1
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Kent JA, Hayes KL. Exercise Physiology From 1980 to 2020: Application of the Natural Sciences. KINESIOLOGY REVIEW (CHAMPAIGN, ILL.) 2021; 10:238-247. [PMID: 35464337 PMCID: PMC9022627 DOI: 10.1123/kr.2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of exercise physiology has enjoyed tremendous growth in the past 40 years. With its foundations in the natural sciences, it is an interdisciplinary field that is highly relevant to human performance and health. The focus of this review is on highlighting new approaches, knowledge, and opportunities that have emerged in exercise physiology over the last four decades. Key among these is the adoption of advanced technologies by exercise physiologists to address fundamental research questions, and the expansion of research topics to range from molecular to organismal, and population scales in order to clarify the underlying mechanisms and impact of physiological responses to exercise in health and disease. Collectively, these advances have ensured the position of the field as a partner in generating new knowledge across many scientific and health disciplines.
Collapse
Affiliation(s)
- Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kate L Hayes
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
4
|
Wang W, Yao S, Jiang H, Dong J, Cui X, Tian X, Guo Y, Zhang S. Upstream transcription factor 1 prompts malignancies of cervical cancer primarily by transcriptionally activating p65 expression. Exp Ther Med 2018; 16:4415-4422. [PMID: 30542391 PMCID: PMC6257725 DOI: 10.3892/etm.2018.6758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/20/2017] [Indexed: 11/21/2022] Open
Abstract
Cervical cancer is the third-most common cause of female cancer-related mortality worldwide. In cervical cancer, aberrant activation of nuclear factor (NF)-κB signaling is widely reported. However, the transcriptional regulation of NF-κB signaling remains unclear. The present study aimed to explore the underlying mechanism in which NF-κB signaling was activated in cervical cancer cells. Initially, the expression of p65 was demonstrated to be markedly enhanced in grade II, III or IV cervical cancer tissues compared with that of normal cervical tissues, indicating that p65 expression was correlated with tumor grade. In HeLa and CaSki cells, overexpression of p65 markedly enhanced cervical cancer cell invasion and migration. Further experiments demonstrated that p65 overexpression significantly increased the phosphorylation levels of protein kinase B (AKT) and p38. Dual luciferase reporter and chromatin immunoprecipitation assays demonstrated that USF1 was able to bind the promoter region of p65, thereby enhancing the transcriptional activation of p65. Notably, when p65 was silenced, the phosphorylation levels of AKT and p38 were suppressed even in cells transfected with adenovirus vectors expressing upstream transcription factor 1 (USF1). These data indicated that USF1 prompted cervical cancer progression primarily by transcriptionally activating p65. In conclusion, the present study demonstrated that USF1 was able to activate the transcription of p65, thereby enhancing the malignancy of cervical cancer cells.
Collapse
Affiliation(s)
- Wen Wang
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shujuan Yao
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Hongjing Jiang
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Jing Dong
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Xiujuan Cui
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Xiangyu Tian
- Department of Medical Imaging, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanyan Guo
- Department of Obstetrics and Gynecology, Shandong Police Hospital, Jinan, Shandong 250001, P.R. China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
5
|
Das CR, Tiwari D, Dongre A, Khan MA, Husain SA, Sarma A, Bose S, Bose PD. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients. Viral Immunol 2018; 31:282-291. [DOI: 10.1089/vim.2017.0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Chandana Ray Das
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Obstetrics & Gynecology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Diptika Tiwari
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Anita Dongre
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | | | - Anirudha Sarma
- Department of Biotechnology, Pandu College, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
6
|
Fatouros IG, Jamurtas AZ. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res 2016; 9:175-186. [PMID: 27799809 PMCID: PMC5085309 DOI: 10.2147/jir.s114635] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The study of exercise-induced muscle damage (EIMD) is of paramount importance not only because it affects athletic performance but also because it is an excellent model to study the mechanisms governing muscle cachexia under various clinical conditions. Although, a large number of studies have investigated EIMD and its associated inflammatory response, several aspects of skeletal muscles responses remain unclear. In the first section of this article, the mechanisms of EIMD are reviewed in an attempt to follow the events that result in functional and structural alterations of skeletal muscle. In the second section, the inflammatory response associated with EIMD is presented with emphasis in leukocyte accumulation through mechanisms that are largely coordinated by pro- and anti-inflammatory cytokines released either by injured muscle itself or other cells. The practical applications of EIMD and the subsequent inflammatory response are discussed with respect to athletic performance. Specifically, the mechanisms leading to performance deterioration and development of muscle soreness are discussed. Emphasis is given to the factors affecting individual responses to EIMD and the resulting interindividual variability to this phenomenon.
Collapse
Affiliation(s)
- Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| |
Collapse
|
7
|
LaBarbera KE, Hyldahl RD, O'Fallon KS, Clarkson PM, Witkowski S. Pericyte NF-κB activation enhances endothelial cell proliferation and proangiogenic cytokine secretion in vitro. Physiol Rep 2015; 3:3/4/e12309. [PMID: 25911453 PMCID: PMC4425949 DOI: 10.14814/phy2.12309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell-cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold, P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease.
Collapse
Affiliation(s)
- Katherine E LaBarbera
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Kevin S O'Fallon
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Priscilla M Clarkson
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
8
|
Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med 2014; 12:155. [PMID: 24885472 PMCID: PMC4084577 DOI: 10.1186/1479-5876-12-155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) induces a variety of biological processes through transcriptional gene control whose products are components in various signaling pathways. MicroRNAs are a small endogenous non-coding RNAs that regulate gene expression and are involved in tumorigenesis. Using human cervical cancer cell lines, this study aimed to investigate whether NF-κB could regulate miR-130a expression and the functions and targets of miR-130a. Methods We used the HeLa and C33A cervical cancer cell lines that were transfected with NF-κB or miR-130a overexpression plasmids to evaluate their effects on cell growth. We utilized bioinformatics, a fluorescent reporter assay, qRT-PCR and Western blotting to identify downstream target genes. Results In HeLa and C33A cells, NF-κB and miR-130a overexpression promoted cell growth, but genetic knockdowns suppressed growth. TNF-α was identified as a target of miR-130a by binding in a 3’-untranslated region (3’UTR) EGFP reporter assay and by Western blot analysis. Furthermore, low TNF-α concentrations stimulated NF-κB activity and then induced miR-130a expression, and TNF-α overexpression rescued the effects of miR-130a on cervical cancer cells. Conclusions Our findings indicate that TNF-α can activate NF-κB activity, which can reduce miR-130a expression, and that miR-130a targets and downregulates TNF-α expression. Hence, we shed light on the negative feedback regulation of NF-κB/miR-130a/TNF-α/NF-κB in cervical cancer and may provide insight into the carcinogenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, No, 22 Qi-Xiang-Tai Road, Tianjin 300070, China.
| |
Collapse
|
9
|
Hubal MJ, Miles MP, Rawson ES, Sayers SP, Urso ML, Fragala MS. In memoriam: Dr. Priscilla M. Clarkson (1947–2013) muscle biology visionary, leader, mentor, and inspiration. J Strength Cond Res 2014; 28:291-9. [PMID: 24378657 DOI: 10.1519/jsc.0000000000000358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Hyldahl RD, Hubal MJ. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 2013; 49:155-70. [DOI: 10.1002/mus.24077] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Robert D. Hyldahl
- Department of Exercise Science; 106 Smith Fieldhouse; Brigham Young University; Provo Utah 84003 USA
| | - Monica J. Hubal
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC USA
| |
Collapse
|