal satellite cell incorporation in the absence of MMP-13. Mmp13-/- primary myoblasts displayed reduced migratory capacity in 2D and 3D, while maintaining normal proliferation and differentiation. Satellite cell specific deletion of MMP-13 recapitulated the effects of global MMP-13 ablation on muscle regeneration, growth and myoblast movement. CONCLUSION These results show that satellite cells provide an essential autocrine source of MMP-13, which not only regulates their migration, but also supports postnatal growth and resolution of acute damage.
Collapse
Affiliation(s)
- Lucas R Smith
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Neurobiology, Physiology & Behavior, Physical Medicine & Rehabilitation, University of California, Davis, CA, USA
| | - Hui Jean Kok
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Boshi Zhang
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Du Chung
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ray A Spradlin
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Kyla D Rakoczy
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Hanqin Lei
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | | | - Elisabeth R Barton
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA, .,Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Nham Tran TL, Miranda AF, Mouradov A, Adhikari B. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods 2020; 9:foods9060779. [PMID: 32545411 PMCID: PMC7353575 DOI: 10.3390/foods9060779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023] Open
Abstract
The oil from thraustochytrids, unicellular heterotrophic marine protists, is increasingly used in the food and biotechnological industries as it is rich in omega-3 fatty acids, squalene and a broad spectrum of carotenoids. This study showed that the oilcake, a by-product of oil extraction, is equally valuable as it contained 38% protein/dry mass, and thraustochytrid protein isolate can be obtained with 92% protein content and recovered with 70% efficiency. The highest and lowest solubilities of proteins were observed at pH 12.0 and 4.0, respectively, the latter being its isoelectric point. Aspartic acid, glutamic acid, histidine, and arginine were the most abundant amino acids in proteins. The arginine-to-lysine ratio was higher than one, which is desired in heart-healthy foods. The denaturation temperature of proteins ranged from 167.8–174.5 °C, indicating its high thermal stability. Proteins also showed high emulsion activity (784.1 m2/g) and emulsion stability (209.9 min) indices. The extracted omega-3-rich oil melted in the range of 30–34.6 °C and remained stable up to 163–213 °C. This study shows that thraustochytrids are not only a valuable source of omega 3-, squalene- and carotenoid-containing oils, but are also rich in high-value protein with characteristics similar to those from oilseeds.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
- Faculty of Agriculture Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam
| | - Ana F. Miranda
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
| | - Aidyn Mouradov
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
- Correspondence: ; Tel.: +61-3-99257144
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora Campus, Melbourne, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (B.A.)
| |
Collapse
|
18
|
Li J, Lu Y, Li N, Li P, Su J, Wang Z, Wang T, Yang Z, Yang Y, Chen H, Xiao L, Duan H, Wu W, Liu X. Muscle metabolomics analysis reveals potential biomarkers of exercise‑dependent improvement of the diaphragm function in chronic obstructive pulmonary disease. Int J Mol Med 2020; 45:1644-1660. [PMID: 32186768 PMCID: PMC7169662 DOI: 10.3892/ijmm.2020.4537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Decreased diaphragm function is a crucial factor leading to reduced ventilatory efficiency and worsening of quality of life in chronic obstructive pulmonary disease (COPD). Exercise training has been demonstrated to effectively improve the function of the diaphragm. However, the mechanism of this process has not been identified. The emergence of metabolomics has allowed the exploration of new ideas. The present study aimed to analyze the potential biomarkers of exercise-dependent enhancement of diaphragm function in COPD using metabolomics. Sprague Dawley rats were divided into three groups: COPD + exercise group (CEG); COPD model group (CMG); and control group (CG). The first two groups were exposed to cigarette smoke for 16 weeks to establish a COPD model. Then, the rats in the CEG underwent aerobic exercise training for 9 weeks. Following confirmation that exercise effectively improved the diaphragm function, a gas chromatography tandem time-of-flight mass spectrometry analysis system was used to detect the differential metabolites and associated pathways in the diaphragm muscles of the different groups. Following exercise intervention, the pulmonary function and diaphragm contractility of the CEG rats were significantly improved compared with those of the CMG rats. A total of 36 different metabolites were identified in the comparison between the CMG and the CG. Pathway enrichment analysis indicated that these different metabolites were involved in 17 pathways. A total of 29 different metabolites were identified in the comparison between the CMG and the CEG, which are involved in 14 pathways. Candidate biomarkers were selected, and the pathways analysis of these metabolites demonstrated that 2 types of metabolic pathways, the nicotinic acid and nicotinamide metabolism and arginine and proline metabolism pathways, were associated with exercise-induced pulmonary rehabilitation.
Collapse
Affiliation(s)
- Jian Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yufan Lu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ning Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijun Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Jianqing Su
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhengrong Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ting Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhaoyu Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yahui Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haixia Chen
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lu Xiao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hongxia Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weibing Wu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
19
|
Swiderski K, Bindon R, Trieu J, Naim T, Schokman S, Swaminathan M, Leembruggen AJL, Hill-Yardin EL, Koopman R, Bornstein JC, Lynch GS. Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation. J Neurogastroenterol Motil 2020; 26:133-146. [PMID: 31715094 PMCID: PMC6955187 DOI: 10.5056/jnm19029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. Methods Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. Results ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. Conclusions GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Rebecka Bindon
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Shana Schokman
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Mathusi Swaminathan
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Anita J L Leembruggen
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Elisa L Hill-Yardin
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia.,Gut-Brain Axis Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia (Current address)
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| | - Joel C Bornstein
- Enteric Nervous System Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Australia
| |
Collapse
|
20
|
Chrzanowski SM, Vohra RS, Lee-McMullen BA, Batra A, Spradlin RA, Morales J, Forbes S, Vandenborne K, Barton ER, Walter GA. Contrast-Enhanced Near-Infrared Optical Imaging Detects Exacerbation and Amelioration of Murine Muscular Dystrophy. Mol Imaging 2018; 16:1536012117732439. [PMID: 29271299 PMCID: PMC5985549 DOI: 10.1177/1536012117732439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assessment of muscle pathology is a key outcome measure to measure the success of
clinical trials studying muscular dystrophies; however, few robust minimally invasive
measures exist. Indocyanine green (ICG)-enhanced near-infrared (NIR) optical imaging
offers an objective, minimally invasive, and longitudinal modality that can quantify
pathology within muscle by imaging uptake of ICG into the damaged muscles. Dystrophic mice
lacking dystrophin (mdx) or gamma-sarcoglycan (Sgcg−/−) were compared to
control mice by NIR optical imaging and magnetic resonance imaging (MRI). We determined
that optical imaging could be used to differentiate control and dystrophic mice, visualize
eccentric muscle induced by downhill treadmill running, and restore the membrane integrity
in Sgcg−/− mice following adeno-associated virus (AAV) delivery of recombinant
human SGCG (desAAV8hSGCG). We conclude that NIR optical imaging is comparable to MRI and
can be used to detect muscle damage in dystrophic muscle as compared to unaffected
controls, monitor worsening of muscle pathology in muscular dystrophy, and assess
regression of pathology following therapeutic intervention in muscular dystrophies.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Ravneet S Vohra
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | | | - Abhinandan Batra
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Ray A Spradlin
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jazmine Morales
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Sean Forbes
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
23
|
L-Arginine Enhances Protein Synthesis by Phosphorylating mTOR (Thr 2446) in a Nitric Oxide-Dependent Manner in C2C12 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7569127. [PMID: 29854093 PMCID: PMC5944195 DOI: 10.1155/2018/7569127] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Muscle atrophy may arise from many factors such as inactivity, malnutrition, and inflammation. In the present study, we investigated the stimulatory effect of nitric oxide (NO) on muscle protein synthesis. Primarily, C2C12 cells were supplied with extra L-arginine (L-Arg) in the culture media. L-Arg supplementation increased the activity of inducible nitric oxide synthase (iNOS), the rate of protein synthesis, and the phosphorylation of mTOR (Thr 2446) and p70S6K (Thr 389). L-NAME, an NOS inhibitor, decreased NO concentrations within cells and abolished the stimulatory effect of L-Arg on protein synthesis and the phosphorylation of mTOR and p70S6K. In contrast, SNP (sodium nitroprusside), an NO donor, increased NO concentrations, enhanced protein synthesis, and upregulated mTOR and p70S6K phosphorylation, regardless of L-NAME treatment. Blocking mTOR with rapamycin abolished the stimulatory effect of both L-Arg and SNP on protein synthesis and p70S6K phosphorylation. These results indicate that L-Arg stimulates protein synthesis via the activation of the mTOR (Thr 2446)/p70S6K signaling pathway in an NO-dependent manner.
Collapse
|
24
|
Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity. Life Sci 2017; 191:17-23. [DOI: 10.1016/j.lfs.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
|
25
|
Pambianco S, Giovarelli M, Perrotta C, Zecchini S, Cervia D, Di Renzo I, Moscheni C, Ripolone M, Violano R, Moggio M, Bassi MT, Puri PL, Latella L, Clementi E, De Palma C. Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-1α Acetylation. Cell Rep 2017; 17:3010-3023. [PMID: 27974213 DOI: 10.1016/j.celrep.2016.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/10/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction occurs in many muscle degenerative disorders. Here, we demonstrate that mitochondrial biogenesis was impaired in limb-girdle muscular dystrophy (LGMD) 2D patients and mice and was associated with impaired OxPhos capacity. Two distinct approaches that modulated histones or peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) acetylation exerted equivalent functional effects by targeting different mitochondrial pathways (mitochondrial biogenesis or fatty acid oxidation[FAO]). The histone deacetylase inhibitor Trichostatin A (TSA) changed chromatin assembly at the PGC-1α promoter, restored mitochondrial biogenesis, and enhanced muscle oxidative capacity. Conversely, nitric oxide (NO) triggered post translation modifications of PGC-1α and induced FAO, recovering the bioenergetics impairment of muscles but shunting the defective mitochondrial biogenesis. In conclusion, a transcriptional blockade of mitochondrial biogenesis occurred in LGMD-2D and could be recovered by TSA changing chromatin conformation, or it could be overcome by NO activating a mitochondrial salvage pathway.
Collapse
Affiliation(s)
- Sarah Pambianco
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy; Department for Innovation in Biological, Agro-food and Forest systems, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco," Università degli Studi di Milano, 20157 Milano, Italy
| | - Michela Ripolone
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Raffaella Violano
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy
| | | | - Pier Lorenzo Puri
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; Sanford Children's Health Research Center, Sanford Prebys Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lucia Latella
- Epigenetics and Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, 00142 Roma, Italy; National Research Council-Institute of Translational Pharmacology, 00179 Roma, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy; IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy.
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences, Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, National Research Council-Institute of Neuroscience, Università degli Studi di Milano, 20157 Milano, Italy.
| |
Collapse
|
26
|
Timpani CA, Hayes A, Rybalka E. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy. Orphanet J Rare Dis 2017; 12:100. [PMID: 28545481 PMCID: PMC5445371 DOI: 10.1186/s13023-017-0652-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022] Open
Abstract
Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.
Collapse
Affiliation(s)
- Cara A Timpani
- College of Health & Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria, Australia, 8001.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, 3021, Australia
| | - Alan Hayes
- College of Health & Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria, Australia, 8001.,Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, 3021, Australia
| | - Emma Rybalka
- College of Health & Biomedicine, Victoria University, PO Box 14428, Melbourne, Victoria, Australia, 8001. .,Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia. .,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, 3021, Australia.
| |
Collapse
|
27
|
Timpani CA, Trewin AJ, Stojanovska V, Robinson A, Goodman CA, Nurgali K, Betik AC, Stepto N, Hayes A, McConell GK, Rybalka E. Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle. Neurotherapeutics 2017; 14:429-446. [PMID: 27921261 PMCID: PMC5398978 DOI: 10.1007/s13311-016-0494-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.
Collapse
Affiliation(s)
- Cara A Timpani
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Adam J Trewin
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Ainsley Robinson
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Craig A Goodman
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Andrew C Betik
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Nigel Stepto
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Alan Hayes
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Glenn K McConell
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia.
- Institute of Sport, Exercise & Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia.
- Australian Institute of Musculoskeletal Science (AIMSS), Western Health, Melbourne, Victoria, 3021, Australia.
| |
Collapse
|
28
|
Woodman KG, Coles CA, Lamandé SR, White JD. Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture. Nutrients 2016; 8:E713. [PMID: 27834844 PMCID: PMC5133099 DOI: 10.3390/nu8110713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/adverse effects
- Antioxidants/therapeutic use
- Biomedical Research/methods
- Biomedical Research/trends
- Combined Modality Therapy/adverse effects
- Dietary Supplements/adverse effects
- Evidence-Based Medicine
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/diet therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Peer Review, Research/methods
- Peer Review, Research/trends
- Reproducibility of Results
- Severity of Illness Index
Collapse
Affiliation(s)
- Keryn G Woodman
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| | - Chantal A Coles
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Department of Pediatrics, The University of Melbourne, Parkville 3010, Australia.
| | - Jason D White
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
29
|
Cabrera D, Ruiz A, Cabello-Verrugio C, Brandan E, Estrada L, Pizarro M, Solis N, Torres J, Barrera F, Arrese M. Diet-Induced Nonalcoholic Fatty Liver Disease Is Associated with Sarcopenia and Decreased Serum Insulin-Like Growth Factor-1. Dig Dis Sci 2016; 61:3190-3198. [PMID: 27572941 DOI: 10.1007/s10620-016-4285-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Decreased muscle mass or sarcopenia has been associated with nonalcoholic fatty liver disease (NAFLD). However, the functional consequences of this association and its pathogenesis remain ill-defined. AIMS To evaluate muscle mass and function in a diet-induced NAFLD mouse model and explore its association with changes in serum insulin-like growth factor-1 (IGF-1). METHODS Weight gain, visceral fat, serum biochemical parameters, liver histology, and hepatic triglyceride content (HTC) were assessed in C57/Bl6 mice fed a westernized diet during 16 weeks. In addition, we determined muscle fiber size and strength of limb skeletal muscle, myosin heavy chain (MHC) protein levels, and IGF-1 serum levels. RESULTS Westernized diet feeding was associated with weight gain, increased visceral fat mass (epididymal pad weight: 0.76 g ± 0.13 vs. 0.33 ± 0.27 g; p = 0.0023), hepatic steatosis (HTC: 118.2 ± 6.88 mg/g liver vs. 43.26 ± 5.63 mg/g<, p < 0.05), and necroinflammation (histological scores: 1.29 ± 0.42 vs. 4.00 ± 0.53<, p < 0.05). Also, mice fed the experimental diet had an increased proportion of low-diameter muscle fibers (0-30 μm) and a decreased proportion of high-diameter muscle fibers (60-90 μm), which correlated with decreased MHC protein levels, consistent with significant muscle atrophy. Functional studies showed that mice fed a westernized diet had reduced muscle strength and lower serum levels of IGF-1 (284.2 ± 20.04 pg/ml) compared with chow-fed mice (366.0 ± 12.42 pg/ml, p < 0.05). CONCLUSION Experimental NAFLD is associated with sarcopenia, decreased muscle strength, and reduced IGF-1 serum levels. IGF-1 reduction may be involved in pathogenesis of NAFLD-associated sarcopenia.
Collapse
Affiliation(s)
- Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, 833-0024, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de salud, Universidad Bernardo O'Higgins, Santiago, Chile.,Centro de Regeneración y Envejecimiento (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alex Ruiz
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Enrique Brandan
- Centro de Regeneración y Envejecimiento (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lisbell Estrada
- Departamento de Ciencias Químicas y Biológicas, Facultad de salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Margarita Pizarro
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, 833-0024, Santiago, Chile
| | - Nancy Solis
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, 833-0024, Santiago, Chile
| | - Javiera Torres
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, 833-0024, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, 833-0024, Santiago, Chile. .,Centro de Regeneración y Envejecimiento (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Spinazzola JM, Kunkel LM. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2016; 4:1179-1194. [PMID: 28670506 DOI: 10.1080/21678707.2016.1240613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. AREAS COVERED In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. EXPERT OPINION For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation.
Collapse
Affiliation(s)
- Janelle M Spinazzola
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115
| | - Louis M Kunkel
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115.,The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115.,The Manton Center for Orphan Diseases, Boston, MA 02115.,Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
31
|
Woodall BP, Woodall MC, Luongo TS, Grisanti LA, Tilley DG, Elrod JW, Koch WJ. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem 2016; 291:21913-21924. [PMID: 27566547 DOI: 10.1074/jbc.m116.721282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 02/04/2023] Open
Abstract
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy.
Collapse
Affiliation(s)
- Benjamin P Woodall
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Meryl C Woodall
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Timothy S Luongo
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Laurel A Grisanti
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Douglas G Tilley
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Walter J Koch
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| |
Collapse
|
32
|
Selsby JT, Ballmann CG, Spaulding HR, Ross JW, Quindry JC. Oral quercetin administration transiently protects respiratory function in dystrophin-deficient mice. J Physiol 2016; 594:6037-6053. [PMID: 27094343 DOI: 10.1113/jp272057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINT PGC-1α pathway activation has been shown to decrease disease severity and can be driven by quercetin. Oral quercetin supplementation protected respiratory function for 4-6 months during a 12 month dosing regimen. This transient protection was probably due to a failure to sustain elevated SIRT1 activity and downstream PGC-1α signalling. Quercetin supplementation may be a beneficial treatment as part of a cocktail provided continued SIRT1 activity elevation is achieved. ABSTRACT Duchenne muscular dystrophy (DMD) impacts 1 : 3500 boys and leads to muscle dysfunction culminating in death due to respiratory or cardiac failure. There is an urgent need for effective therapies with the potential for immediate application for this patient population. Quercetin, a flavonoid with an outstanding safety profile, may provide therapeutic relief to DMD patients as the wait for additional therapies continues. This study evaluated the capacity of orally administered quercetin (0.2%) in 2 month old mdx mice to improve respiratory function and end-point functional and histological outcomes in the diaphragm following 12 months of treatment. Respiratory function was protected for the first 4-6 months of treatment but appeared to become insensitive to quercetin thereafter. Consistent with this, end-point functional measures were decreased and histopathological measures were more severe in dystrophic muscle compared to C57 and similar between control-fed and quercetin-fed mdx mice. To better understand the transient nature of improved respiratory function, we measured PGC-1α pathway activity, which is suggested to be up-regulated by quercetin supplementation. This pathway was largely suppressed in dystrophic muscle compared to healthy muscle, and at the 14 month time point dietary quercetin enrichment did not increase expression of downstream effectors. These data support the efficacy of quercetin as an intervention for DMD in skeletal muscle, and also indicate the development of age-dependent quercetin insensitivity when continued supplementation fails to drive the PGC-1α pathway. Continued study is needed to determine if this is related to disease severity, age or other factors.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| | - Christopher G Ballmann
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Hannah R Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - John C Quindry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
33
|
Capote J, Kramerova I, Martinez L, Vetrone S, Barton ER, Sweeney HL, Miceli MC, Spencer MJ. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J Cell Biol 2016; 213:275-88. [PMID: 27091452 PMCID: PMC5084275 DOI: 10.1083/jcb.201510086] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 11/22/2022] Open
Abstract
In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors.
Collapse
Affiliation(s)
- Joana Capote
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095
| | - Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Leonel Martinez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Sylvia Vetrone
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611 Wellstone Muscular Dystrophy Center, University of Florida, Gainesville, FL 32610
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610 Wellstone Muscular Dystrophy Center, University of Florida, Gainesville, FL 32610
| | - M Carrie Miceli
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA 90095 Wellstone Muscular Dystrophy Center, University of Florida, Gainesville, FL 32610
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA 90095 Wellstone Muscular Dystrophy Center, University of Florida, Gainesville, FL 32610
| |
Collapse
|
34
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
35
|
Steinberger M, Föller M, Vogelgesang S, Krautwald M, Landsberger M, Winkler CK, Kasch J, Füchtbauer EM, Kuhl D, Voelkl J, Lang F, Brinkmeier H. Lack of the serum- and glucocorticoid-inducible kinase SGK1 improves muscle force characteristics and attenuates fibrosis in dystrophic mdx mouse muscle. Pflugers Arch 2014; 467:1965-74. [DOI: 10.1007/s00424-014-1645-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/10/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
|
36
|
Tidball JG, Wehling-Henricks M. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy. J Physiol 2014; 592:4627-38. [PMID: 25194047 DOI: 10.1113/jphysiol.2014.274878] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, USA Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Altamirano F, Perez CF, Liu M, Widrick J, Barton ER, Allen PD, Adams JA, Lopez JR. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice. PLoS One 2014; 9:e106590. [PMID: 25181488 PMCID: PMC4152333 DOI: 10.1371/journal.pone.0106590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Altamirano
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Claudio F. Perez
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Liu
- Department of Physiology, Perleman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Widrick
- Division of Genetics and Program in Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth R. Barton
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul D. Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, Florida, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wada E, Yoshida M, Kojima Y, Nonaka I, Ohashi K, Nagata Y, Shiozuka M, Date M, Higashi T, Nishino I, Matsuda R. Dietary phosphorus overload aggravates the phenotype of the dystrophin-deficient mdx mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3094-104. [PMID: 25174878 DOI: 10.1016/j.ajpath.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy is a lethal X-linked disease with no effective treatment. Progressive muscle degeneration, increased macrophage infiltration, and ectopic calcification are characteristic features of the mdx mouse, a murine model of Duchenne muscular dystrophy. Because dietary phosphorus/phosphate consumption is increasing and adverse effects of phosphate overloading have been reported in several disease conditions, we examined the effects of dietary phosphorus intake in mdx mice phenotypes. On weaning, control and mdx mice were fed diets containing 0.7, 1.0, or 2.0 g phosphorus per 100 g until they were 90 days old. Dystrophic phenotypes were evaluated in cryosections of quadriceps and tibialis anterior muscles, and maximal forces and voluntary activity were measured. Ectopic calcification was analyzed by electron microscopy to determine the cells initially responsible for calcium deposition in skeletal muscle. Dietary phosphorus overload dramatically exacerbated the dystrophic phenotypes of mdx mice by increasing inflammation associated with infiltration of M1 macrophages. In contrast, minimal muscle necrosis and inflammation were observed in exercised mdx mice fed a low-phosphorus diet, suggesting potential beneficial therapeutic effects of lowering dietary phosphorus intake on disease progression. To our knowledge, this is the first report showing that dietary phosphorus intake directly affects muscle pathological characteristics of mdx mice. Dietary phosphorus overloading promoted dystrophic disease progression in mdx mice, whereas restricting dietary phosphorus intake improved muscle pathological characteristics and function.
Collapse
Affiliation(s)
- Eiji Wada
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Mizuko Yoshida
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yoriko Kojima
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuya Ohashi
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yosuke Nagata
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Masataka Shiozuka
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Munehiro Date
- Kobayashi Institute of Physical Research, Tokyo, Japan
| | | | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryoichi Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Vianello S, Bouyon S, Benoit E, Sebrié C, Boerio D, Herbin M, Roulot M, Fromes Y, de la Porte S. Arginine butyrate per os protects mdx mice against cardiomyopathy, kyphosis and changes in axonal excitability. Neurobiol Dis 2014; 71:325-33. [PMID: 25167832 DOI: 10.1016/j.nbd.2014.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.
Collapse
Affiliation(s)
- Sara Vianello
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Sophie Bouyon
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France.
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | | | - Delphine Boerio
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Marc Herbin
- CNRS, Muséum National d'Histoire Naturelle, CNRS, UMR7179, Pavillon d'anatomie comparée, BP 55, 52 Rue Cuvier, 75231 Paris Cedex 05, France.
| | - Morgane Roulot
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Yves Fromes
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France; ONIRIS, Centre de Boisbonne, Nantes F-44307, France.
| | - Sabine de la Porte
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| |
Collapse
|
40
|
Lomonosova YN, Shenkman BS, Kalamkarov GR, Kostrominova TY, Nemirovskaya TL. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats. PLoS One 2014; 9:e94448. [PMID: 24736629 PMCID: PMC3988069 DOI: 10.1371/journal.pone.0094448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.
Collapse
Affiliation(s)
| | | | | | - Tatiana Y. Kostrominova
- Department of Anatomy and Cell Biology, Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Tatyana L. Nemirovskaya
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Bio-Medical Problems, RAS, Moscow, Russia
| |
Collapse
|
41
|
Cabrera D, Gutiérrez J, Cabello-Verrugio C, Morales MG, Mezzano S, Fadic R, Casar JC, Hancke JL, Brandan E. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis. Skelet Muscle 2014; 4:6. [PMID: 24655808 PMCID: PMC4021597 DOI: 10.1186/2044-5040-4-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. Methods mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. Results mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. Conclusions These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.
Collapse
Affiliation(s)
- Daniel Cabrera
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins, 340, Santiago, Chile ; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Jaime Gutiérrez
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins, 340, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Maria Gabriela Morales
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins, 340, Santiago, Chile
| | - Sergio Mezzano
- División de Nefrología, Escuela de Medicina, Universidad Austral, Valdivia, Chile
| | - Ricardo Fadic
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan L Hancke
- Instituto de Farmacología, Universidad Austral de Chile, Valdivia, Chile
| | - Enrique Brandan
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Laboratorio de Diferenciación Celular y Patología, Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins, 340, Santiago, Chile
| |
Collapse
|
42
|
Smith LR, Barton ER. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol 2014; 306:C889-98. [PMID: 24598364 DOI: 10.1152/ajpcell.00383.2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Thomas GD. Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 2013; 4:381. [PMID: 24391598 PMCID: PMC3866652 DOI: 10.3389/fphys.2013.00381] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/04/2013] [Indexed: 11/14/2022] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSμ) which binds spectrin-like repeats within dystrophin's rod domain and the adaptor protein α-syntrophin. Dystrophin deficiency causes loss of sarcolemmal nNOSμ and reduces paracrine signaling of muscle-derived nitric oxide (NO) to the microvasculature, which renders the diseased muscle fibers susceptible to functional muscle ischemia during exercise. Repeated bouts of functional ischemia superimposed on muscle fibers already weakened by dystrophin deficiency result in use-dependent focal muscle injury. Genetic and pharmacologic strategies to boost nNOSμ-NO signaling in dystrophic muscle alleviate functional muscle ischemia and show promise as novel therapeutic interventions for the treatment of DMD/BMD.
Collapse
Affiliation(s)
- Gail D Thomas
- Heart and Vascular Institute, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
44
|
Martin EA, Barresi R, Byrne BJ, Tsimerinov EI, Scott BL, Walker AE, Gurudevan SV, Anene F, Elashoff RM, Thomas GD, Victor RG. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci Transl Med 2013. [PMID: 23197572 DOI: 10.1126/scitranslmed.3004327] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin's rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived NO attenuates local α-adrenergic vasoconstriction, thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective-causing functional muscle ischemia-in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. We report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled crossover trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation is fully restored in the muscles of men with BMD by boosting NO-cGMP (guanosine 3',5'-monophosphate) signaling with a single dose of the drug tadalafil, a phosphodiesterase 5A inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD.
Collapse
Affiliation(s)
- Elizabeth A Martin
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Selsby JT, Acosta P, Sleeper MM, Barton ER, Sweeney HL. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse. J Appl Physiol (1985) 2013; 115:660-6. [PMID: 23823150 DOI: 10.1152/japplphysiol.00252.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa
| | | | | | | | | |
Collapse
|
46
|
Zordan P, Sciorati C, Campana L, Cottone L, Clementi E, Querini PR, Brunelli S. The nitric oxide-donor molsidomine modulates the innate inflammatory response in a mouse model of muscular dystrophy. Eur J Pharmacol 2013; 715:296-303. [PMID: 23707352 DOI: 10.1016/j.ejphar.2013.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/26/2013] [Accepted: 05/05/2013] [Indexed: 01/05/2023]
Abstract
Inflammation plays a crucial role in muscle remodeling and repair after acute and chronic damage, in particular in muscular dystrophies, a heterogeneous group of genetic diseases leading to muscular degeneration. Defect of nitric oxide (NO) generation is a key pathogenic event in muscular dystrophies, thus NO donors have been explored as new therapeutics for this disease. We have investigated the immune-modulating effect of one of such drugs, molsidomine, able to slow the progression of muscular dystrophy in the α-Sarcoglican-null mice, a model for the limb girdle muscular dystrophy 2D, sharing several hallmarks of muscle degeneration with other muscular dystrophies. α-Sarcoglican-null mice were treated with molsidomine and drug effects on the inflammatory infiltrates and on muscle repair were assessed at selected time points. We found that molsidomine treatment modulates effectively the characteristics of the inflammatory infiltrate within dystrophic muscles, enhancing its healing function. Initially molsidomine amplified macrophage recruitment, promoting a more efficient clearance of cell debris and effective tissue regeneration. At a later stage molsidomine decreased significantly the extent of the inflammatory infiltrate, whose persistence exacerbates muscle damage: most of the remaining macrophages displayed characteristics of the transitional population, associated with reduced fibrosis and increased preservation of the muscle tissue. The dual action of molsidomine, the already known NO donation and the immunomodulatory function we now identified, suggests that it has a unique potential in tissue healing during chronic muscle damage. This, alongside its already approved use in human, makes molsidomine a drug with a significant therapeutic potential in muscular dystrophies.
Collapse
Affiliation(s)
- Paola Zordan
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Corona BT, Ingalls CP. Immediate force loss after eccentric contractions is increased with L-NAME administration, a nitric oxide synthase inhibitor. Muscle Nerve 2013; 47:271-3. [PMID: 23349083 DOI: 10.1002/mus.23655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2012] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Nitric oxide (NO) signaling regulates many biological processes in skeletal muscle, wherein aberrant signaling contributes to myopathic conditions (e.g., Duchenne muscular dystrophy). NO has been shown to play a role in muscle regeneration after injury. However, less is known about its role during injury. In this study we aimed to determine whether NO synthase (NOS) inhibition exacerbates functional deficits immediately after the performance of eccentric contractions. METHODS Wild-type mouse extensor digitorum longus (EDL) muscles underwent in vitro functional testing in the presence or absence of a non-specific NOS inhibitor (L-NAME, 10 mM) before and after performance of 10 eccentric contractions. RESULTS After eccentric contractions, P(o) was reduced by ∽25% for muscle in regular physiological solution but by ∽50% with the addition of L-NAME (P = 0.009). CONCLUSIONS Non-specific blockade of NOS exacerbates functional deficits immediately after eccentric contractions, suggesting that NO signaling protects skeletal muscle from excessive injury in healthy muscle.
Collapse
Affiliation(s)
- Benjamin T Corona
- Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, USA.
| | | |
Collapse
|
48
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
49
|
Vianello S, Yu H, Voisin V, Haddad H, He X, Foutz AS, Sebrié C, Gillet B, Roulot M, Fougerousse F, Perronnet C, Vaillend C, Matecki S, Escolar D, Bossi L, Israël M, de la Porte S. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J 2013; 27:2256-69. [PMID: 23430975 DOI: 10.1096/fj.12-215723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.
Collapse
Affiliation(s)
- Sara Vianello
- Neurobiologie & Développement-Unité Propres de Recherche 3294, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Moorwood C, Liu M, Tian Z, Barton ER. Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies. J Vis Exp 2013:e50036. [PMID: 23407283 DOI: 10.3791/50036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.
Collapse
Affiliation(s)
- Catherine Moorwood
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, USA
| | | | | | | |
Collapse
|