1
|
Pekmezovic T, Jovicevic V, Andabaka M, Momcilovic N, Veselinovic N, Tamas O, Budmkic M, Todorovic S, Jeremic M, Dincic E, Vojinovic S, Andrejevic S, Mesaros S, Drulovic J. Aquaporin4-IgG seropositivity significantly increases the risk of comorbid autoimmune diseases in NMOSD patients: population-based registry data. J Neurol 2024; 271:7525-7536. [PMID: 39306828 DOI: 10.1007/s00415-024-12698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND The aim of our study was to estimate the frequency of autoimmune comorbidities, in NMOSD patients from the national Serbian NMOSD Registry. METHODS Our study comprises 136 patients with NMOSD, diagnosed according to the NMOSD criteria 2015. At the time of the study, in the Registry were collected demographic and clinical data, including those related to the coexisting comorbidities and pathogenic autoantibodies. Not all patients were tested for all autoimmune antibodies. None of the seronegative aquaporin4-IgG (AQP4-IgG) NMOSD patients, included in the Registry, were positive for the myelin oligodendrocyte glycoprotein IgG. RESULTS Among 136 NMOSD patients, 50 (36.8%) had at least one associated autoimmune disorder. AQP4-IgG was present in the sera from 106 patients (77.9%), the proportion of NMOSD patients with autoimmune comorbidities being significantly higher in the AQP4-IgG positive subgroup in comparison to the AQP4-IgG negative (p = 0.002). AQP4-IgG seropositive NMOSD patients had 5.2-fold higher risk of comorbid autoimmune diseases (OR = 5.2, 95% CI 1.4-18.5, p = 0.012). The most frequently reported diseases were autoimmune thyroid disease (15.4%), Sjogren's syndrome (11.0%), systemic lupus erythematosus (5.1%), myasthenia gravis (4.4%), and primary antiphospholipid antibody syndrome (2.9%). Antinuclear antibodies (ANAs) were frequently detected in the subgroup of NMOSD patients tested for this antibody (50/92; 54.3%). The higher frequency of ANAs and anti-extractable nuclear antigen autoantibodies, in the subgroups of AQP4-IgG-positive patients compared to the AQP4-IgG negative, tested for these antibodies, was statistically significant (p = 0.009, and p = 0.015, respectively). CONCLUSION In conclusion, based on our results, in a defined cohort with European ethnical background, a wide spectrum of autoimmune diseases is frequently associated with AQP4-IgG seropositive NMOSD patients.
Collapse
Affiliation(s)
- Tatjana Pekmezovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| | - Vanja Jovicevic
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Marko Andabaka
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Nikola Momcilovic
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Nikola Veselinovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Olivera Tamas
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Maja Budmkic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Stefan Todorovic
- Clinic of Neurology, Faculty of Medicine, Clinical Center Nis, University of Nis, Nis, Serbia
| | - Marta Jeremic
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Evica Dincic
- Clinic of Neurology, Military Medical Academy, Medical Faculty, Defense University, Belgrade, Serbia
| | - Slobodan Vojinovic
- Clinic of Neurology, Faculty of Medicine, Clinical Center Nis, University of Nis, Nis, Serbia
| | - Sladjana Andrejevic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Allergology and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sarlota Mesaros
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Jelena Drulovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
2
|
Huang Y, Wang T, Wang F, Wu Y, Ai J, Zhang Y, Shao M, Fang L. Scientific issues with rodent models of neuromyelitis optic spectrum disorders. Front Immunol 2024; 15:1423107. [PMID: 39628487 PMCID: PMC11611858 DOI: 10.3389/fimmu.2024.1423107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) is a rare autoimmune disorder that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenesis, though the exact mechanism is not yet fully understood. To develop rodent models that best simulate the in vivo pathological and physiological processes of NMOSD, researchers have been continuously exploring how to establish the ideal model. In this process, two key issues arise: 1) how the AQP4 antibody crosses the blood-brain barrier, and 2) the source of the AQP4 antibody. These two factors are critical for the successful development of rodent models of NMOSD. This paper reviews the current state of research on these two aspects.
Collapse
Affiliation(s)
- Yusen Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianwei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fangruyue Wang
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Yujing Wu
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Jia Ai
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- The Third Bethune Hospital of Jilin University, Changchun, China
| | - Meiyan Shao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Fang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Samim MM, Mandal R, Joy J, Dhar D, Jain K, Mahadevan A, Netravathi M. Spectrum of Auto-antibodies in NMO and MOG Associated CNS Demyelination- The SANMAD Study. J Neuroimmunol 2024; 396:578446. [PMID: 39244918 DOI: 10.1016/j.jneuroim.2024.578446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
This observational study explored coexisting organ-specific and non-organ-specific autoantibodies in Neuromyelitis optica spectrum disorder(NMOSD) and Myelin oligodendrocyte glycoprotein-IgG-1(MOG-IgG1) associated central nervous system demyelination(MOGAD) in a South Asian cohort from March 2017-2023. Of the 250 cases, 148 were MOGAD(82pediatric) and 102 were NMOSD(15 pediatric). 17.6 % tested positive for ≥1 antibody, with NMOSD showing a higher positivity rate (25.5 %) than MOGAD(12.2 %,p = 0.011). Double antibody positivity occurred more in NMOSD (5.9 %vs.MOGAD,1.4 %,p = 0.045). Three NMOSD cases had Sjogren syndrome with higher Anti-Ro-52 prevalence(12.7 %vs.4.1 %,p = 0.014). NMOSD patients with ≥1 antibody positivity had more constitutional symptoms (45.5 %vs.23.1 %,p = 0.045). Significant associations were found between NMOSD and female gender, having ≥1 antibody-positive status, and testing positive for Anti-Ro-52 and SS-A antibodies (p < 0.05).
Collapse
Affiliation(s)
- M M Samim
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka 560029, India
| | - Rupam Mandal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka 560029, India
| | - Jigil Joy
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka 560029, India
| | - Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka 560029, India
| | - Kshiteeja Jain
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - M Netravathi
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
4
|
Gad AH, Kishk N, Shalaby NM, Heikal ES, Fouad AM, Merghany N, Abdelghany H. Pregnancy characteristics in Egyptian female patients with NMOSD. Mult Scler J Exp Transl Clin 2024; 10:20552173241271878. [PMID: 39139781 PMCID: PMC11320409 DOI: 10.1177/20552173241271878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) primarily affects women of childbearing age. Objectives Studying the potential relationship between NMOSD and pregnancy characteristics and outcomes. Subjects and methods This is a retrospective cohort study that was conducted on 66 married female patients diagnosed with NMOSD. All patients underwent a thorough review of their demographic and clinical history through their medical records and personal interviews. Additionally, a complete neurological examination was performed, along with the expanded disability status scale (EDSS) and a pregnancy registry questionnaire. Results After comparing married patients before and after disease onset, there was a significant increase in the number of abortions and the percentage of cesarean sections, as well as a decrease in the percentage of breastfeeding after disease onset. The p values were .02, <.001, and <.001, respectively, with odds ratios of 2.03, 5.13, and 6.17. Additionally, there was a rise in the occurrence of postpartum relapses, which accounted for 66% of all relapses after the disease onset. Most of these relapses (88.7%) occurred within the first 3 months postpartum. Conclusion Presence of NMOSD increased the percentage of miscarriage, delivery by cesarean section, and decreased the chance of breastfeeding. In addition, pregnancy increases NMOSD relapse and subsequent disability.
Collapse
Affiliation(s)
- Adel Hassanein Gad
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nirmeen Kishk
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nevin M Shalaby
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Salah Heikal
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Mohamed Fouad
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nahla Merghany
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend Abdelghany
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Rees JH, Rempe T, Tuna IS, Perero MM, Sabat S, Massini T, Yetto JM. Neuromyelitis Optica Spectrum Disorders and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Magn Reson Imaging Clin N Am 2024; 32:233-251. [PMID: 38555139 DOI: 10.1016/j.mric.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For over two centuries, clinicians have been aware of various conditions affecting white matter which had come to be grouped under the umbrella term multiple sclerosis. Within the last 20 years, specific scientific advances have occurred leading to more accurate diagnosis and differentiation of several of these conditions including, neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease. This new understanding has been coupled with advances in disease-modifying therapies which must be accurately applied for maximum safety and efficacy.
Collapse
Affiliation(s)
- John H Rees
- Neuroradiology, Department of Radiology, University of Florida College of Medicine.
| | - Torge Rempe
- UF Multiple Sclerosis / Neuroimmunology Fellowship, Department of Neurology, University of Florida, College of Medicine
| | | | | | | | | | - Joseph M Yetto
- University of Florida at Gainesville, Gainesville, FL, USA
| |
Collapse
|
6
|
Cacciaguerra L, Flanagan EP. Updates in NMOSD and MOGAD Diagnosis and Treatment: A Tale of Two Central Nervous System Autoimmune Inflammatory Disorders. Neurol Clin 2024; 42:77-114. [PMID: 37980124 PMCID: PMC10658081 DOI: 10.1016/j.ncl.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Aquaporin-4-IgG positive neuromyelitis optica spectrum disorder (AQP4+NMOSD) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are antibody-associated diseases targeting astrocytes and oligodendrocytes, respectively. Their recognition as distinct entities has led to each having its own diagnostic criteria that require a combination of clinical, serologic, and MRI features. The therapeutic approach to acute attacks in AQP4+NMOSD and MOGAD is similar. There is now class 1 evidence to support attack-prevention medications for AQP4+NMOSD. MOGAD lacks proven treatments although clinical trials are now underway. In this review, we will outline similarities and differences between AQP4+NMOSD and MOGAD in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Department of Neurology, Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Poisson K, Moeller K, Fisher KS. Pediatric Neuromyelitis Optica Spectrum Disorder. Semin Pediatr Neurol 2023; 46:101051. [PMID: 37451749 DOI: 10.1016/j.spen.2023.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/02/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating disease with a high relapse rate and risk of disability accrual. The condition is an astrocytopathy, with antibodies to the aquaporin-4 (AQP4) water channel being detected in AQP4-IgG seropositive disease. Presentation is uncommon in the pediatric age range, accounting for about 3%-5% of cases. NMOSD is more prevalent in populations of Black or East Asian ancestry. Core clinical syndromes include optic neuritis, acute myelitis, area postrema syndrome, acute brainstem syndrome, acute diencephalic syndrome, and symptomatic cerebral syndrome. First-line treatment options in pediatrics include rituximab, azathioprine, and mycophenolate mofetil. Over half of children with AQP4-IgG seropositive NMOSD develop permanent disability, particularly in visual and motor domains. Novel therapeutic targets in the adult population have been developed and are changing the treatment landscape for this disorder.
Collapse
Affiliation(s)
- Kelsey Poisson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL; Department of Pediatrics, Division of Pediatric Neurology, Children's of Alabama, Birmingham, AL
| | - Karen Moeller
- Department of Radiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kristen S Fisher
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
9
|
Jarius S, Aktas O, Ayzenberg I, Bellmann-Strobl J, Berthele A, Giglhuber K, Häußler V, Havla J, Hellwig K, Hümmert MW, Kleiter I, Klotz L, Krumbholz M, Kümpfel T, Paul F, Ringelstein M, Ruprecht K, Senel M, Stellmann JP, Bergh FT, Tumani H, Wildemann B, Trebst C. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol 2023:10.1007/s00415-023-11634-0. [PMID: 37022481 DOI: 10.1007/s00415-023-11634-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
The term 'neuromyelitis optica spectrum disorders' (NMOSD) is used as an umbrella term that refers to aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica (NMO) and its formes frustes and to a number of closely related clinical syndromes without AQP4-IgG. NMOSD were originally considered subvariants of multiple sclerosis (MS) but are now widely recognized as disorders in their own right that are distinct from MS with regard to immunopathogenesis, clinical presentation, optimum treatment, and prognosis. In part 1 of this two-part article series, which ties in with our 2014 recommendations, the neuromyelitis optica study group (NEMOS) gives updated recommendations on the diagnosis and differential diagnosis of NMOSD. A key focus is on differentiating NMOSD from MS and from myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD), which shares significant similarity with NMOSD with regard to clinical and, partly, radiological presentation, but is a pathogenetically distinct disease. In part 2, we provide updated recommendations on the treatment of NMOSD, covering all newly approved drugs as well as established treatment options.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Katrin Giglhuber
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Vivien Häußler
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Markus Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Alvarez MR, Gurung A, Velayndhan V, Cuascut F, Alkabie S, Freeman L, Phayal G, Kabani N, Pathiparampil J, Bhamra M, Kreps A, Koci K, Francis S, Zhaz Leon SY, Levinson J, Lezcano MR, Amarnani A, Xie S, Valsamis H, Anziska Y, Ginzler EM, McFarlane IM. Predictors of overlapping autoimmune disease in Neuromyelitis Optica Spectrum disorder (NMOSD): A retrospective analysis in two inner-city hospitals. J Neurol Sci 2022; 443:120460. [PMID: 36306632 DOI: 10.1016/j.jns.2022.120460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The coexistence of Neuromyelitis Optica spectrum disorder (NMOSD) with other autoimmune diseases (AD-NMOSD) presents worse clinical outcomes and healthcare costs than NMOSD alone (NMOSD-only). NMOSD and other autoimmune diseases also have a higher prevalence and morbidity in Black. We aim to compare clinical features and treatment responses in NMOSD patients with and without overlapping autoimmunity in a predominantly Black cohort. We further identify predictors associated with each clinical subtype. METHODS AD-NMOSD (n = 14) and NMOSD-only (n = 27) patients were identified retrospectively. Demographic, clinical, laboratory, imaging, and response to treatment data were examined. RESULTS Our cohort was predominately Black (82.9%). The prevalence of grouped-comorbidities, history of infections, sensory symptoms, Expanded Disability Status Scale (EDSS) before treatment, double-stranded DNA, antinuclear, ribonucleoprotein, and antiphospholipid antibodies, spinal-cord edema, white matter occipital lesions, and the levels of C-reactive protein, urine protein/creatinine, white blood cell count in cerebrospinal fluid (CSF), were higher in AD-NMOSD patients (p < 0.05 and/or Cramer's V > 30, Cohen's d > 50), whereas the age of males, visual symptoms, serum albumin, platelet count, and optic nerve enhancement were lower. EDSS after treatment improved in both groups being more evident in NMOSD-only patients (p = 0.003, SE = 0.58 vs p = 0.075, SE = 0.51). Other variables had a close to moderate SE, and others did not differ between NMOSD subtypes. A higher frequency of grouped-comorbidities, lower serum albumin, and platelet count were independently associated with a higher risk for AD-NMOSD. CONCLUSIONS Some clinical features between AD-NMOSD and NMOSD-only patients were similar, while others differed. Comorbidities, serum albumin, and platelet count may be independent predictors of AD-NMOSD.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Aveena Gurung
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Kings County Hospital Medical Center, Brooklyn, NY, USA
| | - Vinodkumar Velayndhan
- Department of Radiology, Division of Neuroradiology, SUNY Downstate Health Sciences University, Kings County Center, Brooklyn, NY, USA
| | - Fernando Cuascut
- Department of Neurology, Maxine Mesinger Multiple Sclerosis Comprehensive Care Center, Baylor College of Medicine, Houston, TX, USA
| | - Samir Alkabie
- The London Multiple Sclerosis Clinic, London Health Sciences Centre University Hospital, Western University, ON, Canada
| | - Latoya Freeman
- Department of Internal Medicine, Division of Rheumatology, Mount Sinai Beth Israel, New York, NY, USA
| | - Ganesh Phayal
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Naureen Kabani
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Manjeet Bhamra
- Department of Rheumatology, Kaiser Permanent-Northern California, Oakland, CA, USA
| | - Alexandra Kreps
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristaq Koci
- Department of Medicine, Rheumatology Division, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Francis
- Department of Medicine, Duke University, Durham, NC, USA
| | - Su Y Zhaz Leon
- American Arthritis and Rheumatology (AARA), North Naples, FL, USA
| | - Justin Levinson
- Department of Medicine, Rheumatology Division, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Abhimanyu Amarnani
- University of Southern California and Los Angeles County + University of Southern California (LAC+USC) Medical Center, CA, USA
| | - Steve Xie
- Kings County Hospital Medical Center, Brooklyn, NY, USA
| | | | - Yaacov Anziska
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Isabel M McFarlane
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Kings County Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
11
|
Castro-Suarez S, Guevara-Silva E, Osorio-Marcatinco V, Alvarez-Toledo K, Meza-Vega M, Caparó-Zamalloa C. Clinical and Paraclinical Profile of Neuromyelitis Optic Spectrum Disorder in a Peruvian Cohort. Mult Scler Relat Disord 2022; 64:103919. [DOI: 10.1016/j.msard.2022.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/26/2022] [Indexed: 11/15/2022]
|
12
|
Sun F, Tavella-Burka S, Li J, Li Y. Positive acetylcholine receptor antibody in non-myasthenic patients. Muscle Nerve 2022; 65:508-512. [PMID: 35037718 DOI: 10.1002/mus.27500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS This study aims to investigate the frequency of acetylcholine receptor (AChR) binding antibody positivity via neuroautoimmunity panel testing, and describe its occurrence in a group of non-myasthenic disorders. METHODS This is a retrospective analysis of patients who underwent neuroautoimmunity antibody panel testing from 2010 to 2018 at Cleveland Clinic. RESULTS A total of 10,855 patients received neuroautoimmunity antibody panel testing, and 224 (2.1%) patients were positive for AChR binding antibody. Fifty-eight patients with known myasthenia gravis (MG) diagnosis and 11 patients with incomplete follow-up were excluded. Among the remaining 155 patients, 30 had newly diagnosed MG and 125 were non-myasthenic. In 35 patients, MG was within the initial differential diagnosis based on the clinical presentation. In contrast to non-myasthenic patients, myasthenic patients were more likely to have an initial clinical presentation raising suspicion for MG (73.3% versus 10.4%, p<0.001), higher mean AChR binding antibody titer (8.2 ±15.6 versus 0.4±1.6 nM, p=0.011) and higher frequency of abnormal AChR modulating antibody (89.3% versus 23.9%, p<0.001). A combination of AChR binding antibody of >0.5 nM and modulating antibody of >20% in patients with a clinical suspicion of MG is virtually diagnostic of MG. A total of 31 (24.8%) non-myasthenic patients carried coexisting autoimmune conditions. DISCUSSION Elevated titers of AChR binding antibody can be found frequently in non-myasthenic patients. Combined analysis of clinical presentation, AChR binding antibody titer and AChR modulating antibody results can be helpful in confirming an MG diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fang Sun
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sabrina Tavella-Burka
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jianbo Li
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Yuebing Li
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
13
|
Sriwastava S, Lisak RP. Acetylcholine receptor antibodies in a patient with sensory neuropathy. J Neuroimmunol 2021; 359:577692. [PMID: 34403864 DOI: 10.1016/j.jneuroim.2021.577692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Antibodies to acetylcholine receptor (AChR) are detected in the vast majority of patients with generalized myasthenia gravis (MG) and are rarely detected in significant titer in other autoimmune diseases. We report a patient with an axonal predominately sensory neuropathy for over 12 years with persistent binding and modulating AChR antibodies as well as striational muscle antibodies with no evidence of MG or any neoplastic disease.
Collapse
Affiliation(s)
- Shitiz Sriwastava
- Department of Neurology, West Virginia University, USA; Department of Neurology, Wayne State University and Detroit Medical Center, USA.
| | - Robert P Lisak
- Department of Neurology, Wayne State University and Detroit Medical Center, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University, USA
| |
Collapse
|
14
|
Sherman MA, Boyko AN. [Epidemiology of neuromyelitis optica spectrum disorder]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:5-12. [PMID: 34387440 DOI: 10.17116/jnevro20211210725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a group of rare and mostly severe autoimmune demyelinating central nervous system disorders which prevalence is 0.7-1 per 100.000 population and incidence is 0.037-0.73 per 100.000 person-years. NMOSD may present as a combination of uni- or bilateral optic neuritis, transverse myelitis or lesions of brain stem and other brain regions. The symptoms are mostly relapsing (up to 97.5%) and progressive. Occurrence of relapses is associated with seropositivity for aquaporin-4 (up to 80% of NMOSD patients) and bears a less favorable prognosis (mortality up to 32%). Women seropositive for aquaporin 4 constitute 90% of NMOSD patients. Compared to other demyelinating disorders, NMOSD is characterized by late onset (mean age is about 39 years) and association with other autoimmune disorders, including systemic lupus erythematosus, myasthenia gravis and Sjogren's syndrome. A genetic predisposition was found among Blacks and Asians, with HLA-DRB1*03:01 gene associated with higher risk of NMOSD in Asians. The course of the disease tends to be more severe in Blacks. There are clusters of an increased incidence of NMOSD in the Carribeans and in the Far East. Continued increase of prevalence and incidence of NMOSD worldwide compels continued epidemiological research in order to provide early diagnosis and treatment for this disorder.
Collapse
Affiliation(s)
- M A Sherman
- Kirov State Medical University, Kirov, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain Research and Neurotechnology, Moscow, Russia
| |
Collapse
|
15
|
Li T, Li H, Li Y, Dong SA, Yi M, Zhang QX, Feng B, Yang L, Shi FD, Yang CS. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front Genet 2021; 12:690537. [PMID: 34367251 PMCID: PMC8335167 DOI: 10.3389/fgene.2021.690537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system and it is understandable that environmental and genetic factors underlie the etiology of NMOSD. However, the susceptibility genes and associated pathways of NMOSD patients who are AQP4-Ab positive and negative have not been elucidated. Methods Secondary analysis from a NMOSD Genome-wide association study (GWAS) dataset originally published in 2018 (215 NMOSD cases and 1244 controls) was conducted to identify potential susceptibility genes and associated pathways in AQP4-positive and negative NMOSD patients, respectively (132 AQP4-positive and 83 AQP4-negative). Results In AQP4-positive NMOSD cases, five shared risk genes were obtained at chromosome 6 in AQP4-positive NMOSD cases by using more stringent p-Values in both methods (p < 0.05/16,532), comprising CFB, EHMT2, HLA-DQA1, MSH5, and SLC44A4. Fifty potential susceptibility gene sets were determined and 12 significant KEGG pathways were identified. Sixty-seven biological process pathways, 32 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained from the GO annotations of the 128 pathways identified. In the AQP4 negative NMOSD group, no significant genes were obtained by using more stringent p-Values in both methods (p < 0.05/16,485). The 22 potential susceptibility gene sets were determined. There were no shared potential susceptibility genes between the AQP4-positive and negative groups, furthermore, four significant KEGG pathways were also identified. Of the GO annotations of the 165 pathways identified, 99 biological process pathways, 37 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained. Conclusion The potential molecular mechanism underlying NMOSD may be related to proteins encoded by these novel genes in complements, antigen presentation, and immune regulation. The new results may represent an improved comprehension of the genetic and molecular mechanisms underlying NMOSD.
Collapse
Affiliation(s)
- Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ming Yi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Coexistencia de miastenia gravis y neuromielitis óptica: descripción de dos casos. Neurologia 2021; 36:174-176. [DOI: 10.1016/j.nrl.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/12/2020] [Accepted: 02/08/2020] [Indexed: 11/22/2022] Open
|
17
|
Copresence of myasthenia gravis and neuromyelitis optica: a report of 2 cases. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Topuzova MP, Bisaga GN, Alekseeva TM, Isabekova PS, Сhaykovskaya AD, Panina EB, Pavlova TA, Ternovykh IK. [Transverse myelitis syndrom as a result of neuromyelitis optica spectrum disorders, systemic lupus erythematosus and myasthenia gravis combination]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:97-106. [PMID: 32844638 DOI: 10.17116/jnevro202012007297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) - autoimmune condition characterized by an inflammatory lesions mainly of the spinal cord with the development of longitudinally extensive transverse myelitis (LETM) and/or involvement of the optic nerve with the development of usually bilateral optical neuritis (ON). In recent years, there has been increased awareness that NMOSD can be combined with other autoimmune diseases, including myasthenia gravis (MG), systemic lupus erythematosus (SLE) et al. The simultaneous presence of several autoimmune diseases in one patient can adversely affect the course of each of the diseases, causing the so-called mutual burden or «overlap syndrome». In this article, we describe our own clinical observation of a 51-year-old woman of European origin who developed acute relapsing TM seropositive for AQP4-IgG, by 23 years after the diagnosis of generalized MG seropositive for antibodies to acetylcholine receptors (AChR-Ab) and the occurrence of SLE, criterially confirmed, several months after the initial TM attack. During the fourth TM attack, partial positive dynamics was achieved only against the background of the combined use of intravenous methylprednisolone (pulse therapy), high-volume plasma exchange, rituximab and cyclophosphamide. The NMOSD is a rare disease leading to severe disability. In patients with MG, when symptoms of damage to the central nervous system appear, an analysis should be performed for AQP4-IgG and possibly for antibodies to myelin glycoprotein of oligodendrocytes (MOG-Ab), as well as markers characteristic of systemic connective tissue diseases (SCTD). In patients with STDD, when symptoms of involvement nervous systemappear, testing for AQP4-IgG (and, if necessary, for MOG-Ab) should be performed to exclude NMOSD, as well as AChR-Ab (and, if necessary, antibodies against muscle specific kinase (MuSK-Ab)) to exclude MG.
Collapse
Affiliation(s)
- M P Topuzova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - G N Bisaga
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T M Alekseeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - P Sh Isabekova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - E B Panina
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T A Pavlova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - I K Ternovykh
- Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
19
|
Kunchok A, Flanagan EP, Snyder M, Saadeh R, Chen JJ, Weinshenker BG, McKeon A, Pittock SJ. Coexisting systemic and organ-specific autoimmunity in MOG-IgG1-associated disorders versus AQP4-IgG+ NMOSD. Mult Scler 2020; 27:630-635. [PMID: 32633603 DOI: 10.1177/1352458520933884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aquaporin-4 (AQP4) neuromyelitis optica spectrum disorder (NMOSD) has been demonstrated to be associated with non-organ and organ-specific autoantibodies (antinuclear antibody, extractable nuclear antibody, double-stranded DNA, muscle acetylcholine receptor antibody) and systemic autoimmune diseases. In this study, we evaluated whether a similar association with non-organ and organ-specifc autoantibodies occurs in patients with MOG-IgG1-associated disorders. We determined that MOG-IgG1 was not strongly associated with these organ and non-organ-specific autoantibodies. Systemic lupus erythematous (SLE) was significantly associated with AQP4-IgG+ NMOSD and not with MOGAD (p = 0.037). These findings suggest differences in co-existing systemic and organ-specific autoimmunity between MOGAD and AQP4-IgG+ NMOSD.
Collapse
Affiliation(s)
- Amy Kunchok
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Melissa Snyder
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruba Saadeh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA/Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Brian G Weinshenker
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Abstract
Neuromyelitis optica (NMO) is a rare and chronic disabling autoimmune astrocytopathy of the central nervous system. Current advances regarding aquaporin-4 antibody function facilitate the understanding of clinical manifestations and imaging findings beyond optic neuritis and transverse myelitis. The current definition of NMO spectrum disorder (NMOSD) includes both aquaporin-4-IgG seropositive and seronegative patients who present with characteristic findings. This review will briefly summarize the pathophysiology and the latest NMOSD diagnostic criteria and focus on the NMOSD imaging findings and its differential diagnosis.
Collapse
Affiliation(s)
- Sheng-Che Hung
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
21
|
Abstract
The current management of acute optic neuritis (ON) is focused on expediting visual recovery through the use of high-dose intravenous corticosteroids. The recent identification of specific autoantibodies associated with central nervous system inflammatory disorders has provided novel insights into immune targets and mechanisms that impact the prognosis, treatment, and recurrence of ON. Therefore, neurologists and ophthalmologists need to be aware of clinical, laboratory, and imaging findings that may provide important clues to the etiology of ON and the potential need for aggressive management. Moving forward, rapid and accurate diagnosis of inflammatory ON will likely be critical for implementing clinical care that optimizes short-term and long-term therapeutic outcomes.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article discusses the clinical presentation, evaluation, and management of the patient with optic neuritis. Initial emphasis is placed on clinical history, examination, diagnostic testing, and medical decision making, while subsequent focus is placed on examining specific inflammatory optic neuropathies. Clinical clues, examination findings, neuroimaging, and laboratory testing that differentiate autoimmune, granulomatous, demyelinating, infectious, and paraneoplastic causes of optic neuritis are assessed, and current treatments are evaluated. RECENT FINDINGS Advances in technology and immunology have enhanced our understanding of the pathologies driving inflammatory optic nerve injury. Clinicians are now able to interrogate optic nerve structure and function during inflammatory injury, rapidly identify disease-relevant autoimmune targets, and deliver timely therapeutics to improve visual outcomes. SUMMARY Optic neuritis is a common clinical manifestation of central nervous system inflammation. Depending on the etiology, visual prognosis and the risk for recurrent injury may vary. Rapid and accurate diagnosis of optic neuritis may be critical for limiting vision loss, future neurologic disability, and organ damage. This article will aid neurologists in formulating a systematic approach to patients with optic neuritis.
Collapse
|
23
|
Mao-Draayer Y, Thiel S, Mills EA, Chitnis T, Fabian M, Katz Sand I, Leite MI, Jarius S, Hellwig K. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. Nat Rev Neurol 2020; 16:154-170. [PMID: 32080393 DOI: 10.1038/s41582-020-0313-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are a type of neurological autoimmune disease characterized by attacks of CNS inflammation that are often severe and predominantly affect the spinal cord and optic nerve. The majority of individuals with NMOSD are women, many of whom are of childbearing age. Although NMOSD are rare, several small retrospective studies and case reports have indicated that pregnancy can worsen disease activity and might contribute to disease onset. NMOSD disease activity seems to negatively affect pregnancy outcomes. Moreover, some of the current NMOSD treatments are known to pose risks to the developing fetus and only limited safety data are available for others. Here, we review published studies regarding the relationship between pregnancy outcomes and NMOSD disease activity. We also assess the risks associated with using disease-modifying therapies for NMOSD during the course of pregnancy and breastfeeding. On the basis of the available evidence, we offer recommendations regarding the use of these therapies in the course of pregnancy planning in individuals with NMOSD.
Collapse
Affiliation(s)
- Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandra Thiel
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, MA, USA
| | - Michelle Fabian
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
24
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Flanagan EP. Neuromyelitis Optica Spectrum Disorder and Other Non-Multiple Sclerosis Central Nervous System Inflammatory Diseases. Continuum (Minneap Minn) 2019; 25:815-844. [PMID: 31162318 DOI: 10.1212/con.0000000000000742] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This article reviews the clinical features, diagnostic approach, treatment, and prognosis of central nervous system inflammatory diseases that mimic multiple sclerosis (MS), including those defined by recently discovered autoantibody biomarkers. RECENT FINDINGS The discovery of autoantibody biomarkers of inflammatory demyelinating diseases of the central nervous system (aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG) and the recognition that, despite some overlap, their clinical phenotypes are distinct from MS have revolutionized this field of neurology. These autoantibody biomarkers assist in diagnosis and have improved our understanding of the underlying disease pathogenesis. This has allowed targeted treatments to be translated into clinical trials, three of which are now under way in aquaporin-4 IgG-seropositive neuromyelitis optica (NMO) spectrum disorder. SUMMARY Knowledge of the clinical attributes, MRI findings, CSF parameters, and accompanying autoantibody biomarkers can help neurologists distinguish MS from its inflammatory mimics. These antibody biomarkers provide critical diagnostic and prognostic information and guide treatment decisions. Better recognition of the clinical, radiologic, and laboratory features of other inflammatory MS mimics that lack autoantibody biomarkers has allowed us to diagnose these disorders faster and initiate disease-specific treatments more expeditiously.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This article reviews the clinical presentation, diagnostic evaluation, and management of immune-mediated myelopathies. RECENT FINDINGS The discovery of several neural autoantibodies and their antigenic targets has revolutionized the investigation and treatment of immune-mediated myelopathies. Detection of these serologic biomarkers can support or establish a diagnosis of an autoimmune myelopathy, and, in the case of paraneoplastic syndromes, indicate the likely presence of an underlying malignancy. Distinctive lesion patterns detected on spinal cord or brain MRI narrow the differential diagnosis in patients with acute or subacute inflammatory myelopathies, including those not associated with autoantibody markers. SUMMARY Immune-mediated myelopathies usually present acutely or subacutely and have a broad differential diagnosis. A systematic diagnostic approach using data from the clinical setting and presentation, MRI lesion patterns, CSF data, and autoantibody markers can differentiate these disorders from noninflammatory myelopathies, often with precise disease classification. This, in turn, provides prognostic information, especially whether the disorder is likely to relapse, and facilitates therapeutic decision making. Diagnostic accuracy informs selection of acute immunotherapy aimed at arresting and reversing recent neurologic injury and, when necessary, selection of long-term treatment for prevention of disease progression or relapse.
Collapse
|
27
|
Kimura K, Okada Y, Fujii C, Komatsu K, Takahashi R, Matsumoto S, Kondo T. Clinical characteristics of autoimmune disorders in the central nervous system associated with myasthenia gravis. J Neurol 2019; 266:2743-2751. [PMID: 31342158 DOI: 10.1007/s00415-019-09461-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023]
Abstract
Myasthenia gravis (MG) is occasionally associated with autoimmune diseases in the central nervous system (CNS), such as neuromyelitis optica spectrum disorder (NMOSD), multiple sclerosis (MS), Morvan syndrome, and anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Here, we report five original cases associated with autoimmune disorders in the CNS among 42 patients with MG in a single tertiary hospital in Japan (11.9%). In four of these five cases, the second disease developed when the preceding disease was unstable. Accurate diagnosis of the newly developing disease may be difficult in such cases, because some neurological symptoms can be seen in both disorders. This implies the great importance of recognizing the possible co-occurrence of MG and disorders in the CNS. In addition, a comprehensive review of the literature revealed distinct clinical characteristics depending on the associated disease in the CNS, including thymic pathology and temporal relationship between MG and associated CNS disorders. Notably, NMOSD usually develops after the onset of MG and thymectomy, in clear contrast to MS. Thymoma is highly prevalent among patients with Morvan syndrome, in contract to cases with NMOSD and MS. The analysis of clinical characteristics, representing the first such investigation to the best of our knowledge, suggests different pathogeneses of these autoimmune diseases in the CNS, and provides significant implications for clinical practice.
Collapse
Affiliation(s)
- Kimitoshi Kimura
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Neurology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
- Department of Immunology, National Center of Neurology and Psychiatry, National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, 187-8502, Tokyo, Japan
| | - Yoichiro Okada
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizonocho, Moriguchi, 570-8507, Osaka, Japan
| | - Chihiro Fujii
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenichi Komatsu
- Department of Neurology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sadayuki Matsumoto
- Department of Neurology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Takayuki Kondo
- Department of Neurology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan.
- Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizonocho, Moriguchi, 570-8507, Osaka, Japan.
| |
Collapse
|
28
|
Bennis A, El Otmani H, Benkirane N, Harrizi I, El Moutawakil B, Rafai MA, Slassi I. Clinical course of neuromyelitis optica spectrum disorder in a moroccan cohort. Mult Scler Relat Disord 2019; 30:141-148. [DOI: 10.1016/j.msard.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
|
29
|
Brignol TN, Leveziel N, Urtizberea JA. [Neuromyelitis optica spectrum disorders positive for anti-AQP4 antibody associated with myasthenia gravis: A literature review]. J Fr Ophtalmol 2019; 42:e131-e132. [PMID: 30803764 DOI: 10.1016/j.jfo.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/27/2018] [Indexed: 10/27/2022]
Affiliation(s)
- T N Brignol
- Direction des actions médicales, Association française contre les myopathies (AFM-Téléthon), 1, rue de l'Internationale, BP 59, 91002 Évry cedex, France.
| | - N Leveziel
- Inserm 1084, ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers, France
| | - J A Urtizberea
- Centre de compétence maladies neuromusculaires, hôpital Marin, AP-HP, route de la Corniche, 64701 Hendaye cedex, France
| |
Collapse
|
30
|
Neuromyelitis optica spectrum disorder presenting with concurrent autoimmune diseases. Mult Scler Relat Disord 2018; 28:125-128. [PMID: 30593981 DOI: 10.1016/j.msard.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune syndrome characterized by optic nerve and spinal cord inflammation. In recent years, there has been increasing awareness of NMOSD presenting concurrently with other autoimmune diseases, including myasthenia gravis (MG), systemic lupus erythematosus (SLE), Sjögren's syndrome, and sarcoidosis, among others. Whether these diseases coexist in patients due to shared susceptibility to multiple autoimmune conditions as a result of a genetic tendency toward humoral autoimmunity, or whether systemic rheumatologic diseases facilitate some aspect of NMOSD pathogenesis remains an open question. Here, we describe two cases of NMOSD presenting with concurrent autoimmune disease, and highlight the clinical features and diagnostic challenges of each case. Our first patient had aquaporin-4 antibody-positive NMOSD with concurrent hypothyroidism, SLE, and muscle specific kinase antibody-positive MG. Our second patient had seronegative NMOSD with concurrent acetylcholine receptor antibody-positive MG. Practitioners should be aware of the potential for patients to present with a combination of NMOSD and one or more concurrent autoimmune diseases to ensure timely diagnosis and appropriate treatment.
Collapse
|
31
|
Zarei S, Eggert J, Franqui-Dominguez L, Carl Y, Boria F, Stukova M, Avila A, Rubi C, Chinea A. Comprehensive review of neuromyelitis optica and clinical characteristics of neuromyelitis optica patients in Puerto Rico. Surg Neurol Int 2018; 9:242. [PMID: 30603227 PMCID: PMC6293609 DOI: 10.4103/sni.sni_224_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an immune-mediated inflammatory disorder of the central nervous system. It is characterized by concurrent inflammation and demyelination of the optic nerve (optic neuritis [ON]) and the spinal cord (myelitis). Multiple studies show variations in prevalence, clinical, and demographic features of NMO among different populations. In addition, ethnicity and race are known as important factors on disease phenotype and clinical outcomes. There are little data on information about NMO patients in underserved groups, including Puerto Rico (PR). In this research, we will provide a comprehensive overview of all aspects of NMO, including epidemiology, environmental risk factors, genetic factors, molecular mechanism, symptoms, comorbidities and clinical differentiation, diagnosis, treatment, its management, and prognosis. We will also evaluate the demographic features and clinical phenotype of NMO patients in PR. This will provide a better understanding of NMO and establish a basis of knowledge that can be used to improve care. Furthermore, this type of population-based study can distinguish the clinical features variation among NMO patients and will provide insight into the potential mechanisms that cause these variations.
Collapse
Affiliation(s)
- Sara Zarei
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - James Eggert
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Yonatan Carl
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Fernando Boria
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marina Stukova
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Cristina Rubi
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| | - Angel Chinea
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| |
Collapse
|
32
|
Shahmohammadi S, Doosti R, Shahmohammadi A, Mohammadianinejad SE, Sahraian MA, Azimi AR, Harirchian MH, Asgari N, Naser Moghadasi A. Autoimmune diseases associated with Neuromyelitis Optica Spectrum Disorders: A literature review. Mult Scler Relat Disord 2018; 27:350-363. [PMID: 30476871 DOI: 10.1016/j.msard.2018.11.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neuromyelitis Optica (NMO) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) which predominantly involves optic nerves and spinal cord. Since the introduction of Neuromyelitis Optica Spectrum Disorders (NMOSD) as a separate entity, there have been many reports on its association with other disorders including systemic and organ-specific autoimmune diseases. Here, we reviewed other immune-mediated diseases associated with NMOSD and tried to categorize them. METHODS The present review was conducted using the PUBMED database based on papers from 1976 (i.e., since the first NMO comorbidity with SLE was reported) to 2017. We included all articles published in English. The keywords utilized included Neuromyelitis optica, Neuromyelitis Optica Spectrum Disorders, Devic's disease, in combination with comorbidity or comorbidities. RESULTS Diseases with immune-based pathogenesis are the most frequently reported co-morbidities associated with NMOSD, most of which are antibody-mediated diseases. According to literature, Sjogren's Syndrome (SS) and Systemic Lupus Erythematosus (SLE) are the most frequently reported diseases associated with NMOSD among systemic autoimmune diseases. Further, myasthenia gravis in neurological and autoimmune thyroid diseases in non-neurological organ-specific autoimmune diseases are the most reported comorbidities associated with NMOSD in the literature. CONCLUSIONS NMOSD may be associated with a variety of different types of autoimmune diseases. Therefore, systemic or laboratory signs which are not typical for NMOSD should be properly investigated to exclude other associated comorbidities. These comorbidities may affect the treatment strategy and may improve the patients' care and management.
Collapse
Affiliation(s)
- Sareh Shahmohammadi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Doosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abootorab Shahmohammadi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian center for neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Asgari
- Owens-gruppen Næstved/Slagelse/Ringsted Sygehuse, Region Sjælland J.B. Winsløws Vej 9, indgang B, 1. Sal 5000, Odense C, Denmark
| | | |
Collapse
|
33
|
NMO-IgG and AQP4 Peptide Can Induce Aggravation of EAMG and Immune-Mediated Muscle Weakness. J Immunol Res 2018; 2018:5389282. [PMID: 29951558 PMCID: PMC5987235 DOI: 10.1155/2018/5389282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022] Open
Abstract
Neuromyelitis optica (NMO) and myasthenia gravis (MG) are autoimmune diseases mediated by autoantibodies against either aquaporin 4 (AQP4) or acetylcholine receptor (AChR), respectively. Recently, we and others have reported an increased prevalence of NMO in patients with MG. To verify whether coexisting autoimmune disease may exacerbate experimental autoimmune MG, we tested whether active immunization with AQP4 peptides or passive transfer of NMO-Ig can affect the severity of EAMG. Injection of either AQP4 peptide or NMO-Ig to EAMG or to naive mice caused increased fatigability and aggravation of EAMG symptoms as expressed by augmented muscle weakness (but not paralysis), decremental response to repetitive nerve stimulation, increased neuromuscular jitter, and aberration of immune responses. Thus, our study shows increased disease severity in EAMG mice following immunization with the NMO autoantigen AQP4 or by NMO-Ig, mediated by augmented inflammatory response. This can explain exacerbation or increased susceptibility of patients with one autoimmune disease to develop additional autoimmune syndrome.
Collapse
|
34
|
|
35
|
Annus Á, Bencsik K, Obál I, Kincses ZT, Tiszlavicz L, Höftberger R, Vécsei L. Paraneoplastic neuromyelitis optica spectrum disorder: A case report and review of the literature. J Clin Neurosci 2018; 48:7-10. [DOI: 10.1016/j.jocn.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
36
|
Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8:1785. [PMID: 29312313 PMCID: PMC5732908 DOI: 10.3389/fimmu.2017.01785] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
37
|
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disorder of the central nervous system (CNS) with predilection for the optic nerves and spinal cord. Since its emergence in the medical literature in the late 1800's, the diagnostic criteria for NMO has slowly evolved from the simultaneous presentation of neurologic and ophthalmic signs to a relapsing or monophasic CNS disorder defined by clinical, neuroimaging, and laboratory criteria. Due to the identification of a specific autoantibody response against the astrocyte water channel aquaporin-4 (AQP4) in the vast majority of affected individuals, the clinical spectrum of NMO has greatly expanded necessitating the development of new international criteria for the diagnosis of NMO spectrum disorder (NMOSD). The routine application of new diagnostic criteria for NMOSD in clinical practice will be critical for future refinement and correlation with therapeutic outcomes.
Collapse
|
38
|
Abstract
BACKGROUND It is uncertain whether there are autoantibodies detectable by indirect immunofluorescence in the serum of patients with multiple sclerosis (MS). OBJECTIVE To determine whether there are anti-central nervous system (CNS) autoantibodies detectable by indirect immunofluorescence in the serum of MS patients. METHODS Sera and in some cases cerebrospinal fluid from 106 patients with multiple sclerosis, 156 patients with other neurological diseases, and 70 healthy control subjects were examined by indirect immunofluorescence using cryostat sections of rat cerebrum fixed by perfusion with paraformaldehyde. RESULTS Autoantibodies were detected that recognized more than 30 neuronal, glial, and mesodermal structures in 28 of 106 MS cases. Most were also detected in patients with other related and unrelated neurological diseases and several were also found in healthy controls. Novel anti-CNS autoantibodies recognizing particular sets of interneurons were detected in both normal controls and in subjects with CNS diseases. INTERPRETATION Serum anti-CNS autoantibodies of diverse specificities are common in MS patients. The same anti-CNS autoantibodies are not uncommon in patients with other neurological diseases. The findings provide no support for the proposition that myelin breakdown in MS is caused by exposure of intact myelin sheaths or oligodendrocytes to a pathogenic serum anti-myelin or anti-oligodendrocyte autoantibody.
Collapse
Affiliation(s)
- John W Prineas
- Brain and Mind Centre, Department of Medicine, The University of Sydney, Camperdown, NSW, Australia
| | - John D E Parratt
- Parratt Brain and Mind Centre, Department of Medicine, The University of Sydney, Camperdown, NSW, Australia and Department of Neurology, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
39
|
Rosales D, Kister I. Common and Rare Manifestations of Neuromyelitis Optica Spectrum Disorder. Curr Allergy Asthma Rep 2017; 16:42. [PMID: 27167974 DOI: 10.1007/s11882-016-0619-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of a highly specific biomarker of neuromyelitis optica (NMO)-the anti-aquaporin-4 (AQP4) antibody-has opened new paths to understanding disease pathogenesis and afforded a way to confirm the diagnosis in clinical practice. An important consequence of the discovery is the broadening of the spectrum of syndromes seen in the context of AQP4 autoimmunity. These syndromes have been subsumed under the rubric of NMO spectrum disorder (NMOSD). The current classification recognizes not only optic neuritis and myelitis as core syndromes of NMOSD but also cerebral, diencephalic, brainstem, and area postrema syndromes. These neurologic syndromes are the focus of our review. AQP4 is also expressed in many organs outside of the central nervous system, and this may explain some of the unusual, non-neurologic features that have been occasionally reported in NMOSD. Our review catalogues non-neurologic manifestations seen in NMOSD and concludes with a discussion of frequently associated autoimmune and neoplastic comorbidities of NMOSD.
Collapse
Affiliation(s)
- Dominique Rosales
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA.
| | - Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU School of Medicine, 240 E 38th St, New York, NY, 10016, USA
| |
Collapse
|
40
|
Flanagan EP, Pittock SJ. Diagnosis and management of spinal cord emergencies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:319-335. [PMID: 28187806 DOI: 10.1016/b978-0-444-63600-3.00017-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Most spinal cord injury is seen with trauma. Nontraumatic spinal cord emergencies are discussed in this chapter. These myelopathies are rare but potentially devastating neurologic disorders. In some situations prior comorbidity (e.g., advanced cancer) provides a clue, but in others (e.g., autoimmune myelopathies) it may come with little warning. Neurologic examination helps distinguish spinal cord emergencies from peripheral nervous system emergencies (e.g., Guillain-Barré), although some features overlap. Neurologic deficits are often severe and may quickly become irreversible, highlighting the importance of early diagnosis and treatment. Emergent magnetic resonance imaging (MRI) of the entire spine is the imaging modality of choice for nontraumatic spinal cord emergencies and helps differentiate extramedullary compressive causes (e.g., epidural abscess, metastatic compression, epidural hematoma) from intramedullary etiologies (e.g., transverse myelitis, infectious myelitis, or spinal cord infarct). The MRI characteristics may give a clue to the diagnosis (e.g., flow voids dorsal to the cord in dural arteriovenous fistula). However, additional investigations (e.g., aquaporin-4-IgG) are often necessary to diagnose intramedullary etiologies and guide treatment. Emergency decompressive surgery is necessary for many extramedullary compressive causes, either alone or in combination with other treatments (e.g., radiation) and preoperative neurologic deficit is the best predictor of outcome.
Collapse
Affiliation(s)
- E P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - S J Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Boulay AC, Cisternino S, Cohen-Salmon M. Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain Behav Immun 2016; 56:1-9. [PMID: 26674996 DOI: 10.1016/j.bbi.2015.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/28/2015] [Indexed: 01/18/2023] Open
Abstract
In the brain, immune cell infiltration is normally kept at a very low level and a unique microenvironment strictly restricts immune reactions and inflammation. Even in such quiescent environment, a constant immune surveillance is at work allowing the brain to rapidly react to threats. To date, knowledge about the factors regulating the brain-immune system interrelationship in healthy conditions remains elusive. Interestingly, astrocytes, the most abundant glial cells in the brain, may participate in many aspects of this unique homeostasis, in particular due to their close interaction with the brain vascular system and expression of a specific molecular repertoire. Indeed, astrocytes maintain the blood-brain barrier (BBB) integrity, interact with immune cells, and participate in the regulation of intracerebral liquid movements. We recently showed that Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the BBB interface, is an immunoregulating factor. The absence of astroglial Cx43 leads to a transient endothelial activation, a continuous immune recruitment as well as the development of a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein expressed by astrocytes. In this review, we propose to gather current knowledge on how astrocytes may influence the immune system in the healthy brain, focusing on their roles at the gliovascular interface. We will also consider pathological situations involving astrocyte-specific autoimmunities. Finally, we will discuss the specific role of astroglial Cx43 and the physiological consequences of immune regulations taking place on inflammation, cognition and behavior in the absence of Cx43.
Collapse
Affiliation(s)
- Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, Paris F-75006, France; Université Paris Descartes, Faculté de Pharmacie, UMR-S 1144, 75006 Paris, France; Université Paris Diderot, UMR-S 1144, 75013 Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France.
| |
Collapse
|
42
|
Jasiak-Zatonska M, Kalinowska-Lyszczarz A, Michalak S, Kozubski W. The Immunology of Neuromyelitis Optica-Current Knowledge, Clinical Implications, Controversies and Future Perspectives. Int J Mol Sci 2016; 17:273. [PMID: 26950113 PMCID: PMC4813137 DOI: 10.3390/ijms17030273] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 01/07/2023] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune, demyelinating disorder of the central nervous system (CNS) with typical clinical manifestations of optic neuritis and acute transverse myelitis attacks. Previously believed to be a variant of multiple sclerosis (MS), it is now considered an independent disorder which needs to be differentiated from MS. The discovery of autoantibodies against aquaporin-4 (AQP4-IgGs) changed our understanding of NMO immunopathogenesis and revolutionized the diagnostic process. AQP4-IgG is currently regarded as a specific biomarker of NMO and NMO spectrum disorders (NMOsd) and a key factor in its pathogenesis. Nevertheless, AQP4-IgG seronegativity in 10%-25% of NMO patients suggests that there are several other factors involved in NMO immunopathogenesis, i.e., autoantibodies against aquaporin-1 (AQP1-Abs) and antibodies against myelin oligodendrocyte glycoprotein (MOG-IgGs). This manuscript reviews current knowledge about NMO immunopathogenesis, pointing out the controversial issues and showing potential directions for future research. Further efforts should be made to broaden our knowledge of NMO immunology which could have important implications for clinical practice, including the use of potential novel biomarkers to facilitate an early and accurate diagnosis, and modern treatment strategies improving long-term outcome of NMO patients.
Collapse
Affiliation(s)
- Michalina Jasiak-Zatonska
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland.
| | - Alicja Kalinowska-Lyszczarz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland.
| | - Slawomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland.
- Neuroimmunological Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland.
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland.
| |
Collapse
|
43
|
Sato S, Terane A, Nishiguchi S, Branch J, Kawada J, Kitagawa I, Tokuda Y. Intractable Hiccups and Nausea as a Principal Symptom of Neuromyelitis Optica in a Patient with a Prior History of Miller-Fisher Syndrome. J Gen Fam Med 2016. [DOI: 10.14442/jgfm.17.1_99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
44
|
Abstract
Autoimmune myelopathies are a heterogeneous group of immune-mediated spinal cord disorders with a broad differential diagnosis. They encompass myelopathies with an immune attack on the spinal cord (e.g., aquaporin-4-IgG (AQP4-IgG) seropositive neuromyelitis optica (NMO) and its spectrum disorders (NMOSD)), myelopathies occurring with systemic autoimmune disorders (which may also be due to coexisting NMO/NMOSD), paraneoplastic autoimmune myelopathies, postinfectious autoimmune myelopathies (e.g., acute disseminated encephalomyelitis), and myelopathies thought to be immune-related (e.g., multiple sclerosis and spinal cord sarcoidosis). Spine magnetic resonance imaging is extremely useful in the evaluation of autoimmune myelopathies as the location of signal change, length of the lesion, gadolinium enhancement pattern, and evolution over time narrow the differential diagnosis considerably. The recent discovery of multiple novel neural-specific autoantibodies accompanying autoimmune myelopathies has improved their classification. These autoantibodies may be pathogenic (e.g., AQP4-IgG) or nonpathogenic and more reflective of a cytotoxic T-cell-mediated autoimmune response (collapsin response mediator protein-5(CRMP5)-IgG). The presence of an autoantibody may help guide cancer search, assist treatment decisions, and predict outcome/relapse. With paraneoplastic myelopathies the initial goal is detection and treatment of the underlying cancer. The aim of immunotherapy in all autoimmune myelopathies is to maximize reversibility, maintain benefits (while preventing relapse), and minimize side effects.
Collapse
|
45
|
Hinson SR, Lennon VA, Pittock SJ. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:377-403. [PMID: 27112688 DOI: 10.1016/b978-0-444-63432-0.00021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving group of central nervous system (CNS)-inflammatory autoimmune demyelinating diseases unified by a pathogenic autoantibody specific for the aquaporin-4 (AQP4) water channel. It was historically misdiagnosed as multiple sclerosis (MS), which lacks a distinguishing biomarker. The discovery of AQP4-IgG moved the focus of CNS demyelinating disease research from emphasis on the oligodendrocyte and myelin to the astrocyte. NMO is recognized today as a relapsing disease, extending beyond the optic nerves and spinal cord to include brain (especially in children) and skeletal muscle. Brain magnetic resonance imaging abnormalities, identifiable in 60% of patients at the second attack, are consistent with MS in 10% of cases. NMOSD-typical lesions (another 10%) occur in AQP4-enriched regions: circumventricular organs (causing intractable nausea and vomiting) and the diencephalon (causing sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Advances in understanding the immunobiology of AQP4 autoimmunity have necessitated continuing revision of NMOSD clinical diagnostic criteria. Assays that selectively detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 are promising prognostically. When referring to AQP4 autoimmunity, we suggest substituting the term "autoimmune aquaporin-4 channelopathy" for the term "NMO spectrum disorders." Randomized clinical trials are currently assessing the efficacy and safety of newer immunotherapies. Increasing therapeutic options based on understanding the molecular pathogenesis is anticipated to improve the outcome for patients with AQP4 channelopathy.
Collapse
Affiliation(s)
- Shannon R Hinson
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Vanda A Lennon
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sean J Pittock
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA.
| |
Collapse
|
46
|
Vaknin-Dembinsky A, Brill L, Kassis I, Petrou P, Ovadia H, Ben-Hur T, Abramsky O, Karussis D. T-cell responses to distinct AQP4 peptides in patients with neuromyelitis optica (NMO). Mult Scler Relat Disord 2015; 6:28-36. [PMID: 27063619 DOI: 10.1016/j.msard.2015.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/06/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although antibodies to aquaporin-4(AQP4) are strongly associated with Neuromyelitis optica (NMO), the sole transfer of these antibodies is not sufficient to induce an NMO-like disease in experimental animals and T-cells and complement are also needed. Initial data indicating the presence of T-cell responses to AQP4 in patients with NMO, have beeen recently reported. OBJECTIVE To evaluate the T-cell responses to specific AQP4 peptides/epitopes in patients with NMO and multiple sclerosis (MS). METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 14 patients fulfilling the criteria for definite NMO and the proliferation responses to one of 15 distinct pentadecapeptides of AQP4, spanning the whole protein (except of its transmembrane parts) were tested by a standard [H3]-thymidine uptake assay and compared with those of 9 healthy controls and 7 MS patients. A cytometric bead array assay (CBA) and flow cytometry were used to evaluate cytokine (IFNγ, IL17, IL2, IL4, IL5, IL10 and TNFα) and chemokine (CXCL8, CCL5, CXCL10, CXCL9, CCL2) secretion by PHA-stimulated PBMCs and AQP4-specific T-cell lines. RESULTS Four main immunodominant epitopes of the AQP4 protein (p137-151, p222-236, p217-231 and the p269-283) were identified in the NMO group. The first two epitopes (assigned as peptides 3 and 9) showed the highest sensitivity (~60% positivity), whereas the latter two (assigned as peptides 8 and 11), the higher specificity. Longitudinal follow up of 5 patients revealed changes in the epitope-specificities during the course of NMO. T-cell lines specific for the AQP4 peptides, produced from NMO patients (but not healthy donors) secreted mainly IL-17 and IL-10 and less IFNγ. CONCLUSIONS Our findings indicate that T-cells bearing characteristics of both Th1 and Th17 T-cells and targeting specific immunodominant epitopes of the AQP4 protein might be involved in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Ibrahim Kassis
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Panayiota Petrou
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Haim Ovadia
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Oded Abramsky
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Dimitrios Karussis
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Karem, Jerusalem 91120, Israel
| |
Collapse
|
47
|
Balarabe SA, Adamu MD, Watila MM, Jiya N. Neuromyelitis optica and myasthenia gravis in a young Nigerian girl. BMJ Case Rep 2015; 2015:bcr-2014-207362. [PMID: 26338241 DOI: 10.1136/bcr-2014-207362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuromyelitis optica (NMO) and myasthenia gravis (MG) are rare autoimmune disorders. The coexistence of the two disorders, although rare, has been documented. This is a case report of a 16-year-old student who presented with recurrent episodes of transverse myelitis and optic neuritis, 8 years after diagnosis of MG. She presented with visual impairment, relapsing and remitting weakness, numbness and paraesthesia of her lower limbs, with bladder and bowel incontinence. Her examination revealed bilateral optic atrophy, spastic paraparesis of the lower limbs and patchy sensory loss up to thoracic level (T4-5). She had a positive acetylcholine receptor antibody, a positive aquaporin-4 antibody and chest CT finding of thymic enlargement. We therefore confirmed the previous diagnosis of MG and performed a recent diagnosis of background NMO. A high index of suspicion is needed to make a diagnosis of this rare coexistence of NMO and MG in resource-limited settings such as Nigeria.
Collapse
Affiliation(s)
| | - Mohammad Dantani Adamu
- Department of Ophthalmology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Sokoto, Nigeria
| | - Musa Mamman Watila
- Department of Medicine, University of Maiduguri Teaching Hospital, Maiduguri, Borno, Nigeria
| | - Nma Jiya
- Department of Paediatrics, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Sokoto, Nigeria
| |
Collapse
|
48
|
Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci 2015. [PMID: 26096370 DOI: 10.1111/nyas.12794.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy.
Collapse
Affiliation(s)
- Sean J Pittock
- Department of Laboratory Medicine/Pathology, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
49
|
Pittock SJ, Lucchinetti CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci 2015; 1366:20-39. [PMID: 26096370 DOI: 10.1111/nyas.12794] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy.
Collapse
Affiliation(s)
- Sean J Pittock
- Department of Laboratory Medicine/Pathology, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
50
|
Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e110. [PMID: 26185772 PMCID: PMC4442096 DOI: 10.1212/nxi.0000000000000110] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/23/2015] [Indexed: 01/16/2023]
Abstract
Neuromyelitis optica (NMO) and a related spectrum of inflammatory CNS disorders are unified by detection of a serum autoantibody specific for the aquaporin-4 (AQP4) water channel, which is abundant in astrocytic foot processes. The classic clinical manifestations of NMO are optic neuritis and longitudinally extensive transverse myelitis. Newly recognized manifestations of AQP4 autoimmunity include lesions of circumventricular organs and skeletal muscle. NMO is commonly relapsing, is frequently accompanied by other autoimmune disorders, and sometimes occurs in a paraneoplastic context. The goals of treatment are to minimize neurologic disability in the acute attack and thereafter to prevent relapses and cumulative disability. The disease specificity of AQP4 immunoglobulin (Ig) G approaches 100% using optimized molecular-based detection assays. Clinical, immunohistopathologic, and in vitro evidence support this antibody being central to NMO pathogenesis. Current animal models yield limited histopathologic characteristics of NMO, with no clinical deficits to date. Recent descriptions of a myelin oligodendrocyte glycoprotein autoantibody in a minority of patients with NMO spectrum phenotype who lack AQP4-IgG predict serologic delineation of additional distinctive disease entities.
Collapse
Affiliation(s)
- Anastasia Zekeridou
- Departments of Laboratory Medicine and Pathology (A.Z., V.A.L.), Neurology (V.A.L.), and Immunology (V.A.L.), Neuroimmunology Laboratory, Mayo Clinic College of Medicine, Rochester, MN
| | - Vanda A Lennon
- Departments of Laboratory Medicine and Pathology (A.Z., V.A.L.), Neurology (V.A.L.), and Immunology (V.A.L.), Neuroimmunology Laboratory, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|