1
|
Maggi L, Ravaglia S, Farinato A, Brugnoni R, Altamura C, Imbrici P, Camerino DC, Padovani A, Mantegazza R, Bernasconi P, Desaphy JF, Filosto M. Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics 2017; 18:219-225. [PMID: 28993909 DOI: 10.1007/s10048-017-0525-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 01/28/2023]
Abstract
Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.
| | | | - Alessandro Farinato
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Concetta Altamura
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Diana Conte Camerino
- Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology ASST "Spedali Civili", University of Brescia, Brescia, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology ASST "Spedali Civili", University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Tawadros C, Burnett K, Derbyshire LF, Tawadros T, Clarke NW, Betts CD. External urethral sphincter electromyography in asymptomatic women and the influence of the menstrual cycle. BJU Int 2015; 116:423-31. [PMID: 25600712 DOI: 10.1111/bju.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate by electromyography (EMG), the presence of complex repetitive discharges (CRDs) and decelerating bursts (DBs) in the striated external urethral sphincter during the menstrual cycle in female volunteers with no urinary symptoms and complete bladder emptying. SUBJECTS AND METHODS Healthy female volunteers aged 20-40 years, with regular menstrual cycles and no urinary symptoms were recruited. Volunteers completed a menstruation chart, urinary symptom questionnaires, pregnancy test, urine dipstick, urinary free flow and post-void ultrasound bladder scan. Exclusion criteria included current pregnancy, use of hormonal medication or contraception, body mass index of >35 kg/m(2) , incomplete voiding and a history of pelvic surgery. Eligible participants underwent an external urethral sphincter EMG, using a needle electrode in the early follicular phase and the mid-luteal phase of their menstrual cycles. Serum oestradiol and progesterone were measured at each EMG test. RESULTS In all, 119 women enquired about the research and following screening, 18 were eligible to enter the study phase. Complete results were obtained in 15 women. In all, 30 EMG tests were undertaken in the 15 asymptomatic women. Sphincter EMG was positive for CRDs and DBs at one or both phases of the menstrual cycle in eight (53%) of the women. Three had CRDs and DBs in both early follicular and mid-luteal phases. Five had normal EMG activity in the early follicular phase and CRDs and DBs in the mid-luteal phase. No woman had abnormal EMG activity in the early follicular phase and normal activity in the luteal phase. There was no relationship between EMG activity and age, parity or serum levels of oestradiol and progesterone. CONCLUSIONS CRDs and DB activity in the external striated urethral sphincter is present in a high proportion of asymptomatic young women. This abnormal EMG activity has been shown for the first time to change during the menstrual cycle in individual women. CRDs and DBs are more commonly found in the luteal phase of the menstrual cycle. The importance of CRDs and DBs in the aetiology of urinary retention in young women remains uncertain. The distribution and or quantity of abnormal EMG activity in the external urethral sphincter may be important. In a woman with urinary retention the finding of CRDs and DBs by needle EMG does not automatically establish Fowler's syndrome as the explanation for the bladder dysfunction. Urethral pressure profilometry may be helpful in establishing a diagnosis. Opiate use and psychological stress should be considered in young women with urinary retention.
Collapse
Affiliation(s)
- Cecile Tawadros
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK.,Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Katherine Burnett
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK
| | | | - Thomas Tawadros
- Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Noel W Clarke
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK.,Department of Urology, Christie Hospitals NHS Foundation Trust, Manchester, UK
| | | |
Collapse
|
3
|
|
4
|
Fraysse B, Vignaud A, Fane B, Schuh M, Butler-Browne G, Metzger D, Ferry A. Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles. Steroids 2014; 87:6-11. [PMID: 24844204 DOI: 10.1016/j.steroids.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022]
Abstract
As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.
Collapse
Affiliation(s)
- Bodvael Fraysse
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | | | - Bourama Fane
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Mélanie Schuh
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104/INSERM U964, Université de Strasbourg, Illkirch, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104/INSERM U964, Université de Strasbourg, Illkirch, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
5
|
Ulzi G, Sansone VA, Magri F, Corti S, Bresolin N, Comi GP, Lucchiari S. In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Mol Biol Rep 2014; 41:2865-74. [PMID: 24452722 DOI: 10.1007/s11033-014-3142-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/11/2014] [Indexed: 12/21/2022]
Abstract
Mutations in the chloride channel gene CLCN1 cause the allelic disorders Thomsen (dominant) and Becker (recessive) myotonia congenita (MC). The encoded protein, ClC-1, is the primary channel that mediates chloride (Cl-) conductance in skeletal muscle. Mutations in CLCN1 lower the channel's threshold voltage, leading to spontaneous action potentials that are not coupled to neuromuscular transmission and resulting in myotonia. Over 120 mutations in CLCN1 have been described, 10% of which are splicing defects. Biological specimens suitable for RNA extraction are not always available, but obtaining genomic DNA for analysis is easy and non-invasive. This is the first study to evaluate the pathogenic potential of novel splicing mutations using the minigene approach, which is based on genomic DNA analysis. Splicing mutations accounted for 23% of all pathogenic variants in our cohort of MC patients. Four were heterozygous mutations in four unrelated individuals, belonging to this cohort: c.563G>T in exon 5; c.1169-5T>G in intron 10; c.1251+1G>A in intron 11, and c.1931-2A>G in intron 16. These variants were expressed in HEK 293 cells, and aberrant splicing was verified by in vitro transcription and sequencing of the cDNA. Our findings confirm the need to further investigate the nature of rearrangements associated with this class of mutations and their effects on mature transcripts. In particular, splicing mutations predicted to generate in-frame transcripts may generate out-of-frame mRNA transcripts that do not produce functional ClC-1. Clinically, incomplete molecular evaluation could lead to delayed or faulty diagnosis.
Collapse
Affiliation(s)
- Gianna Ulzi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Via Sforza 35, 20122, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|