1
|
Huang C, Chen M, Li X, Zhang Y, Li S, Zhou P. Neurophysiological Factors Affecting Muscle Innervation Zone Estimation Using Surface EMG: A Simulation Study. BIOSENSORS-BASEL 2021; 11:bios11100356. [PMID: 34677312 PMCID: PMC8534086 DOI: 10.3390/bios11100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) recorded by a linear or 2-dimensional electrode array can be used to estimate the location of muscle innervation zones (IZ). There are various neurophysiological factors that may influence surface EMG and thus potentially compromise muscle IZ estimation. The objective of this study was to evaluate how surface-EMG-based IZ estimation might be affected by different factors, including varying degrees of motor unit (MU) synchronization in the case of single or double IZs. The study was performed by implementing a model simulating surface EMG activity. Three different MU synchronization conditions were simulated, namely no synchronization, medium level synchronization, and complete synchronization analog to M wave. Surface EMG signals recorded by a 2-dimensional electrode array were simulated from a muscle with single and double IZs, respectively. For each situation, the IZ was estimated from surface EMG and compared with the one used in the model for performance evaluation. For the muscle with only one IZ, the estimated IZ location from surface EMG was consistent with the one used in the model for all the three MU synchronization conditions. For the muscle with double IZs, at least one IZ was appropriately estimated from interference surface EMG when there was no MU synchronization. However, the estimated IZ was different from either of the two IZ locations used in the model for the other two MU synchronization conditions. For muscles with a single IZ, MU synchronization has little effect on IZ estimation from electrode array surface EMG. However, caution is required for multiple IZ muscles since MU synchronization might lead to false IZ estimation.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510970, China;
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Xiaoyan Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
- Correspondence:
| |
Collapse
|
2
|
Fidalgo-Herrera A, Miangolarra-Page JC, Carratalá-Tejada M. Electromyographic traces of motor unit synchronization of fatigued lower limb muscles during gait. Hum Mov Sci 2020; 75:102750. [PMID: 33373857 DOI: 10.1016/j.humov.2020.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The study of the signal in the frequency domain has shown to be a good tool to identify muscular fatigue. Previous research has shown that the low frequency band and 40 Hz frequency band increase their relative intensity with the onset of fatigue. These findings were obtained in rectus femoris, but the behaviours of other muscles of the lower limb are unknown. In this article we explored the changes in the low frequency and 40 Hz frequency band of lower limb muscles with respect to fatigue. METHODS Thirty healthy subjects were recruited to analyse the electromyography (EMG) of biceps femoris, tibialis anterior and gastrocnemius medialis and lateralis of both legs during gait. Four two-minutes walks at a self-selected speed were recorded, the first two walks with a normal muscular function and the last two walks after a fatigue protocol. All the signals were decomposed using wavelet transformations. The signals were normalized in time and spectral intensities normalized to the sum of intensities in the frequency domain. Two frequency bands were studied in each walk: the 40-Hz (34-53 Hz) and the low frequency (< 25 Hz) bands. A ratio of the spectral intensities of those frequency bands at each walk was obtained by dividing the 40-Hz frequency band spectral intensity by the low frequency band spectral intensity. Statistical parametric mapping techniques were used to compare the ratios of the prefatigue walks against the postfatigue walks. RESULTS The results of the Statistical Non-Parametric Mapping (SnPM) analysis of all muscles depict a higher relative spectral intensity in the low frequency band in the comparison of fatigue versus prefatigue recordings except for the right gastrocnemius lateralis. The critical thresholds F* were exceeded by multiple suprathreshold clusters with p values <0.05, showing that the low frequency band increased its relative spectral intensity in the case of fatigue. CONCLUSION The obtained results suggest that the low frequency band increases its relative spectral intensity in all the studied muscles when fatigue onsets. This increase in relative spectral intensity may be linked to an increase in motor unit synchronization promoted by the central nervous system to ensure good motor control.
Collapse
Affiliation(s)
- A Fidalgo-Herrera
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain.
| | - J C Miangolarra-Page
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain; Fuenlabrada's Clinical University Hospital, Fuenalbrada, Camino del Molino, 2, Madrid, Spain.
| | - M Carratalá-Tejada
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain.
| |
Collapse
|
3
|
Fidalgo-Herrera A, Miangolarra-Page J, Carratalá-Tejada M. Traces of muscular fatigue in the rectus femoris identified with surface electromyography and wavelets on normal gait. Physiother Theory Pract 2020; 38:211-225. [DOI: 10.1080/09593985.2020.1725945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Alberto Fidalgo-Herrera
- Laboratorio de Análisis del Movimiento, Biomecánica, Ergonomía y Control Motor (LAMBECOM), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Juan Miangolarra-Page
- Laboratorio de Análisis del Movimiento, Biomecánica, Ergonomía y Control Motor (LAMBECOM), Universidad Rey Juan Carlos, Alcorcón, Spain
- Departamento de Medicina Física y Rehabilitación, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Maria Carratalá-Tejada
- Laboratorio de Análisis del Movimiento, Biomecánica, Ergonomía y Control Motor (LAMBECOM), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
4
|
Kumar RI, Mallette MM, Cheung SS, Stashuk DW, Gabriel DA. A method for editing motor unit potential trains obtained by decomposition of surface electromyographic signals. J Electromyogr Kinesiol 2020; 50:102383. [DOI: 10.1016/j.jelekin.2019.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
|
5
|
Tweedell AJ, Tenan MS. motoRneuron: an open-source R toolbox for time-domain motor unit analyses. PeerJ 2019; 7:e7907. [PMID: 31844560 PMCID: PMC6910107 DOI: 10.7717/peerj.7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers to discharge near-simultaneously. It has been theorized as a control mechanism for force generation by common excitatory inputs to these motor neurons. Magnitude of synchronization is calculated from peaks in cross-correlation histograms between motor unit discharge trains. However, there are many different methods for detecting these peaks and even more indices for calculating synchronization from them. Methodology is diverse, typically laboratory-specific and requires expensive software, like Matlab or LabView. This lack of standardization makes it difficult to draw definitive conclusions about motor unit synchronization. A free, open-source toolbox, "motoRneuron", for the R programming language, has been developed which contains functions for calculating time domain synchronization using different methods found in the literature. The objective of this paper is to detail the toolbox's functionality and present a case study showing how the same synchronization index can differ when different methods are used to compute it. A pair of motor unit action potential trains were collected from the forearm during a isometric finger flexion task using fine wire electromyography. The motoRneuron package was used to analyze the discharge time of the motor units for time-domain synchronization. The primary function "mu_synch" automatically performed the cross-correlation analysis using three different peak detection methods, the cumulative sum method, the z-score method, and a subjective visual method. As function parameters defined by the user, only first order recurrence intervals were calculated and a 1 ms bin width was used to create the cross correlation histogram. Output from the function were six common synchronization indices, the common input strength (CIS), k', k' - 1, E, S, and Synch Index. In general, there was a high degree of synchronization between the two motor units. However, there was a varying degree of synchronization between methods. For example, the widely used CIS index, which represents a rate of synchronized discharges, shows a 45% difference between the visual and z-score methods. This singular example demonstrates how a lack of consensus in motor unit synchronization methodologies may lead to substantially differing results between studies. The motoRneuron toolbox provides researchers with a standard interface and software to examine time-domain motor unit synchronization.
Collapse
Affiliation(s)
- Andrew J Tweedell
- Human Research and Engineering Directorate, United States Army Research Laboratory, Aberdeen Proving Ground, MD, United States of America
| | - Matthew S Tenan
- Defense Health Agency, Falls Church, VA, United States of America
| |
Collapse
|
6
|
Harmon KK, Girts RM, MacLennan RJ, Stock MS. Is the motor unit mean firing rate versus recruitment threshold relationship linear? Physiol Meas 2019; 40:095002. [PMID: 31470424 DOI: 10.1088/1361-6579/ab4025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in surface electromyographic (EMG) signal decomposition allow researchers to analyze data for 20-50 motor units per contraction. To simplify interpretation, some investigators rely on group mean analysis of the mean firing rate versus recruitment threshold relationship, but it is unclear if this association is linear. OBJECTIVE To determine whether this relationship is strongest when analyzed via linear, quadratic, or cubic regression. APPROACH Twenty-one men (mean ± SD age = 24 ± 4 years) and 16 women (21 ± 2 years) performed isometric contractions of the knee extensors at 50% of maximal force while bipolar surface EMG signals were recorded from the vastus lateralis. A decomposition algorithm was used to calculate the mean firing rate and recruitment threshold of each motor unit at accuracy levels ranging from 90.0%-93.0%. Polynominal regression was used to determine if each relationship was best fit with a linear, quadratic, or cubic model. We examined individual contractions and grouped data. MAIN RESULTS Overall, 80% of the relationships were best fit with a linear model. Quadratic and cubic relationships were more appropriate for 16% and 2% of the contractions, respectively. Selecting varying accuracy levels within a range of 90.0%-93.0% had little influence on whether a given dataset was best fit with a linear, quadratic, or cubic model. Grouping of data provided different relationships than otherwise found on a contraction-by-contraction basis. SIGNIFICANCE The mean firing rate versus recruitment threshold relationship is typically best fit with a linear model. These relationships should be examined on an individual contraction basis.
Collapse
Affiliation(s)
- Kylie K Harmon
- Neuromuscular Plasticity Laboratory, School of Kinesiology and Physical Therapy, University of Central Florida, 12354 Research Parkway, Orlando, FL, 32826, United States of America
| | | | | | | |
Collapse
|
7
|
Vastus lateralis muscle tissue composition and motor unit properties in chronically endurance-trained vs. sedentary women. Eur J Appl Physiol 2018; 118:1789-1800. [PMID: 29948198 DOI: 10.1007/s00421-018-3909-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
This study examined motor unit (MU) amplitudes (APAMPS) and firing rates during moderate-intensity contractions and muscle cross-sectional area (mCSA) and echo intensity (mEI) of the vastus lateralis (VL) in chronically endurance-trained and sedentary females. Eight endurance-trained (ET) and nine sedentary controls (SED) volunteered for this study. Surface electromyographic (EMG) signals from a five-pin electrode array were recorded from the VL during isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). Decomposition methods were applied to the EMG signals to extract the firing events and amplitudes of single MUs. The mean firing rate (MFR) during steady force and MUAPAMP for each MU was regressed against recruitment threshold (RT, expressed as %MVC). The y-intercepts and slopes from the MFR and MUAPAMP vs. RT relationships were calculated. EMG amplitude during steady force was normalized (N-EMGRMS) to peak EMG amplitude recorded during the MVC. Ultrasonography was used to measure mCSA and mEI. Significant differences existed between the ET and SED for the slopes (P = 0.005, P = 0.001) from the MFR and MUAPAMP vs. RT relationships with no differences for the y-intercepts (P > 0.05). N-EMGRMS was significantly (P = 0.033) lower for the ET than SED. There were no differences between groups for mCSA; however, the SED possessed significantly (P = 0.001) greater mEI. Subsequently, the ET likely possessed hypertrophied and stronger MUs that allowed for lower necessary muscle activation to maintain the same relative task as the SED. The larger MUs for the ET is supported via the MFR vs. RT relationships and ultrasound data.
Collapse
|
8
|
Macgregor LJ, Hunter AM. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise. PLoS One 2018; 13:e0195051. [PMID: 29630622 PMCID: PMC5890972 DOI: 10.1371/journal.pone.0195051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/11/2018] [Indexed: 11/18/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Collapse
Affiliation(s)
- Lewis J. Macgregor
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
| | - Angus M. Hunter
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
- * E-mail:
| |
Collapse
|
9
|
The effects of local forearm muscle cooling on motor unit properties. Eur J Appl Physiol 2017; 118:401-410. [DOI: 10.1007/s00421-017-3782-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
10
|
Bini RR, Hoefelmann CP, Costa VP, Diefenthaeler F. Reproducibility of upper leg EMG frequency content during cycling. J Sports Sci 2017; 36:485-491. [PMID: 28423987 DOI: 10.1080/02640414.2017.1318217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reproducibility of frequency content from surface electromyography (sEMG) signals has not been assessed and it is unknown if incremental load testing design could affect sEMG in cycling. The goals of this study were to assess the reproducibility of measures from sEMG frequency content between sessions and to compare these frequency components between a ramp and a step incremental cycling test. Eighteen cyclists performed four incremental load cycling tests to exhaustion. Two tests were performed using a step increment (load started at 100 W for 3 min followed by increments of 30 W every 3 min) and two were performed using a ramp increment (load started at 100 W for 1 min followed by increments of 30 W·min-1). sEMG was monitored bilaterally for the rectus femoris and vastus lateralis throughout the tests and converted into overall activation (whole signal bandwidth), high- and low-frequency contents. The reproducibility of the frequency content ranged from none to strong (ICC = 0.07-0.90). Vastus lateralis activation was larger at the step compared to the ramp test (P < 0.01), without differences for rectus femoris (P = 0.22-0.91) and for the high-frequency (P = 0.28-0.95) and low-frequency contents (P = 0.13-0.94). sEMG from vastus lateralis and rectus femoris presented none to strong reproducibility. Vastus lateralis is more activated in step test design.
Collapse
Affiliation(s)
- Rodrigo Rico Bini
- a La Trobe Rural Health School , La Trobe University , Bendigo , Australia
| | | | - Vitor Pereira Costa
- b Centro de Desportos , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | | |
Collapse
|
11
|
Balshaw TG, Pahar M, Chesham R, Macgregor LJ, Hunter AM. Reduced firing rates of high threshold motor units in response to eccentric overload. Physiol Rep 2017; 5:e13111. [PMID: 28108648 PMCID: PMC5269413 DOI: 10.14814/phy2.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022] Open
Abstract
Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P < 0.05), whereas MUFR for all motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors.
Collapse
Affiliation(s)
- Tom G Balshaw
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Madhu Pahar
- Computing Science and Mathematics, University of Stirling, Stirling, Scotland, United Kingdom
| | - Ross Chesham
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lewis J Macgregor
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Angus M Hunter
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
12
|
Mosier EM, Herda TJ, Trevino MA, Miller JD. The influence of prolonged vibration on motor unit behavior. Muscle Nerve 2016; 55:500-507. [PMID: 27465016 DOI: 10.1002/mus.25270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/13/2016] [Accepted: 07/26/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the effects of vibration (VIB) on motor unit (MU) behavior of the vastus lateralis (VL) muscle during a 40% maximal voluntary contraction (MVC). METHODS Eleven healthy (age 21.3 ± 2.6 years) individuals participated in the study. Surface electromyography (EMG) data were recorded from the VL during isometric trapezoidal muscle contractions at 40% MVC. Firing events of single MUs and EMG amplitude were reported for the first, middle, and final seconds of a 12-second steady force segment at 40% MVC. VIB was applied at 55 Hz to the patellar tendon for 15 minutes before and continued throughout the remainder of testing (VIB) or remained off (CON). RESULTS There were significant increases in MU firing rates during VIB in comparison to CON and no differences in EMG amplitude between VIB and CON. CONCLUSION The VIB-mediated reduction in muscle spindle function altered MU behavior at 40% MVC. Muscle Nerve 55: 500-507, 2017.
Collapse
Affiliation(s)
- Eric M Mosier
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Michael A Trevino
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Jonathan D Miller
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| |
Collapse
|
13
|
Yang CC, Su FC, Yang PC, Lin HT, Guo LY. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals. PLoS One 2016; 11:e0167737. [PMID: 27941995 PMCID: PMC5152896 DOI: 10.1371/journal.pone.0167737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/18/2016] [Indexed: 12/03/2022] Open
Abstract
Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.
Collapse
Affiliation(s)
- Chia-Chi Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ching Yang
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hwai-Ting Lin
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lan-Yuen Guo
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports (Basel) 2016; 4:sports4040047. [PMID: 29910296 PMCID: PMC5968893 DOI: 10.3390/sports4040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Electromyographic (EMG) and mechanomyographic (MMG) studies of fatigue have generally utilized maximal isometric or dynamic muscle actions, but sport- and work-related activities involve predominately submaximal movements. Therefore, the purpose of the present investigation was to examine the torque, EMG, and MMG responses as a result of submaximal, concentric, isokinetic, forearm flexion muscle actions. METHODS Twelve men performed concentric peak torque (PT) and isometric PT trials before (pretest) and after (posttest) performing 50 submaximal (65% of concentric PT), concentric, isokinetic (60°·s-1), forearm flexion muscle actions. Surface EMG and MMG signals were simultaneously recorded from the biceps brachii and brachioradialis muscles. RESULTS The results of the present study indicated similar decreases during both the concentric PT and isometric PT measurements for torque, EMG mean power frequency (MPF), and MMG MPF following the fatiguing workbout, but no changes in EMG amplitude (AMP) or MMG AMP. CONCLUSIONS These findings suggest that decreases in torque as a result of fatiguing, dynamic muscle actions may have been due to the effects of metabolic byproducts on excitation⁻contraction coupling as indicated by the decreases in EMG MPF and MMG MPF, but lack of changes in EMG AMP and MMG AMP from both the biceps brachii and brachioradialis muscles.
Collapse
|
15
|
Trevino MA, Herda TJ, Fry AC, Gallagher PM, Vardiman JP, Mosier EM, Miller JD. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo. J Neurophysiol 2016; 116:552-62. [PMID: 27146989 PMCID: PMC4978784 DOI: 10.1152/jn.01021.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/02/2016] [Indexed: 11/22/2022] Open
Abstract
It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo.
Collapse
Affiliation(s)
| | - Trent J Herda
- Neuromechanics Laboratory, University of Kansas, Lawrence, Kansas;
| | - Andrew C Fry
- Applied Physiology Laboratory, University of Kansas, Lawrence, Kansas; and
| | - Philip M Gallagher
- Applied Physiology Laboratory, University of Kansas, Lawrence, Kansas; and
| | - John P Vardiman
- Applied Physiology and Sports Medicine Laboratory, Kansas State University, Manhattan, Kansas
| | - Eric M Mosier
- Neuromechanics Laboratory, University of Kansas, Lawrence, Kansas
| | | |
Collapse
|
16
|
Dutta A, Krishnan C, Kantak SS, Ranganathan R, Nitsche MA. Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation. Restor Neurol Neurosci 2016; 33:663-9. [PMID: 25791041 DOI: 10.3233/rnn-140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Recent evidence indicates that anodal transcranial direct current stimulation (tDCS) can selectively alter the EMG/force relationship of agonist arm muscles; however, the mechanisms mediating those changes are less clear. The purpose of this study was to evaluate the effect of anodal tDCS on motor unit synchronization by using a sophisticated non-linear EMG analysis called recurrence quantification analysis (RQA). METHODS Surface EMG signals were collected from the biceps brachii muscle of eighteen healthy young adults (9 tDCS and 9 control) at various force levels (12.5%, 25%, 37.5%, and 50% maximum) before and after the application of anodal tDCS over the primary motor cortex. RQA was employed to quantify the changes in percentage of determinism (% DET) and laminarity (% LAM) of the surface EMG signals, which are surrogate measures of motor unit synchronization. RESULTS RQA analyses indicated that the changes in % DET and % LAM scores were significantly higher in the tDCS group than in the control group (p < 0.05) and this effect was particularly pronounced at higher force levels. CONCLUSION The results of this study provide novel evidence supporting that anodal tDCS significantly alters motor unit firing strategies (i.e., the degree of synchronization) of the biceps brachii muscle.
Collapse
Affiliation(s)
- Anirban Dutta
- DEMAR team of INRIA, Université de Montpellier, CNRS, Montpellier Cedex 5, France
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRO Lab), Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shailesh S Kantak
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Rajiv Ranganathan
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| |
Collapse
|
17
|
Pope ZK, Hester GM, Benik FM, DeFreitas JM. Action potential amplitude as a noninvasive indicator of motor unit-specific hypertrophy. J Neurophysiol 2016; 115:2608-14. [PMID: 26936975 DOI: 10.1152/jn.00039.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/02/2016] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle fibers hypertrophy in response to strength training, with type II fibers generally demonstrating the greatest plasticity in regards to cross-sectional area (CSA). However, assessing fiber type-specific CSA in humans requires invasive muscle biopsies. With advancements in the decomposition of surface electromyographic (sEMG) signals recorded using multichannel electrode arrays, the firing properties of individual motor units (MUs) can now be detected noninvasively. Since action potential amplitude (APSIZE) has a documented relationship with muscle fiber size, as well as with its parent MU's recruitment threshold (RT) force, our purpose was to examine if MU APSIZE, as a function of its RT (i.e., the size principle), could potentially be used as a longitudinal indicator of MU-specific hypertrophy. By decomposing the sEMG signals from the vastus lateralis muscle of 10 subjects during maximal voluntary knee extensions, we noninvasively assessed the relationship between MU APSIZE and RT before and immediately after an 8-wk strength training intervention. In addition to significant increases in muscle size and strength (P < 0.02), our data show that training elicited an increase in MU APSIZE of high-threshold MUs. Additionally, a large portion of the variance (83.6%) in the change in each individual's relationship between MU APSIZE and RT was explained by training-induced changes in whole muscle CSA (obtained via ultrasonography). Our findings suggest that the noninvasive, electrophysiological assessment of longitudinal changes to MU APSIZE appears to reflect hypertrophy specific to MUs across the RT continuum.
Collapse
Affiliation(s)
- Zachary K Pope
- Applied Musculoskeletal and Human Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Garrett M Hester
- Applied Musculoskeletal and Human Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Franklin M Benik
- Applied Musculoskeletal and Human Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Jason M DeFreitas
- Applied Musculoskeletal and Human Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
18
|
Castronovo AM, Negro F, Conforto S, Farina D. The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input. J Appl Physiol (1985) 2015; 119:1337-46. [PMID: 26404614 DOI: 10.1152/japplphysiol.00255.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
α-Motor neurons receive synaptic inputs from spinal and supraspinal centers that comprise components either common to the motor neuron pool or independent. The input shared by motor neurons--common input--determines force control. The aim of the study was to investigate the changes in the strength of common synaptic input delivered to motor neurons with changes in force and with fatigue, two conditions that underlie an increase in the net excitatory drive to the motor neurons. High-density surface electromyogram (EMG) signals were recorded from the tibialis anterior muscle during contractions at 20, 50, and 75% of the maximal voluntary contraction force (in 3 sessions separated by at least 2 days), all sustained until task failure. EMG signal decomposition identified the activity of a total of 1,245 motor units. The coherence values between cumulative motor unit spike trains increased with increasing force, especially for low frequencies. This increase in coherence was not observed when comparing two subsets of motor units having different recruitment thresholds, but detected at the same force level. Moreover, the coherence values for frequencies <5 Hz increased at task failure with respect to the beginning of the contractions for all force levels. In conclusion, the results indicated that the relative strength of common synaptic input to motor neurons increases with respect to independent input when the net excitatory drive to motor neurons increases as a consequence of a change in force and fatigue.
Collapse
Affiliation(s)
- Anna Margherita Castronovo
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany; and BioLab, Biomedical Engineering Laboratory, Department of Engineering, University Roma TRE, Rome, Italy
| | - Francesco Negro
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany; and
| | - Silvia Conforto
- BioLab, Biomedical Engineering Laboratory, Department of Engineering, University Roma TRE, Rome, Italy
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany; and
| |
Collapse
|
19
|
Herda TJ, Siedlik JA, Trevino MA, Cooper MA, Weir JP. Motor unit control strategies of endurance- versus resistance-trained individuals. Muscle Nerve 2015; 52:832-43. [DOI: 10.1002/mus.24597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Trent J. Herda
- Neuromechanics Laboratory; Department of Health; Sport; and Exercise Sciences; University of Kansas; 1301 Sunnyside Avenue, Room 101BE Lawrence Kansas 66045 USA
| | - Jacob A. Siedlik
- Neuromechanics Laboratory; Department of Health; Sport; and Exercise Sciences; University of Kansas; 1301 Sunnyside Avenue, Room 101BE Lawrence Kansas 66045 USA
| | - Michael A. Trevino
- Neuromechanics Laboratory; Department of Health; Sport; and Exercise Sciences; University of Kansas; 1301 Sunnyside Avenue, Room 101BE Lawrence Kansas 66045 USA
| | - Michael A. Cooper
- Neuromechanics Laboratory; Department of Health; Sport; and Exercise Sciences; University of Kansas; 1301 Sunnyside Avenue, Room 101BE Lawrence Kansas 66045 USA
| | - Joseph P. Weir
- Neuromechanics Laboratory; Department of Health; Sport; and Exercise Sciences; University of Kansas; 1301 Sunnyside Avenue, Room 101BE Lawrence Kansas 66045 USA
| |
Collapse
|
20
|
McManus L, Hu X, Rymer WZ, Lowery MM, Suresh NL. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle. J Neurophysiol 2015; 113:3186-96. [PMID: 25761952 PMCID: PMC4432683 DOI: 10.1152/jn.00146.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022] Open
Abstract
The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR.
Collapse
Affiliation(s)
- Lara McManus
- University College Dublin, Belfield, Dublin, Ireland;
| | - Xiaogang Hu
- Rehabilitation Institute of Chicago, Chicago, Illinois; and
| | - William Z Rymer
- Rehabilitation Institute of Chicago, Chicago, Illinois; and Northwestern University, Evanston, Illinois
| | | | - Nina L Suresh
- Rehabilitation Institute of Chicago, Chicago, Illinois; and
| |
Collapse
|
21
|
Stock MS, Thompson BJ. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris. PLoS One 2014; 9:e115567. [PMID: 25531294 PMCID: PMC4274104 DOI: 10.1371/journal.pone.0115567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/09/2014] [Indexed: 11/18/2022] Open
Abstract
Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.
Collapse
Affiliation(s)
- Matt S. Stock
- Muscular Assessment Laboratory, Texas Tech University, Lubbock, TX, United States of America
- * E-mail:
| | - Brennan J. Thompson
- Muscular Assessment Laboratory, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
22
|
De Luca CJ, Kline JC. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings. J Neurophysiol 2014; 112:2729-44. [PMID: 25210152 PMCID: PMC4254878 DOI: 10.1152/jn.00725.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 09/08/2014] [Indexed: 11/22/2022] Open
Abstract
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization.
Collapse
Affiliation(s)
- Carlo J De Luca
- NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts; Department of Neurology, Boston University, Boston, Massachusetts; Department of Physical Therapy, Boston University, Boston, Massachusetts; and Delsys, Natick, Massachusetts
| | - Joshua C Kline
- NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
23
|
Trevino MA, Herda TJ, Cooper MA. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report. BMC Res Notes 2014; 7:611. [PMID: 25194883 PMCID: PMC4163171 DOI: 10.1186/1756-0500-7-611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. Case presentation One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. Conclusion An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike for the healthy participants. Finally, healthy participants exhibited changes in all electromyographic parameters during the repetitive muscle actions despite successfully completing all contractions with only a slight reduction in force. Thus, caution is warranted when quantifying muscular fatigue via motor unit firing rates and other electromyographic parameters since the parameters changed despite successful completing of all contractions with only a moderate reduction in strength in healthy subjects.
Collapse
Affiliation(s)
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, Lawrence, KS, USA.
| | | |
Collapse
|