1
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
3
|
Sun H, Chen M, Liao J, He L, Wan B, Yin J, Zhang X. The maternal lifestyle in pregnancy: Implications for foetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024; 15:1641-1650. [PMID: 39155495 PMCID: PMC11446712 DOI: 10.1002/jcsm.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jialong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| |
Collapse
|
4
|
Hager A, Mazurak V, Noga M, Gilmour SM, Mager DR. Skeletal muscle fibre morphology in childhood-insights into myopenia in pediatric liver disease. Appl Physiol Nutr Metab 2023; 48:730-750. [PMID: 37319441 DOI: 10.1139/apnm-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TAKE-HOME MESSAGE Skeletal muscle morphology in healthy children changes with age. Liver disease may preferentially affect type II fibres in adults with end-stage liver disease (ESLD). More research is needed on the effects of ESLD on muscle morphology in children.
Collapse
Affiliation(s)
- Amber Hager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera Mazurak
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michelle Noga
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Susan M Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Division of Pediatric Gastroenterology & Nutrition/Transplant Services, The Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Diana R Mager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Combined prenatal to postnatal protein restriction augments protein quality control processes and proteolysis in the muscle of rat offspring. J Nutr Biochem 2023; 114:109273. [PMID: 36681307 DOI: 10.1016/j.jnutbio.2023.109273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Several human epidemiological and animal studies suggest that a maternal low-protein (MLP) diet affects skeletal muscle (SM) health in the offspring. However, effect of combined prenatal to postnatal protein restriction (chronic PR) and prenatal to perinatal protein restriction (PR) with postnatal rehabilitation maternal protein restriction (MPR) on protein quality control (PQC) processes and proteolysis in the offspring remains poorly understood. The current study explored the impact of chronic PR and MPR on SM protein degradation rates, chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), autophagy, and apoptosis, in the adult offspring. Wistar rats were randomly assigned to a normal protein (NP; 20% casein), or low-protein (LP; 8% casein) isocaloric diets from 7 weeks prior to breeding through weaning. Offspring born to NP dams received the same diet (NP offspring) while a group of LP offspring remained on LP diet and another group was rehabilitated with NP diet (LPR offspring) from weaning for 16 weeks. LP offspring displayed lower body weight, lean mass, and myofiber cross-sectional area than NP. Furthermore, LP offspring demonstrated increased total protein degradation, urinary 3-methyl histidine, ER stress, autophagy, UPS components, proteasomal activity, muscle atrophy markers, and apoptosis-related proteins than NP. However, MPR showed little or no effect on muscle proteolysis, UPR, UPS, autophagy, apoptosis, and muscle atrophy in LPR offspring. These results indicate that exposure to chronic PR diets induces muscle atrophy and accelerates SM proteolysis via augmenting PQC processes in the offspring, while MPR shows little or no effect.
Collapse
|
6
|
Sucrose exposure during gestation lactation and postweaning periods increases the pubococcygeus muscle reflex activity in adult male rats. Int J Impot Res 2021; 34:564-572. [PMID: 34035466 DOI: 10.1038/s41443-021-00450-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
Erectile dysfunction is related to metabolic alterations produced by a high carbohydrate diet, which may affect muscle activity during penile reflex in adulthood. We determined whether sucrose water consumption during gestation lactation and postweaning affects pubococcygeus muscle (Pcm) activity during urethrogenital reflex in adult male rat offspring. Twelve female rats were mated and grouped in control mothers consumed tap water and sucrose mothers consumed sucrose water during gestation lactation. Male pups were weaned and assigned into four groups (n = 6 each): those from control mothers who continued drinking tap water (CM-CO group) or sucrose water (CM-SO group) until adult life, and those from sucrose mothers who drank tap water (SM-CO group) or continued drinking sucrose water (SM-SO group) until adult life. Body weight, Pcm activity during penile stimulation by bipolar electrodes and urethrogenital reflex were analyzed. A catheter was placed into the urethra to record variations in urethral pressure after mechanical stimulation. Two-way ANOVA followed by post hoc tests were used considering P ≤ 0.05 as a significant difference. Males from the SM-SO group showed weight gain compared to the control group (P < 0.001). Also, sucrose intake promoted high Pcm activity (P < 0.0001) but reduced urethrogenital reflex duration CM-CO vs CM-SO (P = 0.02); CM-CO vs SM-CO (P = 0.01); CM-SO vs SM-SO (P < 0.003); and SM-CO vs SM-SO (P < 0.002). Our results suggest that a combination of a sucrose-rich diet during gestation lactation and postweaning modifies Pcm activation during penile reflex. The urethrogenital reflex is a spinal ejaculatory-like reflex, these rats could have penile dysfunction equivalent to premature ejaculation in men.
Collapse
|
7
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
8
|
Hu C, Jin P, Yang Y, Yang L, Zhang Z, Zhang L, Yin Y, Tan C. Effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in both low and normal birth weight piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5403-5411. [PMID: 32542826 DOI: 10.1002/jsfa.10591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maternal nutrition during gestation plays a vital role in fetal development. The effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in low and normal birth weight offspring were investigated by using 80 gilts randomly allotted to T1 and T2 groups and treated respectively with a gradual-increase (T1) and a convex transition (T2) feeding strategy, with no difference in total feed intake. RESULTS T2 group was seen to have a higher percentage of piglets with birth weight less than 500 g, while T1 group was shown to have a higher percentage of piglets with birth weight over 700 g. Meanwhile, for both low and normal birth weight piglets, T1 group was higher than T2 group in terms of muscle free amino acid concentration, mRNA expression levels of muscle growth-related factors, relative muscle fiber number and cross-sectional area. We must emphasize that the T2 group was shown to improve glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function only in low birth weight piglets. CONCLUSION The convex transition feeding strategy can decrease the percentage of piglets with birth weight over 700 g, while improving glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function in low birth weight piglets. Our findings provide new evidence for the potential importance of nutritional strategies during gestation, especially for improving the glucose tolerance and muscle development of low birth weight neonatal. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Jin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linfang Yang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Ziwei Zhang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Torreggiani M, Fois A, D’Alessandro C, Colucci M, Orozco Guillén AO, Cupisti A, Piccoli GB. Of Mice and Men: The Effect of Maternal Protein Restriction on Offspring's Kidney Health. Are Studies on Rodents Applicable to Chronic Kidney Disease Patients? A Narrative Review. Nutrients 2020; 12:E1614. [PMID: 32486266 PMCID: PMC7352514 DOI: 10.3390/nu12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the almost 30 years that have passed since the postulation of the "Developmental Origins of Health and Disease" theory, it has been clearly demonstrated that a mother's dietary habits during pregnancy have potential consequences for her offspring that go far beyond in utero development. Protein malnutrition during pregnancy, for instance, can cause severe alterations ranging from intrauterine growth retardation to organ damage and increased susceptibility to hypertension, diabetes mellitus, cardiovascular diseases and chronic kidney disease (CKD) later in life both in experimental animals and humans. Conversely, a balanced mild protein restriction in patients affected by CKD has been shown to mitigate the biochemical derangements associated with kidney disease and even slow its progression. The first reports on the management of pregnant CKD women with a moderately protein-restricted plant-based diet appeared in the literature a few years ago. Today, this approach is still being debated, as is the optimal source of protein during gestation in CKD. The aim of this report is to critically review the available literature on the topic, focusing on the similarities and differences between animal and clinical studies.
Collapse
Affiliation(s)
- Massimo Torreggiani
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Antioco Fois
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Marco Colucci
- Unit of Nephrology and Dialysis, ICS Maugeri S.p.A. SB, Via S. Maugeri 10, 27100 Pavia, Italy;
| | | | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Giorgina Barbara Piccoli
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, 10100 Torino, Italy
| |
Collapse
|
10
|
Zhao W, Su H, Wang L, Sun L, Luo P, Li Y, Wu H, Shu G, Wang S, Gao P, Zhu X, Jiang Q, Wang L. Effects of maternal dietary supplementation of phytosterol esters during gestation on muscle development of offspring in mice. Biochem Biophys Res Commun 2019; 520:479-485. [DOI: 10.1016/j.bbrc.2019.10.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
|
11
|
Fragoso J, Lira ADO, Chagas GS, Lucena Cavalcanti CC, Beserra R, de Santana-Muniz G, Bento-Santos A, Martins G, Pirola L, da Silva Aragão R, Leandro CG. Maternal voluntary physical activity attenuates delayed neurodevelopment in malnourished rats. Exp Physiol 2017; 102:1486-1499. [DOI: 10.1113/ep086400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jéssica Fragoso
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
| | | | - Guilherme Souza Chagas
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | | | - Renata Beserra
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
| | | | - Adriano Bento-Santos
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Gerffeson Martins
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Luciano Pirola
- INSERM U1060, Lyon-1 University; South Lyon Medical Faculty; 69921 Oullins France
| | - Raquel da Silva Aragão
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| | - Carol Góis Leandro
- Department of Nutrition; Federal University of Pernambuco; 50670-901 Recife PE Brazil
- Department of Physical Education and Sports Science, CAV; Federal University of Pernambuco; 55608-680 Recife PE Brazil
| |
Collapse
|
12
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, Ozanne SE. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 2016; 9:1221-1229. [PMID: 27585884 PMCID: PMC5087829 DOI: 10.1242/dmm.026591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. Summary: Muscle of ‘developmentally programmed’ rat offspring demonstrated accelerated aging and oxidative stress, which could explain why some individuals are at greater risk of developing age-associated muscular dysfunction than others.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Jian Hua Chen
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| |
Collapse
|