1
|
Fausto LL, Alberti A, Kades G, de Carvalho RPD, Freiberger V, Ventura L, Dias P, Zanoni EM, Soares BH, Dutra ML, Martins DF, Comim CM. Effects of a Ketogenic Diet on the Assessment of Biochemical and Clinical Parameters in Duchenne Muscular Dystrophy: A Preclinical Investigation. Mol Neurobiol 2024; 61:10992-11011. [PMID: 38816675 DOI: 10.1007/s12035-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
Collapse
Affiliation(s)
- Lilian Leite Fausto
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Adriano Alberti
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil.
| | | | | | - Viviane Freiberger
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Leticia Ventura
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Paula Dias
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | - Matheus Luchini Dutra
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Daniel Fernandes Martins
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| |
Collapse
|
2
|
Shen F, Zhou H. Methylphenidate treatment of a Chinese boy with Becker muscular dystrophy combined with attention deficit hyperactivity disorder: a case report. Front Neurosci 2024; 18:1459582. [PMID: 39659883 PMCID: PMC11628498 DOI: 10.3389/fnins.2024.1459582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Becker muscular dystrophy (BMD) is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis, caused by mutations in the DMD gene, which encodes dystrophin protein. Different from Duchenne Muscular Dystrophy (DMD), in which dystrophin is completely absent in muscle tissue, while in BMD, the dystrophin gene can express some protein, but not enough. It has also been shown that a proportion of patients with DMD suffer from attention deficit hyperactivity disorder (ADHD), and the use of the stimulant methylphenidate has been suggested for the treatment of patients with DMD in combination with ADHD. However, there are no case reports on the treatment of co-occurring ADHD in BMD. Case presentation The patient was a 9-year-old boy who presented with elevated serum creatine kinase levels and inattention. The magnetic resonance imaging of the thigh muscles of both lower limbs suggested partial fatty infiltration of the gluteus maximus muscle bilaterally, and a novel heterozygous mutation (c.31 + 6 T > C) was identified in the DMD gene by Next Generation Sequencing (NGS) and the sequencing results were verified by using the Sanger method. The child was also diagnosed with co-morbid ADHD after a thorough evaluation and considering this new diagnosis, we started treatment with methylphenidate at a dose of 18 mg/day, and after 6 months of treatment, he showed a significant improvement in his attention span. Conclusion We identified a novel heterozygous mutation in the DMD gene, which will expand the spectrum of pathogenic variants in BMD. Simultaneously, methylphenidate treatment significantly improved attention in children with BMD co-morbid with ADHD, and this study provides value for future therapeutic protocols for BMD combined with ADHD. However, to the best of our knowledge, this is the only reported case report on the treatment of BMD co-morbid ADHD. So further studies are needed to determine the interrelationship between these disorders and their treatment.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Chengdu, Sichuan, China
| |
Collapse
|
3
|
Ó Murchú SC, O'Halloran KD. BREATHE DMD: boosting respiratory efficacy after therapeutic hypoxic episodes in Duchenne muscular dystrophy. J Physiol 2024; 602:3255-3272. [PMID: 38837229 DOI: 10.1113/jp280280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disorder, characterised by progressive decline in skeletal muscle function due to the secondary consequences of dystrophin deficiency. Weakness extends to the respiratory musculature, and cardiorespiratory failure is the leading cause of death in men with DMD. Intermittent hypoxia has emerged as a potential therapy to counteract ventilatory insufficiency by eliciting long-term facilitation of breathing. Mechanisms of sensory and motor facilitation of breathing have been well delineated in animal models. Various paradigms of intermittent hypoxia have been designed and implemented in human trials culminating in clinical trials in people with spinal cord injury and amyotrophic lateral sclerosis. Application of therapeutic intermittent hypoxia to DMD is considered together with discussion of the potential barriers to progression owing to the complexity of this devastating disease. Notwithstanding the considerable challenges and potential pitfalls of intermittent hypoxia-based therapies for DMD, we suggest it is incumbent on the research community to explore the potential benefits in pre-clinical models. Intermittent hypoxia paradigms should be implemented to explore the proclivity to express respiratory plasticity with the longer-term aim of preserving and potentiating ventilation in pre-clinical models and people with DMD.
Collapse
Affiliation(s)
- Seán C Ó Murchú
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Kepreotis SV, Oh JG, Park M, Yoo J, Lee C, Mercola M, Hajjar RJ, Jeong D. Inhibition of miR-25 ameliorates cardiac and skeletal muscle dysfunction in aged mdx/utrn haploinsufficient (+/-) mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102174. [PMID: 38584818 PMCID: PMC10998245 DOI: 10.1016/j.omtn.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.
Collapse
Affiliation(s)
- Sacha V. Kepreotis
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Mina Park
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Cholong Lee
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA, USA
| | - Dongtak Jeong
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
5
|
Omarmeli V, Lewandrowski KU, Assefi M, Faizmahdavi H, Sharafshah A, Mansouri N. A Novel Mutation (Lys31Arg) in the DMD Gene Impacts on Neuromuscular Dysfunctions Found by Whole Exome Sequencing and In Silico Analyses in an Iranian Family. Curr Aging Sci 2024; 17:169-174. [PMID: 38265407 DOI: 10.2174/0118746098280408240112112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Duchene Muscular Disorder (DMD) is a severe X-linked recessive neuromuscular disease. Previous reports predicted that one-third of cases with a fatal X-linked recessive disease will be caused by a novel mutation, and the mutation rate for DMD seems to be higher in males. OBJECTIVE A novel mutation in the DMD gene DMD (NM_004006.3):c.92A>G (p.Lys31Arg) is suggested for males because of their heterozygous mothers carrying the mutant alleles. METHOD Whole Exome Sequencing (WES) was done for a 25-year-old female followed by the screening of the novel mutation in her parents and her brother by the Sanger sequencing technique. Some in silico analyses were run to find the putative alterations in wild-type and mutant structures by PolyPhen-2 and Mupro. Notably, SWISS-MODEL was performed to build a reliable model for the mutant allele based on the PDB ID: 1DXX structure. Also, superimposition was done by PyMol. RESULTS WES analysis revealed three novel mutations including DLD (exon13:c.G1382A:p. G461E), ABCA3 (exon12:c.G1404C:p.W468C), and DMD (exon2:c.A92G:p.K31R) in the case. Focusing on DMD mutation, Sanger sequencing of the patient's parents and brother indicated no mutant allele in her mother and brother but a mutant allele in her father as a hemizygous pattern. In silico analyses showed no considerable change regarding pathogenic impact. CONCLUSION In conclusion, our findings revealed no pathogenic effect of the new mutation (K31R) of the DMD gene in an Iranian 25-year-old woman. Because of the DMD importance in preclinical diagnosis, these data may shed a light on the diagnosis of this mutation in future pregnancies.
Collapse
Affiliation(s)
- Vahid Omarmeli
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Biology Department, College of Bioscience, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spinal Surgery of Southern Arizona, Tucson, United States
- Department of Orthopaedics, Fundación Universitaria Sanitas, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Brazil
| | - Marjan Assefi
- Department of Biology, University of North Carolina, Greensboro, USA
| | - Hanieh Faizmahdavi
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Sharafshah
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Mansouri
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Gözaçan Karabulut D, Maden Ç, Yiğit S. Comparison of hand dexterity and hand laterality task in duchenne muscular dystrophy patients with typically developing peers. NeuroRehabilitation 2024; 55:95-102. [PMID: 39213100 DOI: 10.3233/nre-240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hand dexterity is important with Duchenne muscular dystrophy (DMD). OBJECTIVE The aim of this study was to compare hand dexterity and hand laterality task assessments in patients with DMD with typically-developing peers. METHODS The study included 25 DMD with a mean age of 10.2±2.38 and 21 typically-developing peers with a mean age of 10.33±2.26. Functional levels of DMD patients were determined by Brooke Upper Extremity Functional Classification Scale and Brooke Lower Extremity Functional Scale. The ABILHAND-Kids and 9-hole peg test were used to assess the hand dexterity of all participants, and assess the hand laterality task. RESULTS Patients with DMD had lower ABILHAND-Kids scores than their typically-developing peers (p < 0.001). Patients with DMD had higher 9-hole peg test duration on the dominant and non-dominant extremity compared to typically-developing peers (p < 0.001). Patients with DMD were found to be different from their typically-developing peers (p < 0.001) in lateralization response time and accuracy. CONCLUSION Patients with DMD were found to have lower manual dexterity and hand laterality task skills compared to their typically-developing peers. It is recommended that hand dexterity and upper extremity recognition capacities should be considered in assessment and intervention programs for physiotherapists and clinicians working in this field.
Collapse
Affiliation(s)
- Demet Gözaçan Karabulut
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Çağtay Maden
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Sedat Yiğit
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
7
|
Aydın Yağcıoğlu G, Alemdaroğlu Gürbüz İ, Topuz S, Yılmaz Ö. Development of a new instrument to evaluate gait characteristics of individuals with Duchenne Muscular Dystrophy: Gait Assessment Scale for Duchenne Muscular Dystrophy, and its validity and reliability. Early Hum Dev 2023; 185:105843. [PMID: 37672897 DOI: 10.1016/j.earlhumdev.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Patients with Duchenne Muscular Dystrophy (DMD) have gait disorders. Therefore, specific gait assessment tools are needed. AIMS The aim of this study was to develop a gait assessment instrument for DMD patients (DMD-GAS), and investigate its validity and reliability. STUDY DESIGN The scale was developed considering the expert opinions which included 10 physiotherapists who had experience in the management of patients with DMD, and the Content Validity Index (CVI) was calculated. The final version of the DMD-GAS that was agreed upon the experts consisted of 10 items, and each item scored between 0 and 2. The intra-rater reliability was established by the video analysis of children with a 1-month interval and inter-rater reliability was determined by the scores of 3 physiotherapists. SUBJECTS The study included 56 patients with DMD. OUTCOME MEASURES The criterion validity was determined by investigating the relationship between the total score of the DMD-GAS and Motor Function Measure (MFM), 6 Minute Walk Test (6MWT), and the data obtained from GAITRite. RESULTS The CVI of the DMD-GAS was 0.90 (p < 0.05). The construct validity and internal consistency of the DMD-GAS were excellent as well as the intra- and inter-rater reliability (>0.90). Moderate-to-very strong correlations were found between the total score of the DMD-GAS and the MFM-total score (r = 0.78), 6MWT (r = 0.71), gait speed (r = 0.50), stride length (r = 0.56), and base of support (r = -0.70) (p < 0.01). CONCLUSIONS The results indicated that DMD-GAS was a reliable and valid instrument to determine gait characteristics of the patients with DMD in clinical settings. CLINICAL TRIAL NUMBER NCT05244395.
Collapse
Affiliation(s)
- Güllü Aydın Yağcıoğlu
- University of Health Sciences, Gülhane Faculty of Health Sciences, Department of Orthotics and Prosthetics, 06018 Ankara, Turkey.
| | | | - Semra Topuz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| | - Öznur Yılmaz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| |
Collapse
|
8
|
Tang F, Xiao Y, Zhou C, Zhang H, Wang J, Zeng Y. NGS-based targeted sequencing identified six novel variants in patients with Duchenne/Becker muscular dystrophy from southwestern China. BMC Med Genomics 2023; 16:121. [PMID: 37254189 DOI: 10.1186/s12920-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND At present, Multiplex ligation-dependent probe amplification (MLPA) and exome sequencing are common gene detection methods in patients with Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD), but they can not cover the whole-genome sequence of the DMD gene. In this study, the whole genome capture of the DMD gene and next-generation sequencing (NGS) technology were used to detect the patients with DMD/BMD in Southwest China, to clarify the application value of this technology and further study the gene variant spectrum. METHODS From 2017 to 2020, 51 unrelated patients with DMD/BMD in southwestern China were clinically diagnosed at West China Second University Hospital of Sichuan University (Chengdu, China). The whole-genome of the DMD gene was captured from the peripheral blood of all patients, and next-generation sequencing was performed. Large copy number variants (CNVs) in the exon regions of the DMD gene were verified through MLPA, and small variations (such as single nucleotide variation and < 50 bp fragment insertions/deletions) were validated using Sanger sequencing. RESULTS Among the 51 patients, 49 (96.1% [49/51]) had pathogenic or likely pathogenic variants in the DMD gene. Among the 49 positive samples, 17 patients (34.7% [17/49]) had CNVs in the exon regions and 32 patients (65.3% [32/49]) had small variations. A total of six novel variants were identified: c.10916_10917del, c.1790T>A, c.1842del, c.5015del, c.5791_5792insCA, and exons 38-50 duplication. CONCLUSIONS Pathogenic or likely pathogenic variants of the DMD gene were detected in 49 patients (96.1% [49/51]), of which 6 variants (12.2% [6/49]) had not been previously reported. This study confirmed the value of NGS-based targeted sequencing for the DMD gene expanding the spectrum of variants in DMD, which may provide effective genetic counseling and prenatal diagnosis for families.
Collapse
Affiliation(s)
- Feng Tang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cong Zhou
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haixia Zhang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Zeng
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
A Proof of Principle Proteomic Study Detects Dystrophin in Human Plasma: Implications in DMD Diagnosis and Clinical Monitoring. Int J Mol Sci 2023; 24:ijms24065215. [PMID: 36982290 PMCID: PMC10049465 DOI: 10.3390/ijms24065215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease caused by pathogenic variations in the DMD gene. There is a need for robust DMD biomarkers for diagnostic screening and to aid therapy monitoring. Creatine kinase, to date, is the only routinely used blood biomarker for DMD, although it lacks specificity and does not correlate with disease severity. To fill this critical gap, we present here novel data about dystrophin protein fragments detected in human plasma by a suspension bead immunoassay using two validated anti-dystrophin-specific antibodies. Using both antibodies, a reduction of the dystrophin signal is detected in a small cohort of plasma samples from DMD patients when compared to healthy controls, female carriers, and other neuromuscular diseases. We also demonstrate the detection of dystrophin protein by an antibody-independent method using targeted liquid chromatography mass spectrometry. This last assay detects three different dystrophin peptides in all healthy individuals analysed and supports our finding that dystrophin protein is detectable in plasma. The results of our proof-of-concept study encourage further studies in larger sample cohorts to investigate the value of dystrophin protein as a low invasive blood biomarker for diagnostic screening and clinical monitoring of DMD.
Collapse
|
10
|
McDonald CM, Mayer OH, Hor KN, Miller D, Goemans N, Henricson EK, Marden JR, Freimark J, Lane H, Zhang A, Frean M, Trifillis P, Koladicz K, Signorovitch J. Functional and Clinical Outcomes Associated with Steroid Treatment among Non-ambulatory Patients with Duchenne Muscular Dystrophy1. J Neuromuscul Dis 2023; 10:67-79. [PMID: 36565131 PMCID: PMC9881035 DOI: 10.3233/jnd-221575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Evidence on the long-term efficacy of steroids in Duchenne muscular dystrophy (DMD) after loss of ambulation is limited. OBJECTIVE Characterize and compare disease progression by steroid treatment (prednisone, deflazacort, or no steroids) among non-ambulatory boys with DMD. METHODS Disease progression was measured by functional status (Performance of Upper Limb Module for DMD 1.2 [PUL] and Egen Klassifikation Scale Version 2 [EK] scale) and by cardiac and pulmonary function (left ventricular ejection fraction [LVEF], forced vital capacity [FVC] % -predicted, cough peak flow [CPF]). Longitudinal changes in outcomes, progression to key disease milestones, and dosing and body composition metrics were analyzed descriptively and in multivariate models. RESULTS This longitudinal cohort study included 86 non-ambulatory patients with DMD (mean age 13.4 years; n = 40 [deflazacort], n = 29 [prednisone], n = 17 [no steroids]). Deflazacort use resulted in slower average declines in FVC % -predicted vs. no steroids (+3.73 percentage points/year, p < 0.05). Both steroids were associated with significantly slower average declines in LVEF, improvement in CPF, and slower declines in total PUL score and EK total score vs. no steroids; deflazacort was associated with slower declines in total PUL score vs. prednisone (all p < 0.05). Both steroids also preserved functional abilities considered especially important to quality of life, including the abilities to perform hand-to-mouth function and to turn in bed at night unaided (all p < 0.05 vs. no steroids). CONCLUSIONS Steroid use after loss of ambulation in DMD was associated with delayed progression of important pulmonary, cardiac, and upper extremity functional deficits, suggesting some benefits of deflazacort over prednisone.
Collapse
Affiliation(s)
| | - Oscar H. Mayer
- Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kan N. Hor
- Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | | - Jessica R. Marden
- Analysis Group, Inc., Boston, MA, USA,Correspondence to: Jessica Marden, 111 Huntington Avenue, 14th Floor, Boston, MA 02199, USA. Tel.: +1 617 425 8000; E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Farrar MA, Kariyawasam D, Grattan S, Bayley K, Davis M, Holland S, Waddel LB, Jones K, Lorentzos M, Ravine A, Wotton T, Wiley V. Newborn Screening for the Diagnosis and Treatment of Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:15-28. [PMID: 36373292 PMCID: PMC9881031 DOI: 10.3233/jnd-221535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A pilot newborn screening (NBS) program for Duchenne muscular dystrophy (DMD) study proposes to assess the feasibility of the screening procedure, temporal course of the various steps of screening, and the public acceptability of the program. This is particularly vital to ascertain as DMD is considered a 'non-treatable' disease and thus does not fit the traditional criteria for newborn screening. However, modern perspectives of NBS for DMD are changing and point to possible net benefits for children and their families undertaking NBS for DMD. The aim of this workshop was to establish pathways for the successful implementation and evaluation of a pilot NBS for DMD program in Australia. Consensus was reached as to the rationale for, potential benefits, risks, barriers and facilitators of screening, alongside the establishment of screening protocols and clinical referral pathways.
Collapse
Affiliation(s)
- Michelle A. Farrar
- Department of Paediatric Neurology, Sydney Children’s Hospital Network, Sydney, NSW, Australia,Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Didu Kariyawasam
- Department of Paediatric Neurology, Sydney Children’s Hospital Network, Sydney, NSW, Australia,Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Sarah Grattan
- Department of Paediatric Neurology, Sydney Children’s Hospital Network, Sydney, NSW, Australia,Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Klair Bayley
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, WA, Australia
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia
| | - Sandra Holland
- Department of Paediatric Neurology, Sydney Children’s Hospital Network, Sydney, NSW, Australia,Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Leigh B. Waddel
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW, Australia,Discipline of Paediatrics, University of Sydney, Sydney, NSW, Australia
| | - Kristi Jones
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michelle Lorentzos
- The T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, NSW, Australia,Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW, Australia,Discipline of Paediatrics, University of Sydney, Sydney, NSW, Australia
| | - Anja Ravine
- NSW Newborn Screening Programme, Children’s Hospital Westmead, Westmead, NSW, Australia
| | - Tiffany Wotton
- NSW Newborn Screening Programme, Children’s Hospital Westmead, Westmead, NSW, Australia
| | - Veronica Wiley
- NSW Newborn Screening Programme, Children’s Hospital Westmead, Westmead, NSW, Australia
| | | |
Collapse
|
12
|
Araujo APDQC, Saute JAM, Fortes CPDD, França MC, Pereira JA, Albuquerque MAVD, Carvalho AADS, Cavalcanti EBU, Covaleski APPM, Fagondes SC, Gurgel-Giannetti J, Gonçalves MVM, Martinez ARM, Coimbra Neto AR, Neves FR, Nucci A, Nucera APCDS, Pessoa ALS, Rebel MF, Santos FND, Scola RH, Sobreira CFDR. Update of the Brazilian consensus recommendations on Duchenne muscular dystrophy. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:81-94. [PMID: 36918011 PMCID: PMC10014210 DOI: 10.1055/s-0043-1761466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In the last few decades, there have been considerable improvements in the diagnosis and care of Duchenne muscular dystrophy (DMD), the most common childhood muscular dystrophy. International guidelines have been published and recently reviewed. A group of Brazilian experts has developed a standard of care based on a literature review with evidence-based graded recommendations in a two-part publication. Implementing best practice management has helped change the natural history of this chronic progressive disorder, in which the life expectancy for children of the male sex in the past used to be very limited. Since the previous publication, diagnosis, steroid treatment, rehabilitation, and systemic care have gained more significant insights with new original work in certain fields. Furthermore, the development of new drugs is ongoing, and some interventions have been approved for use in certain countries. Therefore, we have identified the need to review the previous care recommendations for Brazilian patients with DMD. Our objective was to create an evidence-based document that is an update on our previous consensus on those topics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Flavio Reis Neves
- Instituto de Puericultura e Pediatria Martagão Gesteira, Equipe de Pesquisa em Doenças Neuromusculares, Rio de Janeiro RJ, Brazil
| | - Anamarli Nucci
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas SP, Brazil
| | | | | | - Marcos Ferreira Rebel
- Universidade Federal do Rio de Janeiro, Faculdade de Fisioterapia, Rio de Janeiro RJ, Brazil
| | | | | | | |
Collapse
|
13
|
Puwanant A, Živković SA, Clemens PR. Muscular dystrophy. NEUROBIOLOGY OF BRAIN DISORDERS 2023:147-164. [DOI: 10.1016/b978-0-323-85654-6.00055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Wei Y, Su Q, Li X. Identification of hub genes related to Duchenne muscular dystrophy by weighted gene co-expression network analysis. Medicine (Baltimore) 2022; 101:e32603. [PMID: 36596079 PMCID: PMC9803489 DOI: 10.1097/md.0000000000032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The study was aimed to analyze the potential gene modules and hub genes of Duchenne muscular dystrophy (DMD) by weighted gene co-expression network analysis. METHODS Based on the muscular dystrophy tissue expression profiling microarray GSE13608 from gene expression omnibus, gene co-expression modules were analyzed using weighted gene co-expression network analysis, gene modules related to DMD were screened, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed, and signature genes in the modules were screened. The protein-protein interaction network was constructed through Cytoscape, and hub genes were identified. The expression of hub genes in DMD versus normal muscle tissue was calculated in GSE6011. RESULTS 12 co-expressed gene modules were identified, among which black module was significantly related to DMD. The characteristic genes in the module were enriched in the regulation of immune effector processes, immune response mediated by immunoglobulin, immune response mediated by B cells, etc. SERPING1, F13A1, C1S, C1R, and HLA-DPA1 were considered as hub genes in protein-protein interaction network. Analysis of GSE6011 shows that expression of SERPING1, F13A1, C1S, C1R, and HLA-DPA1 in tissues of DMD patients were higher than normal. CONCLUSION SERPING1, F13A1, C1S, C1R, and HLA-DPA1 may participate in the development of DMD by regulating innate immunity and inflammation, and they are expected to be a potential biomarker and novel therapeutic targets for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaohong Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- * Correspondence: Xiaohong Li, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China (e-mail: )
| |
Collapse
|
15
|
Kalkman S, Dondorp W. The case for screening in early life for 'non-treatable' disorders: ethics, evidence and proportionality. A report from the Health Council of the Netherlands. Eur J Hum Genet 2022; 30:1155-1158. [PMID: 35132176 PMCID: PMC9554018 DOI: 10.1038/s41431-022-01055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
In the Netherlands, the call to add 'non-treatable' disorders to the newborn bloodspot screening programme has found a sympathetic ear with the Government. In 2019, the Health Council of the Netherlands was formally asked for advice on the conditions under which bloodspot screening for such disorders might be offered. Here we present the reasoning and the recommendations of the resulting report, and briefly discuss its reception. The report holds on to the classical view that screening must benefit the child, but argues for a wider account of child benefit than only in terms of substantial health gains. However, screening for 'non-treatable' disorders would still require evidence of a favourable benefits to harm ratio. The report presents a framework for such screening, but concludes that apart perhaps from Duchenne Muscular Dystrophy (DMD), no or only very few 'non-treatable' disorders would at present meet its criteria. Setting up a screening programme that might benefit only a small percentage of families struggling with uncertainty about their child's diagnosis would not seem proportional. Instead, the Government is advised to invest in a better infrastructure for early referral, testing and care. The reaction to the report from proponents of such screening shows that the dividing line in the debate is not about whether screening neonates for 'non-treatable' disorders is acceptable in itself. It is rather whether such screening should be regarded as catering to a parental 'right to know', or as a public health service that should be subject to standards of evidence and proportionality.
Collapse
Affiliation(s)
- Shona Kalkman
- Health Council of the Netherlands, The Hague, the Netherlands
| | - Wybo Dondorp
- Dept of Health, Ethics & Society, School for Public Health & Primary Care (CAPHRI), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Tluczek A, Ersig AL, Lee S. Psychosocial Issues Related to Newborn Screening: A Systematic Review and Synthesis. Int J Neonatal Screen 2022; 8:ijns8040053. [PMID: 36278623 PMCID: PMC9589938 DOI: 10.3390/ijns8040053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Genomic advances have contributed to a proliferation of newborn screening (NBS) programs. Psychosocial consequences of NBS have been identified as risks to these public health initiatives. Following PRISMA guidelines, this systematic review synthesizes findings from 92 evidence-based, peer-reviewed research reports published from 2000 through 2020 regarding psychosocial issues associated with NBS. Results describe parents' knowledge of and attitudes towards NBS, reactions to and understanding of positive NBS results, experiences of communication with health providers, decisions about carrier testing, and future pregnancies. Findings also explain the impact of positive NBS results on parent-child relationships, child development, informing children about carrier status, family burden, quality of life, and disparities. In conclusion, psychosocial consequences of receiving unexpected neonatal screening results and unsolicited genetic information remain significant risks to expansion of NBS. Findings suggest that risks may be mitigated by improved parent NBS education, effective communication, individualized genetic counseling, and anticipatory developmental guidance. Clinicians need to take extra measures to ensure equitable service delivery to marginalized subpopulations. Future investigations should be more inclusive of culturally and socioeconomically diverse families and conducted in low-resource countries. Providing these countries with adequate resources to develop NBS programs is an essential step towards achieving international health equity.
Collapse
Affiliation(s)
- Audrey Tluczek
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI 53705, USA
- Correspondence:
| | - Anne L. Ersig
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI 53705, USA
| | - Shinhyo Lee
- School of Nursing, Columbia University, 560 W 168th St, New York, NY 10032, USA
| |
Collapse
|
17
|
Cohen SA, Bar-Am O, Fuoco C, Saar G, Gargioli C, Seliktar D. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides. Cell Death Dis 2022; 13:779. [PMID: 36085138 PMCID: PMC9463190 DOI: 10.1038/s41419-022-05166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease caused by a mutation in the X-linked Dytrophin gene preventing the expression of the functional protein. Exon skipping therapy using antisense oligonucleotides (AONs) is a promising therapeutic strategy for DMD. While benefits of AON therapy have been demonstrated, some challenges remain before this strategy can be applied more comprehensively to DMD patients. These include instability of AONs due to low nuclease resistance and poor tissue uptake. Delivery systems have been examined to improve the availability and stability of oligonucleotide drugs, including polymeric carriers. Previously, we showed the potential of a hydrogel-based polymeric carrier in the form of injectable PEG-fibrinogen (PF) microspheres for delivery of chemically modified 2'-O-methyl phosphorothioate (2OMePs) AONs. The PF microspheres proved to be cytocompatible and provided sustained release of the AONs for several weeks, causing increased cellular uptake in mdx dystrophic mouse cells. Here, we further investigated this delivery strategy by examining in vivo efficacy of this approach. The 2OMePS/PEI polyplexes loaded in PF microspheres were delivered by intramuscular (IM) or intra-femoral (IF) injections. We examined the carrier biodegradation profiles, AON uptake efficiency, dystrophin restoration, and muscle histopathology. Both administration routes enhanced dystrophin restoration and improved the histopathology of the mdx mice muscles. The IF administration of the microspheres improved the efficacy of the 2OMePS AONs over the IM administration. This was demonstrated by a higher exon skipping percentage and a smaller percentage of centered nucleus fibers (CNF) found in H&E-stained muscles. The restoration of dystrophin expression found for both IM and IF treatments revealed a reduced dystrophic phenotype of the treated muscles. The study concludes that injectable PF microspheres can be used as a carrier system to improve the overall therapeutic outcomes of exon skipping-based therapy for treating DMD.
Collapse
Affiliation(s)
- Shani Attias Cohen
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Claudia Fuoco
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Galit Saar
- grid.6451.60000000121102151Biomedical Core Facility, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cesare Gargioli
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Dror Seliktar
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Attias Cohen S, Simaan-Yameen H, Fuoco C, Gargioli C, Seliktar D. Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Dangouloff T, Boemer F, Servais L. Newborn screening of neuromuscular diseases. Neuromuscul Disord 2021; 31:1070-1080. [PMID: 34620514 DOI: 10.1016/j.nmd.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Neuromuscular diseases represent an heterogenous group of more than 400 diseases, with a very broad phenotypic spectrum. Given their rarity and complexity, neuromuscular diseases are often diagnosed with a very significant delay after which irreversible muscle damage may limit the efficacy of treatments when available. In this context, neonatal screening could constitute a solution for early detection and treatment. A systematic review of the literature in PubMed up to May 1, 2021, was conducted according to PRISMA guidelines, including classical neuromuscular diseases and diseases with a clear peripheral nervous system involvement (including central nervous system disease with severe neuropathy). We found seven diseases for which newborn screening data were reported: spinal muscular atrophy (9), Duchenne muscular dystrophy (9), Pompe disease (8), X-linked adrenoleukodystrophy (5), Krabbe disease (4), myotonic dystrophy type 1 (1), metachromatic leukodystrophy (1). The future of newborn screening for neuromuscular disorders pass through a global technological switch, from a biochemical to a genetic-based approach. The rapid development of therapy also requires the possibility to quickly adapt the list of treated conditions, to allow innovative therapies to achieve their best efficacy.
Collapse
Affiliation(s)
- Tamara Dangouloff
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium.
| | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU of Liège, University of Liège, Liège, Belgium
| | - Laurent Servais
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium; MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, UK.
| |
Collapse
|
21
|
Park EW, Shim YJ, Ha JS, Shin JH, Lee S, Cho JH. Diagnosis of Duchenne Muscular Dystrophy in a Presymptomatic Infant Using Next-Generation Sequencing and Chromosomal Microarray Analysis: A Case Report. CHILDREN-BASEL 2021; 8:children8050377. [PMID: 34064562 PMCID: PMC8151037 DOI: 10.3390/children8050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Duchenne muscular dystrophy is a progressive and lethal X-linked recessive neuromuscular disease caused by mutations in the dystrophin gene. It has a high rate of diagnostic delay; early diagnosis and treatment are often not possible due to delayed recognition of muscle weakness and lack of effective treatments. Current treatments based on genetic therapy can improve clinical results, but treatment must begin as early as possible before significant muscle damage. Therefore, early diagnosis and rehabilitation of Duchenne muscular dystrophy are needed before symptom aggravation. Creatine kinase is a diagnostic marker of neuromuscular disorders. Herein, the authors report a case of an infant patient with Duchenne muscular dystrophy with a highly elevated creatine kinase level but no obvious symptoms of muscle weakness. The patient was diagnosed with Duchenne muscular dystrophy via next-generation sequencing and chromosomal microarray analysis to identify possible inherited metabolic and neuromuscular diseases related to profound hyperCKemia. The patient is enrolled in a rehabilitation program and awaits the approval of the genetic treatment in Korea. This is the first report of an infantile presymptomatic Duchenne muscular dystrophy diagnosis using next-generation sequencing and chromosomal microarray analysis.
Collapse
Affiliation(s)
- Eun-Woo Park
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
| | - Ye-Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea;
| | - Jung-Sook Ha
- Department of Laboratory Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Korea;
| | - Soyoung Lee
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
| | - Jang-Hyuk Cho
- Department of Rehabilitation Medicine, Keimyung University Dongsan Hospital, Keimyung University school of Medicine, Daegu 42601, Korea; (E.W.P.); (S.L.)
- Correspondence: ; Tel.: +82-53-258-7912
| |
Collapse
|
22
|
Xiao T, Wu B, Cao Y, Liu R, Cheng G, Wang L, Zhuang D, Zhao Z, Wang H, Zhou W. Genetic identification of pathogenic variations of the DMD gene: a retrospective study from 10,481 neonatal patients based on next-generation sequencing data. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:766. [PMID: 34268379 PMCID: PMC8246177 DOI: 10.21037/atm-20-7102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
Background An elevated level of creatine kinase (CK) is usually the primary screening marker for Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD). This study investigated the clinical application of next-generation sequencing (NGS) in newborns with a possible diagnosis of DMD/BMD in the neonatal intensive care unit (NICU). Methods NGS data from the NICU between June 1, 2016, and June 30, 2020, were reanalyzed by an in-house pipeline. Other methods confirmed the genetic findings, and clinical follow-up was performed until August 1, 2020. Results Of the 10,481 newborns, 19 (0.18%, 19/10,481) cases with pathogenic variations of the DMD gene were identified, including 13 (68.4%, 13/19) deletions, 4 (21.1%, 4/19) duplications, and 2 (10.5%, 2/19) nonsense mutations. Eight of the cases were diagnosed with DMD. Therapeutic strategies were modified for these patients. Six cases were diagnosed with BMD. Five patients except for 1 deceased patient were further followed-up, and clinical management was adjusted based on the clinical symptoms. The remaining 5 cases were indeterminate for DMD and BMD. Genetic counseling and further follow-up were performed or suggested. Conclusions Our study showed that DMD/BMD could be diagnosed earlier in the neonatal stage before the typical clinical symptoms appear. Early diagnosis may provide an opportunity for guiding the care and treatment of patients. However, ethical issues need to be kept in mind in the process of genetic counseling.
Collapse
Affiliation(s)
- Tiantian Xiao
- Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Cao
- Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Renchao Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Laishuan Wang
- Department of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Deyi Zhuang
- Department of Pediatrics, Xiamen Children's Hospital, Xiamen, China
| | - Zhengyan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Department of Neonates, Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
23
|
Su X, Shen Y, Jin Y, Weintraub NL, Tang YL. Identification of critical molecular pathways involved in exosome-mediated improvement of cardiac function in a mouse model of muscular dystrophy. Acta Pharmacol Sin 2021; 42:529-535. [PMID: 32601364 PMCID: PMC8115234 DOI: 10.1038/s41401-020-0446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease characterized by skeletal muscle atrophy, respiratory failure, and cardiomyopathy. Our previous studies have shown that transplantation with allogeneic myogenic progenitor-derived exosomes (MPC-Exo) can improve cardiac function in X-linked muscular dystrophy (Mdx) mice. In the present study we explored the molecular mechanisms underlying this beneficial effect. We quantified gene expression in the hearts of two strains of Mdx mice (D2.B10-DmdMdx/J and Utrntm1Ked-DmdMdx/J). Two days after MPC-Exo or control treatment, we performed unbiased next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in treated Mdx hearts. Venn diagrams show a set of 780 genes that were ≥2-fold upregulated, and a set of 878 genes that were ≥2-fold downregulated, in both Mdx strains following MPC-Exo treatment as compared with control. Gene ontology (GO) and protein-protein interaction (PPI) network analysis showed that these DEGs were involved in a variety of physiological processes and pathways with a complex connection. qRT-PCR was performed to verify the upregulated ATP2B4 and Bcl-2 expression, and downregulated IL-6, MAPK8 and Wnt5a expression in MPC-Exo-treated Mdx hearts. Western blot analysis verified the increased level of Bcl-2 and decreased level of IL-6 protein in MPC-Exo-treated Mdx hearts compared with control treatment, suggesting that anti-apoptotic and anti-inflammatory effects might be responsible for heart function improvement by MPC-Exo. Based on these findings, we believed that these DEGs might be therapeutic targets that can be explored to develop new strategies for treating DMD.
Collapse
Affiliation(s)
- Xuan Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yan Shen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yue Jin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yao-Liang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Barnard AM, Riehl SL, Willcocks RJ, Walter GA, Angell AM, Vandenborne K. Characterizing Enrollment in Observational Studies of Duchenne Muscular Dystrophy by Race and Ethnicity. J Neuromuscul Dis 2020; 7:167-173. [PMID: 31929119 DOI: 10.3233/jnd-190447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Observational research benefits from inclusion of diverse cohorts. To characterize racial and ethnic diversity in observational and natural history research studies of Duchenne muscular dystrophy (DMD), highly cited and influential observational studies were identified. Fourteen United States-based articles were included. All studies cited >70% White participants with the majority having few racial minority participants. Enrollment of Black/African American individuals was particularly limited (<5% in all but one study), and Hispanic/Latino participants ranged from 3.3- 26.5% of cohorts. These results suggest a need for effective strategies to recruit, enroll, and retain racially and ethnically diverse populations into observational research in DMD.
Collapse
Affiliation(s)
- Alison M Barnard
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Samuel L Riehl
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Amber M Angell
- Department of Occupational Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Lu-Nguyen N, Ferry A, Schnell FJ, Hanson GJ, Popplewell L, Dickson G, Malerba A. Functional muscle recovery following dystrophin and myostatin exon splice modulation in aged mdx mice. Hum Mol Genet 2020; 28:3091-3100. [PMID: 31179493 DOI: 10.1093/hmg/ddz125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease affecting 1 in 3500-5000 newborn boys. It is due to mutations in the DMD gene with a consequent lack of dystrophin protein that leads to deterioration of myofibres and their replacement with fibro-adipogenic tissue. Out-of-frame mutations in the DMD gene can be modified by using antisense oligonucleotides (AONs) to promote skipping of specific exons such that the reading frame is restored and the resulting protein produced, though truncated, is functional. We have shown that AONs can also be used to knock down myostatin, a negative regulator of muscle growth and differentiation, through disruption of the transcript reading frame, and thereby enhance muscle strength. In young mdx mice, combined dystrophin and myostatin exon skipping therapy greatly improved DMD pathology, compared to the single dystrophin skipping approach. Here we show that in aged (>15-month-old) mdx mice, when the pathology is significantly more severe and more similar to the one observed in DMD patients, the effect of the combined therapy is slightly attenuated but still beneficial in improving the disease phenotype. These results confirm the beneficial outcome of the combination approach and support its translation into DMD clinical trials.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Arnaud Ferry
- Sorbonne Université UMRS974 INSERM, Institut de Myologie, 75013 Paris, France.,Université Sorbonne Paris Cité, 75006 Paris, France
| | | | - Gunnar J Hanson
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Linda Popplewell
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
26
|
Vita GL, Vita G. Is it the right time for an infant screening for Duchenne muscular dystrophy? Neurol Sci 2020; 41:1677-1683. [PMID: 32112218 PMCID: PMC7359158 DOI: 10.1007/s10072-020-04307-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Newborn screening (NBS) is an essential, preventive public health programme for early identification of disorders whose early treatment can lead to significant reduction in morbidity and mortality. NBS for Duchenne muscular dystrophy (DMD) has been a controversial matter for many years, because of false positives, the lack of effective drugs and the need of more data about screening efficacy. The still high diagnostic delay of DMD and the current availability of drugs such as steroid, ataluren, eteplirsen, golodirsen and forthcoming new drugs, improving the clinical conditions if early started, make appropriate to begin a concrete discussion between stakeholders to identify best practice for DMD screening. A two-step system CK/DNA screening programme is presented to be performed in male infants aged between 6 months and 42 months involving more than 30,000 male infants. Five to eight DMD subjects are believed to be diagnosed. The pilot project would give the opportunity to test in a small population the feasibility of an infant screening programme, which in the near future could be applicable to an entire country.
Collapse
Affiliation(s)
- Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy. .,Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
27
|
Ke Q, Zhao ZY, Mendell JR, Baker M, Wiley V, Kwon JM, Alfano LN, Connolly AM, Jay C, Polari H, Ciafaloni E, Qi M, Griggs RC, Gatheridge MA. Progress in treatment and newborn screening for Duchenne muscular dystrophy and spinal muscular atrophy. World J Pediatr 2019; 15:219-225. [PMID: 30904991 DOI: 10.1007/s12519-019-00242-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Advances in treatment for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) hold promise for children with these disorders. Accurate genetic diagnosis, early in the disease process, will allow these treatments to be most effective. Newborn screening (NBS) for SMA has been recommended in the United States, and a pilot DMD NBS program is underway in Hangzhou, China. DATA SOURCES A PubMed search, limited to the past 5 years, was conducted to identify: (1) therapeutic advancements for DMD/SMA approved by the United States Food and Drug Administration or the European Medicine Agency and (2) The status of NBS for DMD/SMA. RESULTS We review the current state of approved treatments for DMD/SMA. We present recommendations regarding the future of NBS for these diseases, with a focus on the outcomes and challenges of SMA NBS in New York, USA, and the DMD NBS pilot program in Hangzhou, China. CONCLUSIONS Approved treatments for DMD and SMA may change the natural history of these diseases. Long-term studies of these treatments are underway. To avoid the known diagnostic delay associated with these disorders and provide optimal effectiveness of these treatments, early identification of patients through NBS will be necessary. Establishing comprehensive follow-up plans for positively identified patients will need to be in place for NBS programs to be successful.
Collapse
Affiliation(s)
- Qing Ke
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jerry R Mendell
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mei Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Veronica Wiley
- Disciplines of Genetic Medicine and Pediatric and Child Health, University of Sydney, Sydney, Australia
| | - Jennifer M Kwon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay N Alfano
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anne M Connolly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Jay
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Emma Ciafaloni
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ming Qi
- Department of Clinical Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Robert C Griggs
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michele A Gatheridge
- Department of Neurology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Lower Limb Flexibility in Children With Duchenne Muscular Dystrophy: Effects on Functional Performance. Pediatr Exerc Sci 2019; 31:42-46. [PMID: 30180785 DOI: 10.1123/pes.2018-0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effects of lower limb flexibility on the functional performance of children with Duchenne muscular dystrophy. METHODS Thirty children, whose functional levels were at 1 or 2 according to the Brooke Lower Extremity Functional Classification Scale, were included in this study. The flexibilities of the hamstrings, hip flexors, tensor fascia latae, and gastrocnemius muscles were evaluated in the children's dominant lower limbs. The children's functional performance was assessed using 6-minute walk tests and timed performance tests. The correlations between the flexibilities of the lower limb muscles and the performance tests were examined. RESULTS The flexibilities of the lower extremity muscles were found to be correlated to the 6-minute walk tests and the timed performance tests. The flexibility of the hamstrings (r = -.825), the gastrocnemius muscles (r = .545), the hip flexors (r = .481), and the tensor fascia latae (r = .445) were found to be correlated with functional performance as measured by the 6-minute walk tests (P < .05). DISCUSSION The results of the current study indicate that the flexibility of the lower limbs has an effect on functional performance in the early stages of Duchenne muscular dystrophy. More research is needed to determine the functional effects of flexibility on performance by adding long-term flexibility exercises to the physiotherapy programs of children with Duchenne muscular dystrophy.
Collapse
|
29
|
Shen MD, Piven J. Brain and behavior development in autism from birth through infancy. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 29398928 PMCID: PMC5789210 DOI: 10.31887/dcns.2017.19.4/mshen] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition that affects 1 in 68 children. Diagnosis is based on the presence of characteristic behavioral impairments that emerge in the second year of life and thus is not typically made until 3 to 4 years of age. Recent studies of early brain and behavior development have provided important new insights into the nature of this condition. Autism-specific brain imaging features have been identified as early as 6 months of age, and age-specific brain and behavior changes have been demonstrated across the first 2 years of life, highlighting the developmental nature of ASD. New findings demonstrate that early brain imaging in the first year of life holds great promise for presymptomatic prediction of ASD. There is a general understanding in medicine that earlier treatment has better outcomes than later treatment, and in autism, there is an emerging consensus that earlier intervention results in more successful outcomes for the child. Examining early brain and behavior trajectories also has the potential to parse the etiologic heterogeneity in ASD, a well-recognized impediment to developing targeted, mechanistic treatments. This review highlights the current state of the science in the pursuit of early brain and behavioral markers of autism during infancy and examines the potential implications of these findings for treatment of this condition.
Collapse
Affiliation(s)
- Mark D Shen
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, Street N, Tomezsko J, Wagner KR, Ward LM, Weber DR. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018; 17:251-267. [PMID: 29395989 PMCID: PMC5869704 DOI: 10.1016/s1474-4422(18)30024-3] [Citation(s) in RCA: 730] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Since the publication of the Duchenne muscular dystrophy (DMD) care considerations in 2010, multidisciplinary care of this severe, progressive neuromuscular disease has evolved. In conjunction with improved patient survival, a shift to more anticipatory diagnostic and therapeutic strategies has occurred, with a renewed focus on patient quality of life. In 2014, a steering committee of experts from a wide range of disciplines was established to update the 2010 DMD care considerations, with the goal of improving patient care. The new care considerations aim to address the needs of patients with prolonged survival, to provide guidance on advances in assessments and interventions, and to consider the implications of emerging genetic and molecular therapies for DMD. The committee identified 11 topics to be included in the update, eight of which were addressed in the original care considerations. The three new topics are primary care and emergency management, endocrine management, and transitions of care across the lifespan. In part 1 of this three-part update, we present care considerations for diagnosis of DMD and neuromuscular, rehabilitation, endocrine (growth, puberty, and adrenal insufficiency), and gastrointestinal (including nutrition and dysphagia) management.
Collapse
Affiliation(s)
- David J Birnkrant
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Katharine Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carla M Bann
- RTI International, Research Triangle Park, NC, USA
| | - Susan D Apkon
- Department of Rehabilitation Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | | | - David Brumbaugh
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO, USA
| | - Laura E Case
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University School of Medicine, Durham, NC, USA
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, and Neurology Service, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA
| | - Stasia Hadjiyannakis
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, and University of Ottawa, Ottawa, ON, Canada
| | - Shree Pandya
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Natalie Street
- Rare Disorders and Health Outcomes Team, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jean Tomezsko
- Medical Nutrition Consulting of Media LLC, and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, and Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leanne M Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, and University of Ottawa, Ottawa, ON, Canada
| | - David R Weber
- Division of Endocrinology and Diabetes, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
31
|
Omairi S, Hau KL, Collin-Hooper H, Montanaro F, Goyenvalle A, Garcia L, Patel K. Link between MHC Fiber Type and Restoration of Dystrophin Expression and Key Components of the DAPC by Tricyclo-DNA-Mediated Exon Skipping. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:409-418. [PMID: 29246319 PMCID: PMC6114118 DOI: 10.1016/j.omtn.2017.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 01/16/2023]
Abstract
Exon skipping mediated by tricyclo-DNA (tc-DNA) antisense oligonucleotides has been shown to induce significant levels of dystrophin restoration in mdx, a mouse model of Duchenne muscular dystrophy. This translates into significant improvement in key disease indicators in muscle, cardio-respiratory function, heart, and the CNS. Here we examine the relationship between muscle fiber type, based on myosin heavy chain (MHC) profile, and the ability of tc-DNA to restore not only dystrophin but also other members of the dystrophin-associated glycoprotein complex (DAPC). We first profiled this relationship in untreated mdx muscle, and we found that all fiber types support reversion events to a dystrophin-positive state, in an unbiased manner. Importantly, we show that only a small fraction of revertant fibers expressed other members of the DAPC. Immunoblot analysis of protein levels, however, revealed robust expression of these components, which failed to correctly localize to the sarcolemma. We then show that tc-DNA treatment leads to nearly all fibers expressing not only dystrophin but also other key components of the DAPC. Of significance, our work shows that MHC fiber type does not bias the expression of any of these important proteins. This work also highlights that the improved muscle physiology following tc-DNA treatment reported previously results from the complete restoration of the dystrophin complex in all MHCII fibers with equal efficiencies.
Collapse
Affiliation(s)
- Saleh Omairi
- School of Biological Sciences, University of Reading, Reading, UK
| | - Kwan-Leong Hau
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences Programme, London, UK
| | | | - Federica Montanaro
- UCL Great Ormond Street Institute of Child Health, Developmental Neurosciences Programme, London, UK
| | - Aurelie Goyenvalle
- Universite de Versailles St. Quentin, INSERM U1179, Montigny-le-Bretonneux, France
| | - Luis Garcia
- Universite de Versailles St. Quentin, INSERM U1179, Montigny-le-Bretonneux, France
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
32
|
Lu-Nguyen N, Malerba A, Popplewell L, Schnell F, Hanson G, Dickson G. Systemic Antisense Therapeutics for Dystrophin and Myostatin Exon Splice Modulation Improve Muscle Pathology of Adult mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:15-28. [PMID: 28325281 PMCID: PMC5363451 DOI: 10.1016/j.omtn.2016.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
Abstract
Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myostatin pre-mRNA, knocking down myostatin expression to enhance muscle strength and reduce fibrosis. We have reported previously that intramuscular or intraperitoneal antisense administration inducing dual exon skipping of dystrophin and myostatin pre-mRNAs was beneficial in mdx mice, a mouse model of DMD, although therapeutic effects were muscle type restricted, possibly due to the delivery routes used. Here, following systemic intravascular antisense treatment, muscle strength and body activity of treated adult mdx mice increased to the levels of healthy controls. Importantly, hallmarks of muscular dystrophy were greatly improved in mice receiving the combined exon-skipping therapy, as compared to those receiving dystrophin antisense therapy alone. Our results support the translation of antisense therapy for dystrophin restoration and myostatin inhibition into the clinical setting for DMD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Fred Schnell
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Gunnar Hanson
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
33
|
Goemans N, vanden Hauwe M, Signorovitch J, Swallow E, Song J. Individualized Prediction of Changes in 6-Minute Walk Distance for Patients with Duchenne Muscular Dystrophy. PLoS One 2016; 11:e0164684. [PMID: 27737016 PMCID: PMC5063281 DOI: 10.1371/journal.pone.0164684] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Deficits in ambulatory function progress at heterogeneous rates among individuals with Duchenne muscular dystrophy (DMD). The resulting inherent variability in ambulatory outcomes has complicated the design of drug efficacy trials and clouded the interpretation of trial results. We developed a prediction model for 1-year change in the six minute walk distance (6MWD) among DMD patients, and compared its predictive value to that of commonly used prognostic factors (age, baseline 6MWD, and steroid use). METHODS Natural history data were collected from DMD patients at routine follow up visits approximately every 6 months over the course of 2-5 years. Assessments included ambulatory function and steroid use. The annualized change in 6MWD (Δ6MWD) was studied between all pairs of visits separated by 8-16 months. Prediction models were developed using multivariable regression for repeated measures, and evaluated using cross-validation. RESULTS Among n = 191 follow-up intervals (n = 39 boys), mean starting age was 9.4 years, mean starting 6MWD was 351.8 meters, and 75% had received steroids for at least one year. Over the subsequent 8-16 months, mean Δ6MWD was -37.0 meters with a standard deviation (SD) of 93.7 meters. Predictions based on a composite of age, baseline 6MWD, and steroid use explained 28% of variation in Δ6MWD (R2 = 0.28, residual SD = 79.4 meters). A broadened prognostic model, adding timed 10-meter walk/run, 4-stair climb, and rise from supine, as well as height and weight, significantly improved prediction, explaining 59% of variation in Δ6MWD after cross-validation (R2 = 0.59, residual SD = 59.7 meters). CONCLUSIONS A prognostic model incorporating timed function tests significantly improved prediction of 1-year changes in 6MWD. Explained variation was more than doubled compared to predictions based only on age, baseline 6MWD, and steroid use. There is significant potential for composite prognostic models to inform DMD clinical trials and clinical practice.
Collapse
Affiliation(s)
| | | | - James Signorovitch
- Analysis Group, Inc., 111 Huntington Ave, 14 floor, Boston, Massachusetts, United States of America
- The Trajectory Analysis Project (TAP) Collaboration, One Broadway, 14 floor, Cambridge, Massachusetts, United States of America
| | - Elyse Swallow
- Analysis Group, Inc., 111 Huntington Ave, 14 floor, Boston, Massachusetts, United States of America
| | - Jinlin Song
- Analysis Group, Inc., 111 Huntington Ave, 14 floor, Boston, Massachusetts, United States of America
| | | |
Collapse
|
34
|
Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015; 20:18168-84. [PMID: 26457695 PMCID: PMC6332113 DOI: 10.3390/molecules201018168] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| |
Collapse
|