1
|
Pham HT, Kram V, Dar QA, Komori T, Ji Y, Mohassel P, Rooney J, Li L, Kilts TM, Bonnemann C, Lamande S, Young MF. Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Sci Rep 2020; 10:13749. [PMID: 32792616 PMCID: PMC7426410 DOI: 10.1038/s41598-020-70730-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Collapse
Affiliation(s)
- Hai T Pham
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Qurratul-Ain Dar
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jachinta Rooney
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Li
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shireen Lamande
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Sardone F, Santi S, Tagliavini F, Traina F, Merlini L, Squarzoni S, Cescon M, Wagener R, Maraldi NM, Bonaldo P, Faldini C, Sabatelli P. Collagen VI–NG2 axis in human tendon fibroblasts under conditions mimicking injury response. Matrix Biol 2016; 55:90-105. [DOI: 10.1016/j.matbio.2016.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 01/07/2023]
|
3
|
Paco S, Casserras T, Rodríguez MA, Jou C, Puigdelloses M, Ortez CI, Diaz-Manera J, Gallardo E, Colomer J, Nascimento A, Kalko SG, Jimenez-Mallebrera C. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators. PLoS One 2015; 10:e0145107. [PMID: 26670220 PMCID: PMC4686057 DOI: 10.1371/journal.pone.0145107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/28/2015] [Indexed: 11/19/2022] Open
Abstract
Background Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts. Aims & Methods In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays. Findings We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.
Collapse
Affiliation(s)
- Sonia Paco
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Teresa Casserras
- Bioinformatics Core Facility, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Maria Angels Rodríguez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Pathology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Puigdelloses
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Carlos I. Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Eduardo Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana G. Kalko
- Bioinformatics Core Facility, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
5
|
Christensen SE, Coles JM, Zelenski NA, Furman BD, Leddy HA, Zauscher S, Bonaldo P, Guilak F. Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice. PLoS One 2012; 7:e33397. [PMID: 22448243 PMCID: PMC3308976 DOI: 10.1371/journal.pone.0033397] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.
Collapse
Affiliation(s)
- Susan E. Christensen
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jeffrey M. Coles
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Nicole A. Zelenski
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bridgette D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stefan Zauscher
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Paolo Bonaldo
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Identification of binding partners interacting with the α1-N-propeptide of type V collagen. Biochem J 2011; 433:371-81. [PMID: 20979576 DOI: 10.1042/bj20101061] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The predominant form of type V collagen is the [α1(V)]₂α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.
Collapse
|
7
|
Bovolenta M, Neri M, Martoni E, Urciuolo A, Sabatelli P, Fabris M, Grumati P, Mercuri E, Bertini E, Merlini L, Bonaldo P, Ferlini A, Gualandi F. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies. BMC MEDICAL GENETICS 2010; 11:44. [PMID: 20302629 PMCID: PMC2850895 DOI: 10.1186/1471-2350-11-44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/19/2010] [Indexed: 01/03/2023]
Abstract
Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Department of Experimental and Diagnostic Medicine - Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Voermans N, Bönnemann C, Huijing P, Hamel B, van Kuppevelt T, de Haan A, Schalkwijk J, van Engelen B, Jenniskens G. Clinical and molecular overlap between myopathies and inherited connective tissue diseases. Neuromuscul Disord 2008; 18:843-56. [DOI: 10.1016/j.nmd.2008.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 03/05/2008] [Accepted: 05/28/2008] [Indexed: 12/13/2022]
|
9
|
Pagnon-Minot A, Malbouyres M, Haftek-Terreau Z, Kim HR, Sasaki T, Thisse C, Thisse B, Ingham PW, Ruggiero F, Le Guellec D. Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Dev Biol 2008; 316:21-35. [PMID: 18281032 DOI: 10.1016/j.ydbio.2007.12.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
Muscle cells are surrounded by extracellular matrix, the components of which play an important role in signalling mechanisms involved in their development. In mice, loss of collagen XV, a component of basement membranes expressed primarily in skeletal muscles, results in a mild skeletal myopathy. We have determined the complete zebrafish collagen XV primary sequence and analysed its expression and function in embryogenesis. During the segmentation period, expression of the Col15a1 gene is mainly found in the notochord and its protein product is deposited exclusively in the peri-notochordal basement membrane. Morpholino mediated knock-down of Col15a1 causes defects in notochord differentiation and in fast and slow muscle formation as shown by persistence of axial mesodermal marker gene expression, disorganization of the peri-notochodal basement membrane and myofibrils, and a U-shape myotome. In addition, the number of medial fast-twitch muscle fibers was substantially increased, suggesting that the signalling by notochord derived Hh proteins is enhanced by loss of collagen XV. Consistent with this, there is a concomitant expansion of patched-1 expression in the myotome of morphant embryos. Together, these results indicate that collagen XV is required for notochord differentiation and muscle development in the zebrafish embryo and that it interplays with Shh signalling.
Collapse
Affiliation(s)
- Aurélie Pagnon-Minot
- IBCP,UMR CNRS 5086, Université Lyon 1, IFR 128 Biosciences Gerland, 7 passage du Vercors 69367, Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Higuchi I, Hashiguchi A, Matsuura E, Higashi K, Shiraishi T, Hirata N, Arimura K, Osame M. Different pattern of HSP47 expression in skeletal muscle of patients with neuromuscular diseases. Neuromuscul Disord 2007; 17:221-6. [PMID: 17324572 DOI: 10.1016/j.nmd.2006.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/20/2006] [Accepted: 11/29/2006] [Indexed: 11/21/2022]
Abstract
Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and secretion of procollagens, and its expression is increased in various fibrotic diseases. However, its involvement in muscle diseases is unknown. In this study, we analyzed HSP47 expression in muscular dystrophies and other muscle diseases. We found an overexpression of HSP47 in fibrous connective tissue and in the adjacent muscle membrane in various muscular dystrophies. However, in Ullrich congenital muscular dystrophy (UCMD), the overexpression of HSP47 was found only in the connective tissue, and not in the muscle membrane. The overexpression of HSP47 was found only in the muscle membrane in the case of active inflammatory myopathy. In particular, HSP47 was strongly expressed in the membrane of regenerating fibers. We found that HSP47 in the muscle membrane locates in the basement membrane with confocal microscopy. Our findings suggest that HSP47 may be involved in the repair or regeneration of muscle fibers in addition to the fibrotic change in the connective tissue.
Collapse
Affiliation(s)
- Itsuro Higuchi
- Department of Neurology and Geriatrics, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jaiswal JK, Marlow G, Summerill G, Mahjneh I, Mueller S, Hill M, Miyake K, Haase H, Anderson LVB, Richard I, Kiuru-Enari S, McNeil PL, Simon SM, Bashir R. Patients with a non-dysferlin Miyoshi myopathy have a novel membrane repair defect. Traffic 2006; 8:77-88. [PMID: 17132147 DOI: 10.1111/j.1600-0854.2006.00505.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two autosomal recessive muscle diseases, limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are caused by mutations in the dysferlin gene. These mutations result in poor ability to repair cell membrane damage, which is suggested to be the cause for this disease. However, many patients who share clinical features with MM-type muscular dystrophy do not carry mutations in dysferlin gene. To understand the basis of MM that is not due to mutations in dysferlin gene, we analyzed cells from patients in one such family. In these patients, we found no defects in several potential candidates - annexin A2, caveolin-3, myoferlin and the MMD2 locus on chromosome 10p. Similar to dysferlinopathy, these cells also exhibit membrane repair defects and the severity of the defect correlated with severity of their disease. However, unlike dysferlinopathy, none of the conventional membrane repair pathways are defective in these patient cells. These results add to the existing evidence that cell membrane repair defect may be responsible for MM-type muscular dystrophy and indicate that a previously unsuspected genetic lesion that affects cell membrane repair pathway is responsible for the disease in the non-dysferlin MM patients.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- The Rockefeller University, Box 304, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jimenez-Mallebrera C, Maioli MA, Kim J, Brown SC, Feng L, Lampe AK, Bushby K, Hicks D, Flanigan KM, Bonnemann C, Sewry CA, Muntoni F. A comparative analysis of collagen VI production in muscle, skin and fibroblasts from 14 Ullrich congenital muscular dystrophy patients with dominant and recessive COL6A mutations. Neuromuscul Disord 2006; 16:571-82. [PMID: 16935502 DOI: 10.1016/j.nmd.2006.07.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/21/2006] [Accepted: 07/03/2006] [Indexed: 11/17/2022]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is caused by recessive and dominant mutations in COL6A genes. We have analysed collagen VI expression in 14 UCMD patients. Sequencing of COL6A genes had identified homozygous and heterozygous mutations in 12 cases. Analysis of collagen VI in fibroblast cultures derived from eight of these patients showed reduced extracellular deposition in all cases and intracellular collagen VI staining in seven cases. This was observed even in cases that showed normal collagen VI labelling in skin biopsies. Collagen VI immunolabelling was reduced in all the available muscle biopsies. When comparisons were possible no correlation was seen between the extent of the reduction in the muscle and fibroblast cultures, the mode of inheritance or the severity of the clinical phenotype. Mutations affecting glycine substitutions in the conserved triple helical domain were common and all resulted in reduced collagen VI. This study expands the spectrum of collagen VI defects and shows that analysis of skin fibroblasts may be a useful technique for the detection of collagen VI abnormalities. In contrast, immunohistochemical analysis of skin biopsies may not always reveal an underlying collagen VI defect.
Collapse
Affiliation(s)
- C Jimenez-Mallebrera
- Dubowitz Neuromuscular Centre, Imperial College, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|