1
|
Singh G, Keller A, Lucas K, Borders C, Stout D, King M, Parikh P, Stepp N, Ugiliweneza B, D'Amico JM, Gerasimenko Y, Behrman AL. Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury. Neuromodulation 2024; 27:661-671. [PMID: 37269282 DOI: 10.1016/j.neurom.2023.04.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. MATERIALS AND METHODS In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. RESULTS All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. CONCLUSIONS We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT04032990.
Collapse
Affiliation(s)
- Goutam Singh
- Kosair Charities School of Physical Therapy, Spalding University, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| | | | - Kathryn Lucas
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| | | | | | - Molly King
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| | - Parth Parikh
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| | - Nicole Stepp
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| | - Jessica M D'Amico
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA; Pavlov Institute of Physiology, St Petersburg, Russia
| | - Andrea L Behrman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological surgery, University of Louisville, KY, USA
| |
Collapse
|
2
|
Papavasileiou A, Xenofondos A, Baudry S, Lapole T, Amiridis IG, Metaxiotis D, Tsatalas T, Patikas DA. Protocols Targeting Afferent Pathways via Neuromuscular Electrical Stimulation for the Plantar Flexors: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2347. [PMID: 36850945 PMCID: PMC9967278 DOI: 10.3390/s23042347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Anthi Xenofondos
- Physical Education and Sports Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Ioannis G. Amiridis
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | | | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Dimitrios A. Patikas
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
3
|
Yamaguchi A, Sasaki A, Popovic MR, Milosevic M, Nakazawa K. Low-level voluntary input enhances corticospinal excitability during ankle dorsiflexion neuromuscular electrical stimulation in healthy young adults. PLoS One 2023; 18:e0282671. [PMID: 36888637 PMCID: PMC10045604 DOI: 10.1371/journal.pone.0282671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Previous evidence indicated that interventions with combined neuromuscular electrical stimulation (NMES) and voluntary muscle contractions could have superior effects on corticospinal excitability when the produced total force is larger than each single intervention. However, it is unclear whether the superior effects exist when the produced force is matched between the interventions. Ten able-bodied individuals performed three intervention sessions on separate days: (i) NMES-tibialis anterior (TA) stimulation; (ii) NMES+VOL-TA stimulation combined with voluntary ankle dorsiflexion; (iii) VOL-voluntary ankle dorsiflexion. Each intervention was exerted at the same total output of 20% of maximal force and applied intermittently (5 s ON / 19 s OFF) for 16 min. Motor evoked potentials (MEP) of the right TA and soleus muscles and maximum motor response (Mmax) of the common peroneal nerve were assessed: before, during, and for 30 min after each intervention. Additionally, the ankle dorsiflexion force-matching task was evaluated before and after each intervention. Consequently, the TA MEP/Mmax during NMES+VOL and VOL sessions were significantly facilitated immediately after the interventions started until the interventions were over. Compared to NMES, larger facilitation was observed during NMES+VOL and VOL sessions, but no difference was found between them. Motor control was not affected by any interventions. Although superior combined effects were not shown compared to voluntary contractions alone, low-level voluntary contractions combined with NMES resulted in facilitated corticospinal excitability compared to NMES alone. This suggests that the voluntary drive could improve the effects of NMES even during low-level contractions, even if motor control is not affected.
Collapse
Affiliation(s)
- Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyodaku, Tokyo, Japan
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Milos R. Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, Ontario, Canada
- CRANIA, University Health Network & University of Toronto, Toronto, Ontario, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Tomita A, Kawade S, Moritani T, Watanabe K. Novel perspective on contractile properties and intensity-dependent verification of force-frequency relationship during neuromuscular electrical stimulation. Physiol Rep 2020; 8:e14598. [PMID: 33230975 PMCID: PMC7683877 DOI: 10.14814/phy2.14598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The aims of the present study were: (a) to examine the effect of the stimulus intensity on force-frequency and torque fluctuation-frequency relationships during Neuromuscular electrical stimulation; and (b) to identify a novel parameter that can be used to evaluate muscle contractile properties. METHODS Electrically elicited joint torque involving the quadriceps femoris muscle was recorded during neuromuscular electrical stimulation at two different stimulus intensities in 19 healthy men. Stimulation frequencies were set at 5-40 Hz with a duration of 10 s. Evoked joint torque was compared among all stimulation frequencies between the two stimulus intensities (68 and 113 V). The torque fluctuation at each stimulation frequency as the change in the contraction pattern was also compared between the intensities. Torque and torque fluctuation were normalized at each frequency by the largest torque or torque fluctuation, respectively. We extracted a novel parameter: the arrival point of tetanic contraction based on force-frequency and torque fluctuation-frequency curves. RESULTS There were significant differences in normalized torque at 5-25 and 40 Hz and in normalized torque fluctuation at 15-30 and 40 Hz between the two stimulus intensities. Extracted parameters showed no significant difference between the intensities. CONCLUSION The results suggest that force-frequency relationships during neuromuscular electrical stimulation are influenced by the intensity of stimulation applied to the quadriceps femoris muscle. However, we consider that it is possible to simultaneously evaluate contractile properties using the novel parameter.
Collapse
Affiliation(s)
- Aya Tomita
- Laboratory of Neuromuscular BiomechanicsFaculty of Liberal Arts and Sciences and School of International Liberal StudiesChukyo UniversityNagoyaJapan
| | | | | | - Kohei Watanabe
- Laboratory of Neuromuscular BiomechanicsFaculty of Liberal Arts and Sciences and School of International Liberal StudiesChukyo UniversityNagoyaJapan
| |
Collapse
|
5
|
Qu W, Hou W, Zhao Y, Shu B, Chen L, Zheng X, Wang X, Wu X. Burst-modulated wide-pulse neuromuscular electrical stimulation enhances H-reflex recruitment in rats. Muscle Nerve 2020; 61:535-541. [PMID: 31950518 DOI: 10.1002/mus.26812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION In this study we investigated whether burst-modulated wide-pulse neuromuscular electrical stimulation (NMES) can improve the H-reflex and activation efficiency of sensory fibers. METHODS NMES-induced electromyography (EMG) was recorded from hindpaw plantar muscles in 11 anesthetized rats. A burst-modulated wide pulse (mWP) with three carrier frequencies (2 kHz, 5 kHz, and 10 kHz) and a continuous wide-pulse (WP) were delivered to the tibial nerve of each rat. The evoked Hoffman (H)-reflexes were measured to evaluate nerve activation efficiency using the H-reflex recruitment curve (HRC). RESULTS Relative to WP simulation, mWP stimulation required less electrical charge to excite sensory fibers and improved the H-reflex recruitment. Greater electrical charge and smaller recruitment gains were obtained with increased carrier frequency of mWP. DISCUSSION mWP NMES can improve stimulation efficiency and improve recruitment of sensory fibers on tibial nerve stimulation, which may help to optimize NMES stimulus parameters.
Collapse
Affiliation(s)
- Wen Qu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yun Zhao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Bin Shu
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
|
7
|
Efficiency of Neuromuscular Electrical Stimulation and Transcutaneous Nerve Stimulation on Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Arch Phys Med Rehabil 2018; 99:1730-1739. [DOI: 10.1016/j.apmr.2018.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022]
|
8
|
James DC, Solan MC, Mileva KN. Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study. J Foot Ankle Res 2018; 11:16. [PMID: 29755590 PMCID: PMC5934883 DOI: 10.1186/s13047-018-0258-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strengthening the intrinsic foot muscles is a poorly understood and largely overlooked area. In this study, we explore the feasibility of strengthening m. abductor hallucis (AH) with a specific paradigm of neuromuscular electrical stimulation; one which is low-intensity in nature and designed to interleave physiologically-relevant low frequency stimulation with high-frequencies to enhance effective current delivery to spinal motoneurones, and enable a proportion of force produced by the target muscle to be generated from a central origin. We use standard neurophysiological measurements to evaluate the acute (~ 30 min) peripheral and central adaptations in healthy individuals. Methods The AH in the dominant foot of nine healthy participants was stimulated with 24 × 15 s trains of square wave (1 ms), constant current (150% of motor threshold), alternating (20 Hz–100 Hz) neuromuscular electrical stimulation interspersed with 45 s rest. Prior to the intervention, peripheral variables were evoked from the AH compound muscle action potential (Mwave) and corresponding twitch force in response to supramaximal (130%) medial plantar nerve stimulation. Central variables were evoked from the motor evoked potential (MEP) in response to suprathreshold (150%) transcranial magnetic stimulation of the motor cortex corresponding to the AH pathway. Follow-up testing occurred immediately, and 30 min after the intervention. In addition, the force-time-integrals (FTI) from the 1st and 24th WPHF trains were analysed as an index of muscle fatigue. All variables except FTI (T-test) were entered for statistical analysis using a single factor repeated measures ANOVA with alpha set at 0.05. Results FTI was significantly lower at the end of the electrical intervention compared to that evoked by the first train (p < 0.01). Only significant peripheral nervous system adaptations were observed, consistent with the onset of low-frequency fatigue in the muscle. In most of these variables, the effects persisted for 30 min after the intervention. Conclusions An acute session of wide-pulse, high-frequency, low-intensity electrical stimulation delivered directly to abductor hallucis in healthy feet induces muscle fatigue via adaptations at the peripheral level of the neuromuscular system. Our findings would appear to represent the first step in muscle adaptation to training; therefore, there is potential for using WPHF for intrinsic foot muscle strengthening. Electronic supplementary material The online version of this article (10.1186/s13047-018-0258-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darren C James
- 1Sport & Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| | - Matthew C Solan
- 2Department of Trauma and Orthopaedic Surgery, Royal Surrey County Hospital, Guildford, Surrey, GU2 5XX UK
| | - Katya N Mileva
- 1Sport & Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| |
Collapse
|
9
|
Becher M, Springer S, Braun-Benyamin O, Laufer Y. The Effect of an Interphase Interval on Electrically Induced Dorsiflexion Force and Fatigue in Subjects With an Upper Motor Neuron Lesion. Artif Organs 2016; 40:778-85. [DOI: 10.1111/aor.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Meni Becher
- Department of Physical Therapy, The Faculty of Social Welfare and Health Sciences; University of Haifa; Haifa
- Clinical Department; Bioness Neuromodulation; Ra'anana
| | - Shmuel Springer
- Department of Physical Therapy; The Faculty of Health Sciences, Ariel University; Ariel
| | - Orit Braun-Benyamin
- Department of Physical Therapy, The Faculty of Social Welfare and Health Sciences; University of Haifa; Haifa
- Department of Mechanical Engineering; Ort Braude; Carmiel Israel
| | - Yocheved Laufer
- Department of Physical Therapy, The Faculty of Social Welfare and Health Sciences; University of Haifa; Haifa
| |
Collapse
|
10
|
Wegrzyk J, Fouré A, Vilmen C, Ghattas B, Maffiuletti NA, Mattei JP, Place N, Bendahan D, Gondin J. Extra Forces induced by wide-pulse, high-frequency electrical stimulation: Occurrence, magnitude, variability and underlying mechanisms. Clin Neurophysiol 2015; 126:1400-12. [DOI: 10.1016/j.clinph.2014.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|