1
|
Grapperon AM, Harlay V, Boucekine M, Devos D, Rolland AS, Desnuelle C, Delmont E, Verschueren A, Attarian S. Could the motor unit number index be an early prognostic biomarker for amyotrophic lateral sclerosis? Clin Neurophysiol 2024; 163:47-55. [PMID: 38703699 DOI: 10.1016/j.clinph.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE To evaluate the associations between motor unit number index (MUNIX) and disease progression and prognosis in amyotrophic lateral sclerosis (ALS) in a large-scale longitudinal study. METHODS MUNIX was performed at the patient's first visit, at 3, 6, and 12 months in 4 muscles. MUNIX data from the patients were compared with those from 38 age-matched healthy controls. Clinical data included the revised ALS functional rating scale (ALSFRS-R), the forced vital capacity (FVC), and the survival of the patients. RESULTS Eighty-two patients were included at baseline, 62 were evaluated at three months, 48 at six months, and 33 at twelve months. MUNIX score was lower in ALS patients compared to controls. At baseline, MUNIX was correlated with ALSFRS-R and FVC. Motor unit size index (MUSIX) was correlated with patient survival. Longitudinal analyses showed that MUNIX decline was greater than ALSFRS-R decline at each evaluation. A baseline MUNIX score greater than 378 predicted survival over the 12-month period with a sensitivity of 82% and a specificity of 56%. CONCLUSIONS This longitudinal study suggests that MUNIX could be an early quantitative marker of disease progression and prognosis in ALS. SIGNIFICANCE MUNIX might be considered as potential indicator for monitoring disease progression.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France.
| | - Vincent Harlay
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Mohamed Boucekine
- Aix Marseille University, Center for Studies and Research on Health Services and Quality of Life, Marseille, France
| | - David Devos
- Department of Medical Pharmacology, Expert Center of ALS Lille University, INSERM UMRS_1772, Lille University Hospital, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, ACT4ALS-MND Network, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Expert Center of ALS Lille University, INSERM UMRS_1772, Lille University Hospital, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, ACT4ALS-MND Network, France
| | - Claude Desnuelle
- Côte d'Azur University, Medical Faculty of Nice, Department of Neurology, Nice, France
| | - Emilien Delmont
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Annie Verschueren
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Shahram Attarian
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France; Aix Marseille University, Inserm, GMGF, Marseille, France
| |
Collapse
|
2
|
Shin-Yi Lin C, Howells J, Rutkove S, Nandedkar S, Neuwirth C, Noto YI, Shahrizaila N, Whittaker RG, Bostock H, Burke D, Tankisi H. Neurophysiological and imaging biomarkers of lower motor neuron dysfunction in motor neuron diseases/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 162:91-120. [PMID: 38603949 DOI: 10.1016/j.clinph.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.
Collapse
Affiliation(s)
- Cindy Shin-Yi Lin
- Faculty of Medicine and Health, Central Clinical School, Brain and Mind Centre, University of Sydney, Sydney 2006, Australia.
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sanjeev Nandedkar
- Natus Medical Inc, Middleton, Wisconsin, USA and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital, St. Gallen, Switzerland
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Roger G Whittaker
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University., Newcastle Upon Tyne, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom
| | - David Burke
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Higashihara M, Yamazaki H, Izumi Y, Kobayashi M, Nodera H, Oishi C, Iwata A, Murayama S, Kaji R, Sonoo M. Far-field potential of the compound muscle action potential as a reliable marker in amyotrophic lateral sclerosis. Muscle Nerve 2023; 68:257-263. [PMID: 37086196 DOI: 10.1002/mus.27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION/AIMS Reliable neurophysiological markers in amyotrophic lateral sclerosis (ALS) are of great interest. The compound muscle action potential (CMAP) amplitude has been a conventional marker, although it is greatly influenced by the electrode position. We propose the far-field potential of the CMAP (FFP-CMAP) as a new neurophysiological marker in ALS. METHODS Patients with ALS and age-matched healthy controls were enrolled. We used a proximal reference (pref) in addition to the conventional distal reference (dref). Routine CMAP was recorded from the belly-dref lead and FFP-CMAP from the dref-pref lead for the ulnar and tibial nerves. Multiple point stimulation motor unit number estimation (MUNE) was also examined in the ulnar nerve. Inter-rater reproducibility was evaluated by two examiners, and some patients were followed up every 3 mo for 1 y. RESULTS We tested 17 patients with ALS and 10 controls. The amplitudes of routine CMAP and FFP-CMAP in the ulnar and tibial nerves, and hypothenar MUNE value in the ulnar nerve were significantly decreased in ALS compared to controls. Ulnar FFP-CMAP achieved the highest inter-rater intraclass correlation coefficient (ICC) value (0.942) when compared with routine CMAP (0.880) and MUNE (0.839). The tibial FFP-CMAP had a higher ICC value (0.986) than the routine CMAP (0.697). In this way, the FFP-CMAP showed high inter-rater reproducibility because its shape was not much influenced by the electrode position. During 1-y follow-up, decline of CMAP, FFP, and MUNE showed significant correlations with the Amyotrophic Lateral Sclerosis Functional Rating Scale - Revised (ALSFRS-R). DISCUSSION The FFP-CMAP shows promise as a reliable marker for ALS.
Collapse
Affiliation(s)
- Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Hiroki Yamazaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | | | - Hiroyuki Nodera
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Neurology, Tenri Hospital, Tenri, Japan
| | - Chizuko Oishi
- Department of Neurology, Kyorin University Hospital, Mitaka, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Neurology, Utano National Hospital, Kyoto, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Xue S, Gao F, Wu X, Xu Q, Weng X, Zhang Q. MUNIX repeatability evaluation method based on FastICA demixing. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16362-16382. [PMID: 37920016 DOI: 10.3934/mbe.2023730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
To enhance the reproducibility of motor unit number index (MUNIX) for evaluating neurological disease progression, this paper proposes a negative entropy-based fast independent component analysis (FastICA) demixing method to assess MUNIX reproducibility in the presence of inter-channel mixing of electromyography (EMG) signals acquired by high-density electrodes. First, composite surface EMG (sEMG) signals were obtained using high-density surface electrodes. Second, the FastICA algorithm based on negative entropy was employed to determine the orthogonal projection matrix that minimizes the negative entropy of the projected signal and effectively separates mixed sEMG signals. Finally, the proposed experimental approach was validated by introducing an interrelationship criterion to quantify independence between adjacent channel EMG signals, measuring MUNIX repeatability using coefficient of variation (CV), and determining motor unit number and size through MUNIX. Results analysis shows that the inclusion of the full (128) channel sEMG information leads to a reduction in CV value by $1.5 \pm 0.1$ and a linear decline in CV value with an increase in the number of channels. The correlation between adjacent channels in participants decreases by $0.12 \pm 0.05$ as the number of channels gradually increases. The results demonstrate a significant reduction in the number of interrelationships between sEMG signals following negative entropy-based FastICA processing, compared to the mixed sEMG signals. Moreover, this decrease in interrelationships becomes more pronounced with an increasing number of channels. Additionally, the CV of MUNIX gradually decreases with an increase in the number of channels, thereby optimizing the issue of abnormal MUNIX repeatability patterns and further enhancing the reproducibility of MUNIX based on high-density surface EMG signals.
Collapse
Affiliation(s)
- Suqi Xue
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Farong Gao
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China
| | - Qun Xu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xuecheng Weng
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qizhong Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Xu Q, Xue S, Gao F, Wu Q, Zhang Q. Evaluation method of motor unit number index based on optimal muscle strength combination. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3854-3872. [PMID: 36899608 DOI: 10.3934/mbe.2023181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Repeatability is an important attribute of motor unit number index (MUNIX) technology. This paper proposes an optimal contraction force combination for MUNIX calculation in an effort to improve the repeatability of this technology. In this study, the surface electromyography (EMG) signals of the biceps brachii muscle of eight healthy subjects were initially recorded with high-density surface electrodes, and the contraction strength was the maximum voluntary contraction force of nine progressive levels. Then, by traversing and comparing the repeatability of MUNIX under various combinations of contraction force, the optimal combination of muscle strength is determined. Finally, calculate MUNIX using the high-density optimal muscle strength weighted average method. The correlation coefficient and the coefficient of variation are utilized to assess repeatability. The results show that when the muscle strength combination is 10, 20, 50 and 70% of the maximum voluntary contraction force, the repeatability of MUNIX is greatest, and the correlation between MUNIX calculated using this combination of muscle strength and conventional methods is high (PCC > 0.99), the repeatability of the MUNIX method improved by 11.5-23.8%. The results indicate that the repeatability of MUNIX differs for various combinations of muscle strength and that MUNIX, which is measured with a smaller number and lower-level contractility, has greater repeatability.
Collapse
Affiliation(s)
- Qun Xu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Suqi Xue
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Farong Gao
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiuxuan Wu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qizhong Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
6
|
Okhovat AA, Advani S, Ziaadini B, Panahi A, Salehizadeh S, Nafissi S, Haghi Ashtiani B, Rajabally YA, Fatehi F. The value of MUNIX as an objective electrophysiological biomarker of disease progression in CIDP. Muscle Nerve 2022; 65:433-439. [PMID: 35040150 DOI: 10.1002/mus.27498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Objective outcome measures to monitor treatment response and guide treatment are lacking in chronic inflammatory demyelinating polyneuropathy (CIDP). We aimed to evaluate the motor unit number index (MUNIX) as an outcome measurement in patients with CIDP and investigate the correlation of MUNIX with functional and standard electrodiagnostic tests in a single follow-up study. METHODS We evaluated MUNIX of the abductor pollicis brevis (APB), abductor digiti minimi (ADM), and tibialis anterior (TA) muslces bilaterally. Muscle force was assessed by Medical Research Council sumscores (MRCSS). Functional measures used were the Overall Neuropathy Limitation Score (ONLS) and the Rasch-built Overall Disability Scale (R-ODS) at baseline and after six months of treatment. Standard electrophysiology was evaluated by the Nerve Conduction Study Score (NCSS). RESULTS Twenty patients were included at baseline, and 16 completed the follow-up study. Significant correlations were found between the MUNIX sumscore and both MRCSS and NCSS at baseline, between both the pinch strength and grip and upper limb MUNIX at baseline and follow-up, and between MUNIX of TA and both lower limb MRCSS with lower limb ONLS at baseline and follow-up. Significant correlations also were found between MUNIX sumscore change and MRCSS change, R-ODS change, and ONLS change. DISCUSSION MUNIX changes correlated with strength and electrophysiological improvements in CIDP patients. This suggests that MUNIX may represent a useful objective biomarker for patient follow-up.
Collapse
Affiliation(s)
- Ali Asghar Okhovat
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Neurology Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Akram Panahi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Salehizadeh
- Neurologist, Tehran University of Medical Sciences, Sina Hospital, Tehran, Iran
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Neurology Department, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang S, Yang X, Xu Y, Luo Y, Fan D, Liu X. Application Value of the Motor Unit Number Index in Patients With Kennedy Disease. Front Neurol 2022; 12:705816. [PMID: 34992574 PMCID: PMC8724309 DOI: 10.3389/fneur.2021.705816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the usefulness of the motor unit number index (MUNIX) technique in Kennedy disease (KD) and test the correlation between the MUNIX and other clinical parameters. The MUNIX values of the bilateral deltoid, abductor digiti minimi (ADM), quadriceps femoris (QF), and tibialis anterior (TA) were determined and compared with the course of the disease. The MUNIX sum score was calculated by adding the MUNIX values of these 8 muscles. Disability was evaluated using the spinal and bulbar muscular atrophy functional rating scale (SBMAFRS). The MUNIX scores of patients with KD were negatively correlated with the course of the disease (p < 0.05), whereas their motor unit size index (MUSIX) scores were positively correlated with the course the of disease (p < 0.05). MUNIX sum scores were correlated with SBMAFRS scores (r = 0.714, p < 0.05). MUNIX was more sensitive than compound muscle action potentials or muscle strength as an indicator of neuron loss and axonal collateral reinnervation. The MUNIX sum score is an objective and a reliable indicator of disease progression, and it is a potential choice for therapeutic clinical trials. The MUNIX can assess the functional loss of motor axons and is correlated with disability. The MUNIX sum score may be especially suitable as an objective parameter.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xin Yang
- Department of Neurology, Changchun Central Hospital, Changchun, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yongmei Luo
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Sørensen DM, Bostock H, Ballegaard M, Fuglsang-Frederiksen A, Graffe CC, Grötting A, Jones K, Kallio M, Krarup C, Krøigård T, Lupescu T, Maitland S, Moldovan M, Nilsen KB, Pugdahl K, Santos MO, Themistocleous AC, Zlateva SS, Ööpik M, Tankisi H. Assessing inter-rater reproducibility in MScanFit MUNE in a 6-subject, 12-rater "Round Robin" setup. Neurophysiol Clin 2021; 52:157-169. [PMID: 34906430 DOI: 10.1016/j.neucli.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To assess the inter-rater reliability of MScanFit MUNE using a "Round Robin" research design. METHODS Twelve raters from different centres examined six healthy study participants over two days. Median, ulnar and common peroneal nerves were stimulated, and compound muscle action potential (CMAP)-scans were recorded from abductor pollicis brevis (APB), abductor digiti minimi (ADM) and anterior tibial (TA) muscles respectively. From this we calculated the Motor Unit Number Estimation (MUNE) and "A50", a motor unit size parameter. As statistical analysis we used the measures Limits of Agreement (LOA) and Coefficient of Variation (COV). Study participants scored their perception of pain from the examinations on a rating scale from 0 (no pain) to 10 (unbearable pain). RESULTS Before this study, 41.6% of the raters had performed MScanFit less than five times. The mean MUNE-values were: 99.6 (APB), 131.4 (ADM) and 126.2 (TA), with LOA: 19.5 (APB), 29.8 (ADM) and 20.7 (TA), and COV: 13.4 (APB), 6.3 (ADM) and 5.6 (TA). MUNE-values correlated to CMAP max amplitudes (R2-values were: 0.463 (APB) (p<0.001), 0.421 (ADM) (p<0.001) and 0.645 (TA) (p<0.001)). The average perception of pain was 4. DISCUSSION MScanFit indicates a high level of inter-rater reliability, even with only limited rater experience and is overall reasonably well tolerated by patients. These results may indicate MScanFit as a reliable MUNE method with potential as a biomarker in drug trials.
Collapse
Affiliation(s)
| | - Hugh Bostock
- Insitute of Neurology, Queen Square House, London, United Kingdom
| | - Martin Ballegaard
- Deparment of Clinical Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Arnstein Grötting
- Department of Clinical Neurophysiology, St. Olav Hospital, Trondheim, Norway
| | - Kelvin Jones
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Mika Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Christian Krarup
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Denmark
| | - Tudor Lupescu
- Department of Neurology, Agrippa Ionescu Hospital, Bucharest, Romania
| | - Stuart Maitland
- Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Mihai Moldovan
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Kirsten Pugdahl
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark
| | - Miguel Oliveira Santos
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Lisbon, Portugal
| | | | | | - Merle Ööpik
- Deparment of Clinical Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark.
| |
Collapse
|
9
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
10
|
Boulay C, Delmont E, Audic F, Chabrol B, Attarian S. Motor unit number index: A potential electrophysiological biomarker for pediatric spinal muscular atrophy. Muscle Nerve 2021; 64:445-453. [PMID: 34255873 DOI: 10.1002/mus.27372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION/AIMS In adult spinal muscular atrophy (SMA), the motor unit number index (MUNIX) has been shown to be an useful electrophysiological biomarker. This study evaluated the feasibility and the clinical relevance of using the MUNIX technique for patients with pediatric SMA (Ped-SMA) and correlated MUNIX results with clinical scores. METHODS Fourteen patients with type II Ped-SMA (11 females; median age 11 y [interquartile range (IQR), 4.8-17 y]) and 14 controls (nine females; median age 10.75 y [IQR, 6.5-13.4 y]) were enrolled and matched by sex, age, height, weight, and body mass index. Clinical examination included manual muscle testing, dynamometry (grasp and pinch), and motor function measure (MFM). The MUNIX technique was evaluated in the abductor digiti minimi (ADM) and abductor pollicis brevis (APB) on two sides when possible. RESULTS In the patients with Ped-SMA, the MUNIX and compound muscle action potential (CMAP) amplitudes were significantly decreased and the motor size unit index (MUSIX) was significantly increased in the ADM and APB when compared to controls. The intraclass correlation coefficient was good for the intrarater variability of the CMAP amplitude, MUNIX, and MUSIX in the ADM (0.95, 0.83, and 0.89, respectively) and the APB (0.98, 0.96, and 0.94, respectively). The total CMAP amplitude correlated with the grasp and pinch scores (P < .05), and the MUNIX measurements correlated with the MFM scores. DISCUSSION The MUNIX technique, which accurately estimated lower motor neuron loss and the number of remaining functional motor units, was shown to be a useful electrophysiological biomarker for disease progression and a potential biomarker for treatment response.
Collapse
Affiliation(s)
- Christophe Boulay
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Frédérique Audic
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Brigitte Chabrol
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| |
Collapse
|
11
|
Gunes T, Sirin NG, Sahin S, Kose E, Isak B. Use of CMAP, MScan fit-MUNE, and MUNIX in understanding neurodegeneration pattern of ALS and detection of early motor neuron loss in daily practice. Neurosci Lett 2020; 741:135488. [PMID: 33217503 DOI: 10.1016/j.neulet.2020.135488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The pattern of lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS), i.e., dying-back (from the nerve ending to cell body) or dying-forward (from the cell body to nerve ending), has been widely discussed. In this study, we aimed to evaluate LMN loss using compound muscle action potential (CMAP), motor unit number index (MUNIX), and MScan-fit-based motor unit number estimation (MUNE) to understand the pattern of neurodegeneration in ALS. METHODS Twenty-five patients were compared with 25 controls using CMAP amplitude and area, MUNIX, and MScan-fit MUNE in three proximal and distal muscles innervated by the ulnar nerve. RESULTS Unlike the controls, the CMAP area, MScan-fit MUNE, and MUNIX recorded in ALS patients showed more neurodegeneration in distal muscles than proximal muscles. In ALS patients with unaffected CMAP amplitudes (n = 13), the CMAP area, MScan-fit MUNE, and MUNIX showed subtle motor unit loss of 30.7 %, 53.8 %, and 38.4 %, respectively. CONCLUSION The CMAP area, MScan-fit MUNE, and MUNIX showed neurodegeneration earlier than the reduction in CMAP amplitude. These tests confirmed dying-back neurodegeneration, while only MUSIX showed re-innervation in ALS.
Collapse
Affiliation(s)
- Taskin Gunes
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey; VM Maltepe Medicalpark Hospital, Istanbul, Turkey.
| | | | - Sevki Sahin
- Department of Neurology, Maltepe University Hospital, Istanbul, Turkey.
| | - Ercan Kose
- Department of Neurology, Sultan 2. Abdulhamit Han Training and Research Hospital, Istanbul, Turkey.
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey.
| |
Collapse
|
12
|
Rajabkhah S, Moradi K, Okhovat AA, Van Alfen N, Fathi D, Aghaghazvini L, Ashraf-Ganjouei A, Attarian S, Nafissi S, Fatehi F. Application of muscle ultrasound for the evaluation of patients with amyotrophic lateral sclerosis: An observational cross-sectional study. Muscle Nerve 2020; 62:516-521. [PMID: 32710682 DOI: 10.1002/mus.27036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We evaluated the association between muscle ultrasound, number of motor units, and clinical parameters, and assessed their utility for distinguishing amyotrophic lateral scleorisis (ALS) patients from healthy individuals. METHODS Three muscle pairs (abductor pollicis brevis, abductor digiti minimi, and tibialis anterior) of 18 ALS patients and 18 controls underwent muscle ultrasound (echointensity and thickness) and assessment of motor unit number index (MUNIX). The clinical and functional status of participants were also assessed. RESULTS Mean age of the patients was 53.8 ± 12.1 years, and score on the ALS Functional Rating Scale-Revised was 38.9 ± 4.1. Echointensity of all tested muscles of ALS participants was significantly higher than that of controls, but there was no significant difference in muscle thickness. Muscle echointensity correlated significantly with clinical and electrophysiological parameters. CONCLUSION Echointensity of muscles was highly associated with clinical scales and MUNIX, confirming its relevance as an ancillary diagnostic test in ALS patients.
Collapse
Affiliation(s)
- Sahebeh Rajabkhah
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Kamyar Moradi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Ali A Okhovat
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nens Van Alfen
- Department of Neurology and Clinical Neurophysiology, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Davood Fathi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Aghaghazvini
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Shahram Attarian
- Neuromuscular Disease and ALS Reference Center, Timone University Hospital Aix-Marseille University, Marseille, France
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Delmont E, Wang F, Lefaucheur JP, Puma A, Breniere C, Beaudonnet G, Cintas P, Collin R, Fortanier E, Grapperon AM, Jomir L, Kribich H, Kouton L, Kuntzer T, Lenglet T, Magot A, Nordine T, Ochsner F, Bolloy G, Pereon Y, Salort-Campana E, Tard C, Vicino A, Verschueren A, Attarian S. Motor unit number index as an individual biomarker: Reference limits of intra-individual variability over time in healthy subjects. Clin Neurophysiol 2020; 131:2209-2215. [PMID: 32707479 DOI: 10.1016/j.clinph.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Motor unit number index (MUNIX) is proposed to monitor neuromuscular disorders. Our objective is to determine the intra-individual variability over time of the MUNIX. METHODS In 11 different hospital centres, MUNIX was assessed twice, at least 3 months apart (range 90-360 days), in tibialis anterior (TA), abductor pollicis brevis (APB), abductor digiti minimi (ADM) and deltoid muscles in 118 healthy subjects. MUNIX sum score 2, 3 and 4 were respectively the sum of the MUNIX of the TA and ADM, of the TA, APB and ADM and of the TA, APB, ADM and deltoid muscles. RESULTS The repeatability of the MUNIX was better for sum scores than for single muscle recordings. The variability of the MUNIX was independent of sex, age, interval between measurements and was lower for experienced than non-experienced operators. The 95th percentile of the coefficient of variability of the MUNIX sum score 2, 3 and 4 were respectively 22%, 18% and 15% for experienced operators. CONCLUSIONS The MUNIX technique must be performed by experienced operators on several muscles to reduce its variability and improve its reliability. SIGNIFICANCE A variation of the MUNIX sum score ≥20% can be interpreted as a significant change of muscle innervation.
Collapse
Affiliation(s)
- Emilien Delmont
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France; Aix-Marseille University, Timone Neuroscience Institute, UMR CNRS 7289, 13005 Marseille, France.
| | - François Wang
- Department of Neurophysiology, CHU Sart Tilman B35, 4000 Liège, Belgium
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Angela Puma
- Université Côte d'Azur, Peripheral Nervous System and Muscle Department, CHU Nice, France
| | | | - Guillemette Beaudonnet
- Unité de Neurophysiologie Clinique et Epileptologie, CHU Bicêtre, Le Kremlin Bicêtre, France
| | | | - Romain Collin
- Department of Neurophysiology, CHU Sart Tilman B35, 4000 Liège, Belgium
| | - Etienne Fortanier
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| | - Aude-Marie Grapperon
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| | - Laurent Jomir
- Department of Neurology, Hospices Civiles de Lyon, France
| | - Hafida Kribich
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| | - Ludivine Kouton
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| | - Thierry Kuntzer
- Nerve Muscle Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Timothee Lenglet
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Armelle Magot
- Laboratoire d'explorations fonctionnelles, Referral Centre for Neuromuscular Disease Atlantique-Occitanie-Caraïbes, Hôtel-Dieu, 44093 Nantes, France
| | - Tarik Nordine
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - François Ochsner
- Nerve Muscle Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Gaëlle Bolloy
- Laboratoire d'explorations fonctionnelles, Referral Centre for Neuromuscular Disease Atlantique-Occitanie-Caraïbes, Hôtel-Dieu, 44093 Nantes, France
| | - Yann Pereon
- Laboratoire d'explorations fonctionnelles, Referral Centre for Neuromuscular Disease Atlantique-Occitanie-Caraïbes, Hôtel-Dieu, 44093 Nantes, France
| | | | - Céline Tard
- U1172 Lille Neuroscience et Cognition, CHU de Lille, Centre de référence des maladies neuromusculaires Nord Est Ile de France, Department of Neurology, Lille, France
| | - Alex Vicino
- Nerve Muscle Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Annie Verschueren
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| | - Shahram Attarian
- Referral Centre for Neuromuscular Diseases and ALS, La Timone Hospital, Marseille, France
| |
Collapse
|
14
|
Bashford J, Mills K, Shaw C. The evolving role of surface electromyography in amyotrophic lateral sclerosis: A systematic review. Clin Neurophysiol 2020; 131:942-950. [PMID: 32044239 PMCID: PMC7083223 DOI: 10.1016/j.clinph.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads to inexorable motor decline and a median survival of three years from symptom onset. Surface EMG represents a major technological advance that has been harnessed in the development of novel neurophysiological biomarkers. We have systematically reviewed the current application of surface EMG techniques in ALS. METHODS We searched PubMed to identify 42 studies focusing on surface EMG and its associated analytical methods in the diagnosis, prognosis and monitoring of ALS patients. RESULTS A wide variety of analytical techniques were identified, involving motor unit decomposition from high-density grids, motor unit number estimation and measurements of neuronal hyperexcitability or neuromuscular architecture. Some studies have proposed specific diagnostic and prognostic criteria however clinical calibration in large ALS cohorts is currently lacking. The most validated method to monitor disease is the motor unit number index (MUNIX), which has been implemented as an outcome measure in two ALS clinical trials. CONCLUSION Surface EMG offers significant practical and analytical flexibility compared to invasive techniques. To capitalise on this fully, emphasis must be placed upon the multi-disciplinary collaboration of clinicians, bioengineers, mathematicians and biostatisticians. SIGNIFICANCE Surface EMG techniques can enrich effective biomarker development in ALS.
Collapse
Affiliation(s)
- J. Bashford
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | | |
Collapse
|
15
|
Gao F, Cao Y, Zhang C, Zhang Y. A Preliminary Study of Effects of Channel Number and Location on the Repeatability of Motor Unit Number Index (MUNIX). Front Neurol 2020; 11:191. [PMID: 32256444 PMCID: PMC7090144 DOI: 10.3389/fneur.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Farong Gao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Yueying Cao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Yingchun Zhang
| |
Collapse
|
16
|
Lawley A, Seri S, Rajabally YA. Motor unit number index (MUNIX) in chronic inflammatory demyelinating polyneuropathy: A potential role in monitoring response to intravenous immunoglobulins. Clin Neurophysiol 2019; 130:1743-1749. [DOI: 10.1016/j.clinph.2019.06.231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
|
17
|
Amin Lari A, Ghavanini AA, Bokaee HR. A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis. Neurol Sci 2019; 40:1125-1136. [PMID: 30877611 DOI: 10.1007/s10072-019-03832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving both the upper and lower motor neuron diseases. In this review, we studied and compared different articles regarding the electrodiagnostic criteria for diagnosis of lower motor neuron pathology in ALS. We reviewed the most recent articles and metaanalysis regarding various lower motor neuron electrodiagnostic methods for ALS and their sensitivities. We concluded that Awaji Shima criteria is by far the most sensitive criteria for diagnosis of ALS.
Collapse
Affiliation(s)
- Ali Amin Lari
- Canadian Neurologic Center, Mississauga, ON, Canada.
| | | | | |
Collapse
|
18
|
Fatehi F, Grapperon AM, Fathi D, Delmont E, Attarian S. The utility of motor unit number index: A systematic review. Neurophysiol Clin 2018; 48:251-259. [PMID: 30287192 DOI: 10.1016/j.neucli.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The need for a valid biomarker for assessing disease progression and for use in clinical trials on amyotrophic lateral sclerosis (ALS) has stimulated the study of methods that could measure the number of motor units. Motor unit number index (MUNIX) is a newly developed neurophysiological technique that was demonstrated to have a good correlation with the number of motor units in a given muscle, even though it does not necessarily accurately express the actual number of viable motor neurons. Several studies demonstrated the technique is reproducible and capable of following motor neuron loss in patients with ALS and peripheral polyneuropathies. The main goal of this review was to conduct an extensive review of the literature using MUNIX. We conducted a systematic search in English medical literature published in two databases (PubMed and SCOPUS). In this review, we aimed to answer the following queries: Comparison of MUNIX with other MUNE techniques; the reproducibility of MUNIX; the utility of MUNIX in ALS and preclinical muscles, peripheral neuropathies, and other neurological disorders.
Collapse
Affiliation(s)
- Farzad Fatehi
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Davood Fathi
- Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Inserm, GMGF, Aix-Marseille University, Marseille, 13385 France.
| |
Collapse
|
19
|
Querin G, Lenglet T, Debs R, Stojkovic T, Behin A, Salachas F, Le Forestier N, Amador MDM, Lacomblez L, Meininger V, Bruneteau G, Laforêt P, Blancho S, Marchand-Pauvert V, Bede P, Hogrel JY, Pradat PF. The motor unit number index (MUNIX) profile of patients with adult spinal muscular atrophy. Clin Neurophysiol 2018; 129:2333-2340. [PMID: 30248623 DOI: 10.1016/j.clinph.2018.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Objective of this study is the comprehensive characterisation of motor unit (MU) loss in type III and IV Spinal Muscular Atrophy (SMA) using motor unit number index (MUNIX), and evaluation of compensatory mechanisms based on MU size indices (MUSIX). METHODS Nineteen type III and IV SMA patients and 16 gender- and age-matched healthy controls were recruited. Neuromuscular performance was evaluated by muscle strength testing and functional scales. Compound motor action potential (CMAP), MUNIX and MUSIX were studied in the abductor pollicis brevis (APB), abductor digiti minimi (ADM), deltoid, tibialis anterior and trapezius muscles. A composite MUNIX score was also calculated. RESULTS SMA patients exhibited significantly reduced MUNIX values (p < 0.05) in all muscles, while MUSIX was increased, suggesting active re-innervation. Significant correlations were identified between MUNIX/MUSIX and muscle strength. Similarly, composite MUNIX scores correlated with disability scores. Interestingly, in SMA patients MUNIX was much lower in the ADM than in the ABP, a pattern which is distinctly different from that observed in Amyotrophic Lateral Sclerosis. CONCLUSIONS MUNIX is a sensitive measure of MU loss in adult forms of SMA and correlates with disability. SIGNIFICANCE MUNIX evaluation is a promising candidate biomarker for longitudinal studies and pharmacological trials in adult SMA patients.
Collapse
Affiliation(s)
- Giorgia Querin
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Timothée Lenglet
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Rabab Debs
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Salachas
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Nadine Le Forestier
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Département de recherche en éthique, EA 1610: Etudes des sciences et techniques, Université Paris Sud/Paris Saclay, Paris, France
| | - Maria Del Mar Amador
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Lucette Lacomblez
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Vincent Meininger
- Hôpital des Peupliers, Ramsay Générale de Santé, F-75013 Paris, France
| | - Gaelle Bruneteau
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches, France; INSERM U1179, END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France
| | - Sophie Blancho
- Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | | | - Peter Bede
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Ireland
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Investigation Center, Paris, France; Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | - Pierre-François Pradat
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom.
| |
Collapse
|
20
|
Higashihara M, Menon P, van den Bos M, Geevasinga N, Vucic S. Reproducibility of motor unit number index and multiple point stimulation motor unit number estimation in controls. Muscle Nerve 2018; 58:660-664. [PMID: 30194855 DOI: 10.1002/mus.26339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Reproducibility of the multiple point stimulation motor unit number estimation (MPS-MUNE) technique was compared with the recently developed motor unit number index (MUNIX) technique. METHODS MPS-MUNE and MUNIX were performed on 15 healthy subjects at 3 different time-points by the same examiner. Reproducibility was analyzed using intraclass correlation coefficient (ICC) and coefficient of variation (CV). RESULTS ICC values for MUNIX and MPS-MUNE were excellent across 3 tests (0.80 and 0.77, respectively), although CV values were significantly lower for MUNIX than MPS-MUNE (P < 0.01). In addition, test-retest reproducibility was better for MUNIX, a finding largely attributable to poor reproducibility of the single motor unit action potential area. MUNIX (R = -0.48, P < 0.05) and MPS-MUNE (R = -0.53, P < 0.05) were significantly correlated with age. DISCUSSION MUNIX demonstrated better intrarater reproducibility and may be a more reliable neurophysiological biomarker than MPS-MUNE. Muscle Nerve 58: 660-664, 2018.
Collapse
Affiliation(s)
- Mana Higashihara
- Department of Neurology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, Cnr. Hawkesbury and Darcy Road, University of Sydney, New South Wales, 2145, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, Cnr. Hawkesbury and Darcy Road, University of Sydney, New South Wales, 2145, Australia
| | - Nimeshan Geevasinga
- Westmead Clinical School, Cnr. Hawkesbury and Darcy Road, University of Sydney, New South Wales, 2145, Australia
| | - Steve Vucic
- Westmead Clinical School, Cnr. Hawkesbury and Darcy Road, University of Sydney, New South Wales, 2145, Australia
| |
Collapse
|
21
|
Neuwirth C, Braun N, Claeys KG, Bucelli R, Fournier C, Bromberg M, Petri S, Goedee S, Lenglet T, Leppanen R, Canosa A, Goodman I, Al-Lozi M, Ohkubo T, Hübers A, Atassi N, Abrahao A, Funke A, Appelfeller M, Tümmler A, Finegan E, Glass JD, Babu S, Ladha SS, Kwast-Rabben O, Juntas-Morales R, Coffey A, Chaudhry V, Vu T, Saephanh C, Newhard C, Zakrzewski M, Rosier E, Hamel N, Raheja D, Raaijman J, Ferguson T, Weber M. Implementing Motor Unit Number Index (MUNIX) in a large clinical trial: Real world experience from 27 centres. Clin Neurophysiol 2018; 129:1756-1762. [DOI: 10.1016/j.clinph.2018.04.614] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
|
22
|
Bas J, Delmont E, Fatehi F, Salort-Campana E, Verschueren A, Pouget J, Lefebvre MN, Grapperon AM, Attarian S. Motor unit number index correlates with disability in Charcot-Marie-Tooth disease. Clin Neurophysiol 2018; 129:1390-1396. [PMID: 29729594 DOI: 10.1016/j.clinph.2018.04.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to assess the usefulness of motor unit number index (MUNIX) technique in Charcot-Marie-Tooth disease and test the correlation between MUNIX and clinical impairment. METHODS MUNIX technique was performed in the abductor pollicis brevis (APB), the abductor digiti minimi (ADM) and the tibialis anterior (TA) muscles in the nondominant side. A MUNIX sum score was calculated by adding the MUNIX of these 3 muscles. Muscle strength was measured using the MRC (medical research council) scale. Disability was evaluated using several functional scales, including CMT neuropathy score version 2 (CMTNSv2) and overall neuropathy limitation scale (ONLS). RESULTS A total of 56 CMT patients were enrolled. The MUNIX scores of the ADM, APB and TA muscles correlated with the MRC score of the corresponding muscle (p < 0.01). The MUNIX sum score correlated with the clinical scales CMTNSv2 (r = -0.65, p < 0.01) and ONLS (r = -0.57, p < 0.01). CONCLUSION MUNIX correlates with muscle strength and clinical measurements of disability in patients with CMT disease. SIGNIFICANCE The MUNIX technique evaluates motor axonal loss and correlates with disability. The MUNIX sum score may be a useful outcome measure of disease progression in CMT.
Collapse
Affiliation(s)
- Joachim Bas
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Farzad Fatehi
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emmanuelle Salort-Campana
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Annie Verschueren
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Jean Pouget
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Marie-Noëlle Lefebvre
- CIC-CPCET, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Aude-Marie Grapperon
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Shahram Attarian
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France.
| |
Collapse
|
23
|
Neuwirth C, Weber M. Unmasking the silent motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve 2018; 58:184-185. [PMID: 29572875 DOI: 10.1002/mus.26134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St Gallen, Rorschacherstrasse 95 St Gallen, CH-9007, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St Gallen, Rorschacherstrasse 95 St Gallen, CH-9007, Switzerland
| |
Collapse
|
24
|
The utility of motor unit number estimation methods versus quantitative motor unit potential analysis in diagnosis of ALS. Clin Neurophysiol 2018; 129:646-653. [DOI: 10.1016/j.clinph.2018.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
|
25
|
Miralles F. Motor unit number index (MUNIX) derivation from the relationship between the area and power of surface electromyogram: a computer simulation and clinical study. J Neural Eng 2018; 15:036013. [PMID: 29424359 DOI: 10.1088/1741-2552/aaae19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called 'ideal case motor unit count' (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. APPROACH The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. MAIN RESULTS MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. SIGNIFICANCE MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.
Collapse
Affiliation(s)
- Francesc Miralles
- Gabinet d'Electrodiagnòstic, Servei de Neurologia, Hospital Universitari Son Espases, Carretera de Valldemossa, 79., 07010 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
26
|
Escorcio-Bezerra ML, Abrahao A, Santos-Neto D, de Oliveira Braga NI, Oliveira ASB, Manzano GM. Why averaging multiple MUNIX measures in the longitudinal assessment of patients with ALS? Clin Neurophysiol 2017; 128:2392-2396. [PMID: 29096211 DOI: 10.1016/j.clinph.2017.09.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 07/31/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To assess the impact of averaging multiple MUNIX trials on the follow-up of patients with amyotrophic lateral sclerosis (ALS). METHODS We determined the percent relative change (%RC) of MUNIX, in healthy subjects and patients with ALS, by subtracting the MUNIX value in the second visit from the first. Both the mean of a set of three MUNIX (mean-MUNIX) and the first MUNIX sample (single-MUNIX) were evaluated. Then, we studied the sensitivity to detect relative changes over time and the statistical dispersion of the %RC from these two parameters. RESULTS We found that the mean-MUNIX %RC has lower mean coefficient of variation than the single-MUNIX %RC in all muscles. The mean-MUNIX also resulted in more ALS patients with significant %RC, i.e., outside reference limits. CONCLUSION The mean-MUNIX resulted in less dispersed values of %RC in patients with ALS and thus, increased the precision of the technique. The mean-MUNIX resulted also in an increase in the sensitivity to track changes over time in these patients. SIGNIFICANCE The mean-MUNIX should be considered in any ALS follow-up study as a more reliable approach and as a way of potentially reducing the sample size needed for the study.
Collapse
|
27
|
Motor unit number index (MUNIX) in patients with anti-MAG neuropathy. Clin Neurophysiol 2017; 128:1264-1269. [DOI: 10.1016/j.clinph.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022]
|
28
|
Reproducibility, and sensitivity to motor unit loss in amyotrophic lateral sclerosis, of a novel MUNE method: MScanFit MUNE. Clin Neurophysiol 2017; 128:1380-1388. [DOI: 10.1016/j.clinph.2017.03.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
|
29
|
Peng Y, Zhang Y. Improving the repeatability of Motor Unit Number Index (MUNIX) by introducing additional epochs at low contraction levels. Clin Neurophysiol 2017; 128:1158-1165. [PMID: 28511128 DOI: 10.1016/j.clinph.2017.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the repeatability of (Motor Unit Number Index) MUNIX under repeatability conditions, specify the origin of variations and provide strategies for quality control. METHODS MUNIX calculations were performed on the bicep brachii muscles of eight healthy subjects. Negative effect of suboptimal electrode positions on MUNIX accuracy was eliminated by employing the high-density surface electromyography technique. MUNIX procedures that utilized a variety of surface interferential pattern (SIP) epoch recruitment strategies (including the original MUNIX procedure, two proposed improvement strategies and their combinations) were described. For each MUNIX procedure, ten thousands of different SIP pools were constructed by randomly recruiting necessary SIP epochs from a large SIP epoch pool (3 datasets, 9 independent electromyography recordings at different contraction levels per dataset and 10 SIP epochs per recording) and implemented for MUNIX calculation. The repeatability of each MUNIX procedure was assessed by summarizing the resulting MUNIX distribution and compared to investigate the effect of SIP epoch selection strategy on repeatability performance. RESULTS SIP epochs selected at lower contraction levels have a stronger influence on the repeatability of MUNIX than those selected at higher contraction levels. MUNIX under repeatability conditions follows a normal distribution and the standard deviation can be significantly reduced by introducing more epochs near the MUNIX definition line. CONCLUSIONS The MUNIX technique shows an inherent variation attributable to SIP epochs at low contraction levels. It is recommended that more epochs should be sampled at these low contraction levels to improve the repeatability. SIGNIFICANCE The present study thoroughly documented the inherent variation of MUNIX and the causes, and offered practical solutions to improve the repeatability of MUNIX.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA; Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
30
|
Grimaldi S, Duprat L, Grapperon AM, Verschueren A, Delmont E, Attarian S. Global motor unit number index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis. Muscle Nerve 2017; 56:202-206. [PMID: 28164325 DOI: 10.1002/mus.25595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/11/2022]
Abstract
INTRODUCTION We propose a motor unit number index (MUNIX) global sum score in amyotrophic lateral sclerosis (ALS) to estimate the loss of functional motor units. METHODS MUNIX was assessed for 18 ALS patients and 17 healthy controls in 7 muscles: the abductor pollicis brevis (APB), abductor digiti minimi (ADM), tibialis anterior (TA), deltoid, trapezius, submental complex, and orbicularis oris. RESULTS MUNIX was significantly lower in ALS patients than in healthy controls for the APB, ADM, TA, and trapezius muscles. The MUNIX sum score of 4 muscles (ADM + APB + trapezius + TA) was lower in ALS patients (P = 0.01) and was correlated with clinical scores. DISCUSSION The global MUNIX sum score proposed in this study estimates the loss of lower motor neurons in several body regions, including the trapezius, and is correlated with clinical impairment in ALS patients. Muscle Nerve 56: 202-206, 2017.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Lauréline Duprat
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Annie Verschueren
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France.,Aix Marseille University, INSERM, GMGF, Marseille, France
| |
Collapse
|
31
|
The Motor Unit Number Index of Subclinical Abnormality in Amyotrophic Lateral Sclerosis. J Clin Neurophysiol 2017; 33:564-568. [PMID: 27295331 DOI: 10.1097/wnp.0000000000000296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Diagnosis of amyotrophic lateral sclerosis (ALS) at an early stage is challenging, thus making the enrollment of these patients in clinical trials infeasible. In this study, we investigated the potential usability of motor unit number index (MUNIX) to detect denervation of clinically intact muscles of ALS patients. METHODS Thirty-two first dorsal interosseous muscles of 26 ALS patients were evaluated with both MUNIX and needle electromyography. RESULTS The mean MUNIX value of first dorsal interosseous muscles was 131 in the control group, whereas it was 48, 34, 15, and 8 for Medical Research Council scales of 5, 4, 3, and 2, respectively, in the ALS patients. The optimal cutoff point gave a sensitivity of 0.89 and a specificity of 1.0. Among 9 intact first dorsal interosseous muscles of the ALS patients, 8 showed MUNIX values below the cutoff point, whereas only 2 first dorsal interosseous muscles showed denervation on needle electromyography. CONCLUSIONS MUNIX could serve as a sensitive technique to detect denervation of clinically intact muscles of ALS patients.
Collapse
|
32
|
Gilmore KJ, Allen MD, Doherty TJ, Kimpinski K, Rice CL. Electrophysiological and neuromuscular stability of persons with chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2017; 56:413-420. [DOI: 10.1002/mus.25516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin J. Gilmore
- School of Kinesiology; The University of Western Ontario; London ON Canada
| | - Matti D. Allen
- School of Medicine Queen's University Kingston ON Canada
| | - Timothy J. Doherty
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
- Department of Physical Medicine and Rehabilitation; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| | - Kurt Kimpinski
- School of Kinesiology; The University of Western Ontario; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| | - Charles L. Rice
- School of Kinesiology; The University of Western Ontario; London ON Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| |
Collapse
|
33
|
Motor Unit Number Index (MUNIX) detects motor neuron loss in pre-symptomatic muscles in Amyotrophic Lateral Sclerosis. Clin Neurophysiol 2017; 128:495-500. [DOI: 10.1016/j.clinph.2016.11.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
|
34
|
Escorcio-Bezerra ML, Oliveira ASB, De Oliveira Braga NI, Manzano GM. Improving the reproducibility of motor unit number index. Muscle Nerve 2017; 55:635-638. [PMID: 27438087 DOI: 10.1002/mus.25260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
|
35
|
Philibert M, Grapperon AM, Delmont E, Attarian S. Monitoring the short-term effect of intravenous immunoglobulins in multifocal motor neuropathy using motor unit number index. Clin Neurophysiol 2017; 128:235-240. [PMID: 27988478 DOI: 10.1016/j.clinph.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 12/12/2022]
|
36
|
Kim MJ, Bae JH, Kim JM, Kim HR, Yoon BN, Sung JJ, Ahn SW. Rapid Progression of Sporadic ALS in a Patient Carrying SOD1 p.Gly13Arg Mutation. Exp Neurobiol 2016; 25:347-350. [PMID: 28035186 PMCID: PMC5195821 DOI: 10.5607/en.2016.25.6.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease, is pathologically characterized by progressive loss of the upper and lower motor neurons. Mutations in the Cu/Zn superoxide dismutase gene (SOD1) account for about 20% of familial ALS cases and a small percentage of sporadic ALS (SALS) cases, and have revealed a validated genotype-phenotype correlation. Herein, we report a p.Gly13Arg mutation in SOD1 exon 1 in a patient with SALS who presented with a rapidly progressive course, predominantly affecting the lower motor neurons. A 48-year-old man presented with progressive weakness and muscle atrophy of the left upper and lower limbs, followed by muscle fasciculation and cramping. The clinical features of the patient were clearly suggestive of ALS, and implied a sporadic form with rapid progression, predominantly affecting the lower motor neurons. Sequencing of the SOD1 gene by PCR revealed a missense mutation of G to C (c.37G>C) in exon 1, and amino acid substitution of glycine by arginine (p.Gly13Arg). This is the first case identifying the p.Gly13Arg mutation of SOD1 in the Korean population, and clinical assessments of this patient revealed a different phenotype compared with other cases.
Collapse
Affiliation(s)
- Myung-Jin Kim
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jae-Han Bae
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Jeong-Min Kim
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Byung-Nam Yoon
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon 22332, Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suk-Won Ahn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| |
Collapse
|
37
|
Neuwirth C, Burkhardt C, Weber M. Motor unit number index in the nasalis muscle in healthy subjects and patients with amyotrophic lateral sclerosis. Muscle Nerve 2016; 54:733-7. [PMID: 26970219 DOI: 10.1002/mus.25100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Motor unit number index (MUNIX) is a quick and feasible electrophysiological technique that estimates the number of motor neurons in limb muscles in healthy and amyotrophic lateral sclerosis (ALS) subjects. In this study we explored the feasibility, reliability, and differences of MUNIX in nasalis muscles in healthy subjects and ALS patients. METHODS MUNIX of the nasalis muscle of 50 healthy and 20 ALS subjects with bulbar involvement was compared. Functional impairment was evaluated by the ALS Functional Rating Scale-Revised and its bulbar subscore. RESULTS MUNIX was well tolerated and quickly performed. Bulbar ALS patients showed non-significant lower nasalis MUNIX values and a lower functional bulbar subscore. Intra- and interrater reliability showed high intraclass correlation coefficients (ICCs) in healthy subjects (0.87) and ALS patients (0.92). CONCLUSION MUNIX of the nasalis muscle is a reproducible method, but it showed no significant difference between healthy and bulbar ALS subjects and seems not to be a useful marker of disease progression in ALS. Muscle Nerve 54: 733-737, 2016.
Collapse
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Centre, ALS Clinic, Kantonsspital St. Gallen, Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland.
| | - Christian Burkhardt
- Neuromuscular Diseases Centre, ALS Clinic, Kantonsspital St. Gallen, Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Centre, ALS Clinic, Kantonsspital St. Gallen, Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland
| |
Collapse
|
38
|
Escorcio-Bezerra ML, Abrahao A, de Castro I, Chieia MAT, de Azevedo LA, Pinheiro DS, de Oliveira Braga NI, de Oliveira ASB, Manzano GM. MUNIX: Reproducibility and clinical correlations in Amyotrophic Lateral Sclerosis. Clin Neurophysiol 2016; 127:2979-2984. [PMID: 27458836 DOI: 10.1016/j.clinph.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/05/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To study the reproducibility, diagnostic yield to detect denervation, and clinical correlations of the Motor Unit Number Index (MUNIX) in subjects with Amyotrophic Lateral Sclerosis (ALS). METHODS MUNIX evaluation was performed in three muscles twice on the same day to assess reproducibility. Cut-off values for the MUNIX were based on data from 51 healthy subjects (controls) to evaluate the sensitivity of the technique to detect denervation in 30 subjects with ALS. RESULTS The method had good reproducibility. The variability was greater in the ALS group. In 23 ALS subjects (77%), low MUNIX values were detected. Most of the muscles with low MUNIX had also low compound muscle action potential (CMAP) and strength, but these parameters were normal in 9% of muscles. According to ROC curve analysis, MUNIX was generally accurate (AUC=0.9504) for discriminating between healthy individuals and subjects with at least one denervated muscle. CONCLUSIONS MUNIX variability was higher in the ALS group. The method showed good diagnostic performance for the detection of denervation in a sample of patients with ALS. SIGNIFICANCE This study demonstrated that in addition to being a quantitative tool MUNIX can detect denervation in subjects with ALS.
Collapse
Affiliation(s)
| | | | - Isac de Castro
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine (FMUSP), Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|
40
|
Zhou P, Li X, Li S, Nandedkar SD. A dilemma in stroke application: Standard or modified motor unit number index? Clin Neurophysiol 2016; 127:2756-2759. [PMID: 27417048 DOI: 10.1016/j.clinph.2016.05.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ping Zhou
- Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, China; Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA.
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA
| | | |
Collapse
|
41
|
Neuwirth C, Burkhardt C, Alix J, Castro J, de Carvalho M, Gawel M, Goedee S, Grosskreutz J, Lenglet T, Moglia C, Omer T, Schrooten M, Weber M. Quality Control of Motor Unit Number Index (MUNIX) Measurements in 6 Muscles in a Single-Subject "Round-Robin" Setup. PLoS One 2016; 11:e0153948. [PMID: 27135747 PMCID: PMC4852906 DOI: 10.1371/journal.pone.0153948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Motor Unit Number Index (MUNIX) is a neurophysiological measure that provides an index of the number of lower motor neurons in a muscle. Its performance across centres in healthy subjects and patients with Amyotrophic Lateral Sclerosis (ALS) has been established, but inter-rater variability between multiple raters in one single subject has not been investigated. Objective To assess reliability in a set of 6 muscles in a single subject among 12 examiners (6 experienced with MUNIX, 6 less experienced) and to determine variables associated with variability of measurements. Methods Twelve raters applied MUNIX in six different muscles (abductor pollicis brevis (APB), abductor digiti minimi (ADM), biceps brachii (BB), tibialis anterior (TA), extensor dig. brevis (EDB), abductor hallucis (AH)) twice in one single volunteer on consecutive days. All raters visited at least one training course prior to measurements. Intra- and inter-rater variability as determined by the coefficient of variation (COV) between different raters and their levels of experience with MUNIX were compared. Results Mean intra-rater COV of MUNIX was 14.0% (±6.4) ranging from 5.8 (APB) to 30.3% (EDB). Mean inter-rater COV was 18.1 (±5.4) ranging from 8.0 (BB) to 31.7 (AH). No significant differences of variability between experienced and less experienced raters were detected. Conclusion We provide evidence that quality control for neurophysiological methods can be performed with similar standards as in laboratory medicine. Intra- and inter-rater variability of MUNIX is muscle-dependent and mainly below 20%. Experienced neurophysiologists can easily adopt MUNIX and adequate teaching ensures reliable utilization of this method.
Collapse
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
- * E-mail:
| | - Christian Burkhardt
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - James Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, England
| | - José Castro
- Department of Neurosciences, Hospital de Santa Maria, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mamede de Carvalho
- Department of Neurosciences, Hospital de Santa Maria, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Malgorzata Gawel
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Stephan Goedee
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - Julian Grosskreutz
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Timothée Lenglet
- Département de Neurophysiologie, Groupe hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Cristina Moglia
- ALS Center of Torino, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Taha Omer
- Trinity College Biomedical Science Institute (TBSI) and Beaumont Hospital, Dublin, Ireland
| | - Maarten Schrooten
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Markus Weber
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
42
|
Gawel M, Kuzma-Kozakiewicz M. Does the MUNIX Method Reflect Clinical Dysfunction in Amyotrophic Lateral Sclerosis: A Practical Experience. Medicine (Baltimore) 2016; 95:e3647. [PMID: 27175687 PMCID: PMC4902529 DOI: 10.1097/md.0000000000003647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of our study was to assess the usefulness of the MUNIX method in reflecting the clinical dysfunction in patients with amyotrophic lateral sclerosis (ALS), as well as to assess an intra-rater reproducibility of MUNIX. The study group consisted of a total of 15 ALS patients. The mean age of symptoms onset was 55 years, and the mean disease duration was 10 months. The muscle strength and patients' functional status were assessed according to the Medical Research Council (MRC) and by ALS functional rating scale revised (ALSFRS-R), respectively. The MUNIX was performed in 6 muscles: abductor pollicis brevis (APB), abductor digiti minimi (ADM), biceps brachii (BB), tibial anterior (TA), extensor digitorum brevis (EDB), and abductor hallucis (AH), unilaterally, at a less affected side. Both muscle-specific and global MRC and MUNIX scores were calculated. In 11 patients, the study protocol was repeated at least twice every 3 months. An additional testing of the intra-rater reliability was performed at the first visit.There were no significant differences between MUNIX test and re-test values in the APB, ADM, BB, TA, EDB, and AH muscles (P >0.05). The highest variability of the test-retest values was found in the BB muscle (7.53%). Although there was a significant test-retest difference in the global MUNIX score (P = 0.02), the variability of the results was as low as 1.26%. The MUNIX value correlated with the muscle-specific MRC score in ABP, ADM, TA, EDB and AH (P <0.05), and the global MUNIX values correlated with global MRC scores (P <0.05). There was also a significant correlation between the global MUNIX score and the clinical dysfunction measured by the ALSFRS-R scale (P <0.05). The global MUNIX showed a higher monthly decline (4.3%) as compared with ALFRS-R (0.7%) and the MRC global score (0.5%).This study confirms that the MUNIX method is a sensitive, reliable, and accurate tool reflecting both motor dysfunction and disease progression in ALS. We have found this approach to be more reliable and technically easier in distal muscles with less atrophy and a better strength.
Collapse
Affiliation(s)
- Malgorzata Gawel
- From the Department of Neurology (MG, MK-K); and Neurodegenerative Disease Research Group (MG, MK-K), Medical University of Warsaw, Poland
| | | |
Collapse
|
43
|
Motor Unit Number Index (MUNIX): A novel biomarker for ALS? Clin Neurophysiol 2016; 127:1938-9. [PMID: 26971474 DOI: 10.1016/j.clinph.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 11/21/2022]
|
44
|
Delmont E, Benvenutto A, Grimaldi S, Duprat L, Philibert M, Pouget J, Grapperon AM, Salort-Campana E, Sévy A, Verschueren A, Attarian S. Motor unit number index (MUNIX): Is it relevant in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)? Clin Neurophysiol 2016; 127:1891-4. [DOI: 10.1016/j.clinph.2015.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/14/2015] [Accepted: 12/06/2015] [Indexed: 12/12/2022]
|
45
|
Stein F, Kobor I, Bogdahn U, Schulte-Mattler WJ. Toward the validation of a new method (MUNIX) for motor unit number assessment. J Electromyogr Kinesiol 2016; 27:73-7. [PMID: 26930263 DOI: 10.1016/j.jelekin.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION This prospectively designed study analyzed the correlation of a new, non-invasive neurophysiological method (Motor Unit Number Index - MUNIX) with two established Motor Unit Number Estimation (MUNE) methods. METHODS MUNIX and incremental stimulation MUNE (IS-MUNE) were done in the abductor digiti minimi muscle (ADM), while MUNIX and spike-triggered averaging MUNE (STA-MUNE) were tested in the trapezius muscle. Twenty healthy subjects and 17 patients with amyotrophic lateral sclerosis (ALS) were examined. RESULTS MUNIX and MUNE values correlated significantly (ADM: n=108; Spearman-Rho; r=0.88; p<0.01; trapezius muscle: n=49; Spearman-Rho; r=0.46; p<0.01). DISCUSSION MUNIX indeed reflects the number of motor units in a muscle, and may sensibly be recorded from the trapezius muscle. With MUNIX being both much more patient friendly and much more rapid to assess than MUNE, the results support the use of MUNIX when motor unit number assessment is desired.
Collapse
Affiliation(s)
- Franziska Stein
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
46
|
Fathi D, Mohammadi B, Dengler R, Böselt S, Petri S, Kollewe K. Lower motor neuron involvement in ALS assessed by motor unit number index (MUNIX): Long-term changes and reproducibility. Clin Neurophysiol 2016; 127:1984-8. [PMID: 26971480 DOI: 10.1016/j.clinph.2015.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Motor unit number estimation (MUNE) techniques such as motor unit number index (MUNIX) have been used to quantify lower motor neuron loss and disease progression in amyotrophic lateral sclerosis (ALS). We investigated the consistency of reproducibility of MUNIX in 30 ALS-patients during the course of the disorder. METHODS MUNIX was recorded in abductor pollicis brevis and tibialis anterior muscles bilaterally in ALS-patients by two measurements at the first and at one follow-up visit and once in healthy controls. Intra-rater reproducibility was evaluated by three statistical methods: interclass correlation coefficient (ICC), correlation coefficient analysis (CCA), and coefficient of variation (CV). RESULTS We found significant correlation between the first and second measurement of MUNIX in all tested muscles and at the follow-up visit (r⩾0.891, p<0.01) and good statistically significant reproducibility of MUNIX in all four measured muscles at the follow-up visit (ICC⩾0.946, p<0.01). The CV of MUNIX at the follow-up visit ranged from 13.90% to 32.95%. CONCLUSIONS This study shows good consistency of reproducibility of MUNIX in the course of ALS. SIGNIFICANCE This study suggests that MUNIX can be used to track the progression of the disorder both in clinical routine and in treatment trials.
Collapse
Affiliation(s)
- Davood Fathi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; International Neuroscience Institute, Hannover, Germany
| | - Bahram Mohammadi
- International Neuroscience Institute, Hannover, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
47
|
Li X, Nandedkar SD, Zhou P. Modified motor unit number index: A simulation study of the first dorsal interosseous muscle. Med Eng Phys 2015; 38:115-20. [PMID: 26639774 DOI: 10.1016/j.medengphy.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
The motor unit number index (MUNIX) technique has provided a quick and convenient approach to estimating motor unit population changes in a muscle. Reduction in motor unit action potential (MUAP) amplitude can lead to underestimation of motor unit numbers using the standard MUNIX technique. This study aims to overcome this limitation by developing a modified MUNIX (mMUNIX) technique. The mMUNIX uses a variable that is associated with the area of compound muscle action potential (CMAP) rather than an arbitrary fixed value (20 mV ms) as used in the standard MUNIX to define the output. The performance of the mMUNIX was evaluated using motoneuron pool and surface electromyography (EMG) models. With a fixed motor unit number, the mMUNIX output remained relatively constant with varying degrees of MUAP amplitude changes, while the standard MUNIX substantially underestimated the motor unit number in such cases. However, when MUAP amplitude remained unchanged, the mMUNIX showed less sensitivity than the standard MUNIX in tracking motor unit loss. The current simulation study demonstrated both the advantages and limitations of the standard and modified MUNIX techniques, which can help guide appropriate application and interpretation of MUNIX measurements.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 1333B Moursund St., Houston, TX, USA; TIRR Memorial Hermann Research Center, Houston, TX, USA.
| | | | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 1333B Moursund St., Houston, TX, USA; TIRR Memorial Hermann Research Center, Houston, TX, USA; Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| |
Collapse
|
48
|
Gawel M, Zalewska E, Lipowska M, Kostera-Pruszczyk A, Szmidt-Salkowska E, Kaminska A. Motor unit number estimation as a complementary test to routine electromyography in the diagnosis of amyotrophic lateral sclerosis. J Electromyogr Kinesiol 2015; 26:60-5. [PMID: 26614440 DOI: 10.1016/j.jelekin.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
Electromyographic (EMG) abnormalities that reveal denervation and reinnervation caused by lower motor neuron degeneration do not reflect the number of motor units that determines muscle strength. Consequently, motor unit activity potential (MUAP) parameters do not reflect muscle dysfunction. The aim of the study was to compare the value of motor unit number estimation (MUNE) and MUAP parameters as indicators of clinical muscle dysfunction in patients with amyotrophic lateral sclerosis (ALS), and to analyze the role of MUNE as a supplement to the EMG criteria for the diagnosis of ALS. In 25 patients with ALS, MUNE by the multipoint incremental method in the abductor digiti minimi (ADM) and quantitative EMG in the first dorsal interosseous (FDI) were obtained. The Medical Research Council (MRC) scale was used to evaluate clinical muscle dysfunction. A strong correlation between the number of motor units evaluated by MUNE and ADM clinical function by the MRC scale was found (P<0.001). An increased value of surface-detected single motor action potential was associated with a decreased MRC score for ADM (P<0.1). No relation was found between MUAP parameters in FDI and MRC scores. Our data support the value of the MUNE method for the detection of motor unit loss in ALS, and it could be postulated that MUNE studies may be considered complementary tests for ALS in a future revision of ALS criteria.
Collapse
Affiliation(s)
- Malgorzata Gawel
- Department of Neurology, Medical University of Warsaw, Banacha 1A st, 02-097 Warsaw, Poland.
| | - Ewa Zalewska
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109 Warsaw, Poland
| | - Marta Lipowska
- Department of Neurology, Medical University of Warsaw, Banacha 1A st, 02-097 Warsaw, Poland
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, Banacha 1A st, 02-097 Warsaw, Poland
| | | | - Anna Kaminska
- Department of Neurology, Medical University of Warsaw, Banacha 1A st, 02-097 Warsaw, Poland
| |
Collapse
|
49
|
Neuwirth C, Barkhaus PE, Burkhardt C, Castro J, Czell D, de Carvalho M, Nandedkar S, Stålberg E, Weber M. Tracking motor neuron loss in a set of six muscles in amyotrophic lateral sclerosis using the Motor Unit Number Index (MUNIX): a 15-month longitudinal multicentre trial. J Neurol Neurosurg Psychiatry 2015; 86:1172-9. [PMID: 25935892 DOI: 10.1136/jnnp-2015-310509] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/15/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Motor Unit Number Index (MUNIX) is a novel neurophysiological measure that provides an index of the number of functional lower motor neurons in a given muscle. So far its performance across centres in patients with amyotrophic lateral sclerosis (ALS) has not been investigated. OBJECTIVE To perform longitudinal MUNIX recordings in a set of muscles in a multicentre setting in order to evaluate its value as a marker of disease progression. METHODS Three centres applied MUNIX in 51 ALS patients over 15 months. Six different muscles (abductor pollicis brevis, abductor digiti minimi, biceps brachii, tibialis anterior, extensor dig. brevis, abductor hallucis) were measured every 3 months on the less affected side. The decline between MUNIX and ALSFRS-R was compared. RESULTS 31 participants reached month 12. For all participants, ALSFRS-R declined at a rate of 2.3%/month. Using the total score of all muscles, MUNIX declined significantly faster by 3.2%/month (p ≤ 0.02). MUNIX in individual muscles declined between 2.4% and 4.2%, which differed from ASLFRS-R decline starting from month 3 (p ≤ 0.05 to 0.002). Subgroups with bulbar, lower and upper limb onset showed different decline rates of ALSFRS-R between 1.9% and 2.8%/month, while MUNIX total scores showed similar decline rates over all subgroups. Mean intraclass correlation coefficient for MUNIX intra-rater reliability was 0.89 and for inter-rater reliability 0.80. CONCLUSION MUNIX is a reliable electrophysiological biomarker to track lower motor neuron loss in ALS.
Collapse
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | | | - Christian Burkhardt
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - José Castro
- Department of Neurosciences, Faculty of Medicine, Hospital de Santa Maria, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - David Czell
- Kantonsspital Winterthur, Winterthur, Switzerland
| | - Mamede de Carvalho
- Department of Neurosciences, Faculty of Medicine, Hospital de Santa Maria, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | | | - Erik Stålberg
- Department of Clinical Neurophysiology, Institute of Neurosciences, Uppsala University, University Hospital, Uppsala, Sweden
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Ahn SW, Kang KH. Hypoglossal nerve palsy following the robotic thyroidectomy for the papillary thyroid carcinoma: A case report. Int J Surg Case Rep 2015; 14:133-5. [PMID: 26275736 PMCID: PMC4573414 DOI: 10.1016/j.ijscr.2015.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022] Open
Abstract
The robotic surgery is a creative and effective technique; however, the risk of this technique has not been fully documented. We describe neurological complication of hypoglossal nerve palsy after robotic thyroidectomy. Hypoglossal nerve palsy is usually presented with tongue deviation, atrophy and dysarthria. Nerve conduction study (NCS) can be used to confirm the hypoglossal nerve injury.
Background Endoscopic surgical techniques with robotic system in the thyroid cancer have been reported to show good results and advantages; however the risk of these techniques has not been fully documented. Presentation of the case We experienced an uncommon complicated case of a 20-year-old woman with a papillary thyroid carcinoma. After the robotic thyroidectomy, she complained of the tongue deviation, speech and swallowing difficulties of hypoglossal nerve palsy. Discussion In this case, a few etiologies could be suggested for the development of hypoglossal nerve palsy. It might be associated with direct stretching or entrapment of hypoglossal nerve during tumor resection; lateral placement of the laryngoscope on the tongue base; the hyperinflation of the laryngeal mask airway; and histological disruption of the intraneural connective tissue and blood circulation. Conclusion Although the robotic surgery is a creative technique and has been known to be safe and effective, the risk of this surgery including traumatic nerve injury should be taken into account before surgery.
Collapse
Affiliation(s)
- Suk-Won Ahn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ho Kang
- Department of Breast and Endocrine Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|