1
|
da Silva BR, de Melo Reis RA, Ribeiro-Resende VT. A Comparative Investigation of Axon-Blood Vessel Growth Interaction in the Regenerating Sciatic and Optic Nerves in Adult Mice. Mol Neurobiol 2024; 61:2215-2227. [PMID: 37864766 DOI: 10.1007/s12035-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The vascular and the nervous systems share similarities in addition to their complex role in providing oxygen and nutrients to all cells. Both are highly branched networks that frequently grow close to one another during development. Vascular patterning and neural wiring share families of guidance cues and receptors. Most recently, this relationship has been investigated in terms of peripheral nervous system (PNS) regeneration, where nerves and blood vessels often run in parallel so endothelial cells guide the formation of the Büngner bands which support axonal regeneration. Here, we characterized the vascular response in regenerative models of the central and peripheral nervous system. After sciatic nerve crush, followed by axon regeneration, there was a significant increase in the blood vessel density 7 days after injury. In addition, the optic nerve crush model was used to evaluate intrinsic regenerative potential activated with a combined treatment that stimulated retinal ganglion cells (RGCs) regrowth. We observed that a 2-fold change in the total number of blood vessels occurred 7 days after optic nerve crush compared to the uncrushed nerve. The difference increased up to a 2.7-fold change 2 weeks after the crush. Interestingly, we did not observe differences in the total number of blood vessels 2 weeks after crush, compared to animals that had received combined treatment for regeneration and controls. Therefore, the vascular characterization showed that the increase in vascular density was not related to the efficiency of both peripheral and central axonal regeneration.
Collapse
Affiliation(s)
- Barbara Rangel da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Ricardo A de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.
| |
Collapse
|
2
|
Macionis V. Neurovascular Compression-Induced Intracranial Allodynia May Be the True Nature of Migraine Headache: an Interpretative Review. Curr Pain Headache Rep 2023; 27:775-791. [PMID: 37837483 DOI: 10.1007/s11916-023-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Surgical deactivation of migraine trigger sites by extracranial neurovascular decompression has produced encouraging results and challenged previous understanding of primary headaches. However, there is a lack of in-depth discussions on the pathophysiological basis of migraine surgery. This narrative review provides interpretation of relevant literature from the perspective of compressive neuropathic etiology, pathogenesis, and pathophysiology of migraine. RECENT FINDINGS Vasodilation, which can be asymptomatic in healthy subjects, may produce compression of cranial nerves in migraineurs at both extracranial and intracranial entrapment-prone sites. This may be predetermined by inherited and acquired anatomical factors and may include double crush-type lesions. Neurovascular compression can lead to sensitization of the trigeminal pathways and resultant cephalic hypersensitivity. While descending (central) trigeminal activation is possible, symptomatic intracranial sensitization can probably only occur in subjects who develop neurovascular entrapment of cranial nerves, which can explain why migraine does not invariably afflict everyone. Nerve compression-induced focal neuroinflammation and sensitization of any cranial nerve may neurogenically spread to other cranial nerves, which can explain the clinical complexity of migraine. Trigger dose-dependent alternating intensity of sensitization and its synchrony with cyclic central neural activities, including asymmetric nasal vasomotor oscillations, may explain the laterality and phasic nature of migraine pain. Intracranial allodynia, i.e., pain sensation upon non-painful stimulation, may better explain migraine pain than merely nociceptive mechanisms, because migraine cannot be associated with considerable intracranial structural changes and consequent painful stimuli. Understanding migraine as an intracranial allodynia could stimulate research aimed at elucidating the possible neuropathic compressive etiology of migraine and other primary headaches.
Collapse
|
3
|
Yeoh S, Warner WS, Merchant SS, Hsu EW, Agoston DV, Mahan MA. Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Front Surg 2022; 9:862478. [PMID: 35529911 PMCID: PMC9069240 DOI: 10.3389/fsurg.2022.862478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Wesley S. Warner
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Samer S. Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Edward W. Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Denes v. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Mark A. Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Issar T, Walker S, Arnold R, Poynten AM, Endre ZH, Krishnan AV. Peripheral nerve morphology and intraneural blood flow in chronic kidney disease with and without diabetes. Muscle Nerve 2022; 65:603-607. [PMID: 35119701 PMCID: PMC9305967 DOI: 10.1002/mus.27513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
Introduction/Aims Sonographic alterations of peripheral nerves in pre‐dialytic kidney disease are yet to be determined. We aimed to assess peripheral nerve cross‐sectional area (CSA) and intraneural blood flow in patients with pre‐dialytic chronic kidney disease (CKD) and diabetic kidney disease (DKD). Methods Subjects with CKD (n = 20) or DKD (n = 20) underwent ultrasound to assess CSA of the median and tibial nerves as well as intraneural blood flow of the median nerve. Blood flow was quantified using maximum perfusion intensity. Neuropathy was assessed using the Total Neuropathy Score. A 6‐m timed walk test was also performed. Healthy controls (n = 28) were recruited for comparison. Results The DKD group had more severe neuropathy (p = .024), larger tibial nerve CSA (p = .002) and greater median nerve blood flow than the CKD group (p = .023). Blood flow correlated with serum potassium in disease groups (r = 0.652, p = .022). Disease groups had larger tibial nerve CSA than controls (p < .05). No blood flow was detected in controls. Tibial nerve enlargement was associated with slower maximal walking speeds in disease groups (r = −0.389, p = .021). Discussion Subjects with DKD demonstrated enlarged tibial nerve CSA and increased median nerve blood flow compared to those with CKD. Elevations in serum potassium were associated with increased blood flow. Sonographic alterations were detectable in pre‐dialytic kidney disease compared to controls, highlighting the utility of ultrasound in the assessment of nerve pathology in these patient groups.
Collapse
Affiliation(s)
- Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Susan Walker
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, NSW, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| |
Collapse
|
5
|
Deng J, Cohen DJ, Redden J, McClure MJ, Boyan BD, Schwartz Z. Differential Effects of Neurectomy and Botox-induced Muscle Paralysis on Bone Phenotype and Titanium Implant Osseointegration. Bone 2021; 153:116145. [PMID: 34390886 PMCID: PMC8480339 DOI: 10.1016/j.bone.2021.116145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Metabolic bone is highly innervated by both sensory and sympathetic nerves. In addition to skeletal development, neural regulation participates in local bone remodeling, which is important for successful osseointegration of titanium implants. Neurectomy is a model used to investigate the lack of neural function on bone homeostasis, but the relative impacts of direct denervation to bone or denervation-induced muscle paralysis are less well defined. To investigate this difference, we used two nerve intervention models, sciatic and femoral neurectomy (SFN) v. botox-induced muscle paralysis (BTX) and assessed the resulting femoral bone phenotype and Ti implant osseointegration. Male Sprague Dawley rats (19) were randomly divided into three groups: implant control (n = 5), SFN (n = 7), and BTX (n = 7). Ti implants (microrough/hydrophilic [modSLA], Institut Straumann AG) were placed in the distal metaphysis of each femur on day 24 post-SFN or BTX. Bone and muscle were examined on day 28 after implant insertion. Both nerve intervention models impaired osseointegration. MicroCT and histology indicated that both models had reduced trabecular bone formation. Only BTX reduced cortical bone formation and increased cortical bone porosity. BTX resulted in more bone loss characterized by the least trabecular and cortical bone, as well as osseointegration. Osteoblasts isolated from the tibia exhibited a model-specific phenotype when they were grown on Ti substrates in vitro. Neurectomy caused more severe muscle atrophy than botox injection. These results indicate that neural regulation directly modulates bone formation and osseointegration. Muscle paralysis modulated the effects of loss of neural inputs into bone, supporting the hypothesis that mechanical loading of bone is a factor in achieving successful osseointegration. The different effects of botox and neurectomy on bone phenotype indicated that the sensory and sympathetic nerves had a role in the osseointegration process.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - James Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Kobayashi M, Zochodne DW. Diabetic polyneuropathy: Bridging the translational gap. J Peripher Nerv Syst 2021; 25:66-75. [PMID: 32573914 DOI: 10.1111/jns.12392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Clinical trials for diabetic polyneuropathy (DPN) have failed to identify therapeutic impacts that have arrested or reversed the disorder, despite a long history. This review considers DPN in the context of a unique neurodegenerative disorder that targets peripheral neurons and their companion glial cells. The approach is to examine what cells, cell substructures, and pathways are implicated in causing DPN and how they might be addressed therapeutically. These include axonopathy, neuronopathy, hyperglycemia, polyol flux, advanced glycation endproduct (AGE)-receptor AGE signaling, growth factor disruption, abnormal insulin signaling, and abnormalities of other intrinsic neuron pathways. Mitochondrial dysfunction and lipid toxicity are largely delegated to the companion review in this issue by Stino and Feldman. Finally, the linkage between axon plasticity of cutaneous nerves, peripheral neuroregenerative pathways, and diabetes are discussed.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan.,Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Douglas W Zochodne
- Division of Neurology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Herzig R, Wang-Leandro A, Steffen F, Matiasek K, Beckmann KM. Imaging and histopathologic features of reversible nerve root and peripheral nerve edema secondary to disc herniation in a cat. J Vet Intern Med 2021; 35:1566-1572. [PMID: 33826180 PMCID: PMC8163120 DOI: 10.1111/jvim.16112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/11/2021] [Indexed: 11/27/2022] Open
Abstract
Nerve root enlargement with increased contrast uptake has been reported in dogs and humans secondary to nerve root compression. In cats, nerve root enlargement and contrast uptake only have been reported in association with inflammatory and neoplastic diseases, but not as a sequela to nerve root compression. An 8‐year‐old oriental short hair cat was presented with acute neurologic deficits consistent with left‐sided sciatic nerve deficit and possible L6‐S1 myelopathy. Magnetic resonance imaging (MRI) was performed and identified compression of the cauda equina and L7 nerve root associated with intervertebral disc herniation (IVDH) at L6‐L7 as well as widespread sciatic nerve enlargement with moderate rim enhancement. A hemilaminectomy was performed to evacuate herniated disc material. The nerve root was biopsied and submitted for histological evaluation. Interstitial nerve edema was diagnosed. Follow‐up MRI 3 months postoperatively showed complete remission of the changes. Nerve root thickening together with contrast enhancement may represent nerve edema in cats secondary to IVDH.
Collapse
Affiliation(s)
- Robert Herzig
- Neurology Department, Clinic of Small Animal Surgery, Vetsuisse Faculty Zurich, University of Zurich, Zurich, Switzerland
| | - Adriano Wang-Leandro
- Department of Diagnostics and Clinical Services, Clinic for Diagnostic Imaging, Vetsuisse Faculty Zurich, Zurich, Switzerland
| | - Frank Steffen
- Neurology Department, Clinic of Small Animal Surgery, Vetsuisse Faculty Zurich, University of Zurich, Zurich, Switzerland
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilians Universität Munich, Munich, Germany
| | - Katrin M Beckmann
- Neurology Department, Clinic of Small Animal Surgery, Vetsuisse Faculty Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Dudele A, Rasmussen PM, Østergaard L. Sural Nerve Perfusion in Mice. Front Neurosci 2020; 14:579373. [PMID: 33362454 PMCID: PMC7758475 DOI: 10.3389/fnins.2020.579373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve function is metabolically demanding and nerve energy failure has been implicated in the onset and development of diabetic peripheral neuropathy and neuropathic pain conditions. Distal peripheral nerve oxygen supply relies on the distribution of red blood cells (RBCs) in just a few, nearby capillary-sized vessels and is therefore technically challenging to characterize. We developed an approach to characterize distal sural nerve hemodynamics in anesthetized, adult male mice using in vivo two-photon laser scanning microscopy. Our results show that RBC velocities in mouse sural nerve vessels are higher than those previously measured in mouse brain, and are sensitive to hindlimb temperatures. Nerve blood flow, measured as RBC flux, however, was similar to that of mouse brain and unaffected by local temperature. Power spectral density analysis of fluctuations in RBC velocities over short time intervals suggest that the technique is sufficiently sensitive and robust to detect subtle flow oscillations over time scales from 0.1 to tens of seconds. We conclude that in vivo two-photon laser scanning microscopy provides a suitable approach to study peripheral nerve hemodynamics in mice, and that local temperature control is important during such measurements.
Collapse
Affiliation(s)
- Anete Dudele
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Mondrup Rasmussen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,The International Diabetic Neuropathy Consortium, Aarhus University Hospital, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
10
|
Vascular compromise in a torsed transposed ulnar nerve case in support of intravenous contrast administration. Clin Imaging 2020; 70:118-123. [PMID: 33157368 DOI: 10.1016/j.clinimag.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022]
Abstract
Nerve torsion is a recognized etiology in brachial and peripheral neuropathy. Vascular compromise of peripheral nerves is uncommon given their unique vascular supply. Preoperative imaging diagnosis of nerve torsion and vascular compromise can be made in some cases, which impacts treatment. We present a previously unreported case of long segment torsion and vascular compromise of the ulnar nerve following anterior subcutaneous transposition with a description of the imaging findings based on the unique structure of the nerve and the presence of a blood nerve barrier (BNB) and a discussion of the potential vulnerability of a transposed and torsed nerve.
Collapse
|
11
|
Bordoni B. The Five Diaphragms in Osteopathic Manipulative Medicine: Neurological Relationships, Part 2. Cureus 2020; 12:e8713. [PMID: 32699708 PMCID: PMC7372241 DOI: 10.7759/cureus.8713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
The main objective of the osteopath and that of osteopathic manipulative medicine (OMM) is to create space between the different tissues. The sliding capacity of the various tissue layers and between the different body components, up to the possibility of movement between cells is the salutogenic stimulus to allow the circulation of fluids, the biochemical exchange, and the adequate management of the multiple internal and external stimuli that perturb the body living. Movement is allowed by space and space is life. In this second part, the exposure of the anatomical neurological relationships of the five diaphragms continues, highlighting the relationships of the thoracic outlet, the respiratory diaphragm, and the pelvic floor. Finally, there will be clinical reflections to further corroborate the existence of the anatomical continuum and to lay the scientific foundations for an OMM approach to body diaphragms.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The current review addresses one of the most common neurological disorders, diabetic polyneuropathy (DPN). DPN is debilitating, irreversible and dwarfs the prevalence of most other chronic disorders of the nervous system. Its complications include foot ulceration, amputation, falling and intractable neuropathic pain. Moreover, tight control of hyperglycemia reduces the incidence of DPN in type 1 diabetes mellitus but its role in type 2 diabetes mellitus is less clear. RECENT FINDINGS New therapeutic options to reverse the development of DPN or its associated pain have been proposed but none have significantly changed the clinical approach. The cause of DPN remains controversial traditionally focused on the impact of metabolic abnormalities, polyol flux, microvascular changes, mitochondria, oxidative stress, lipid biology and others. In particular, there has been less attention toward how this chronic disorder alters peripheral neurobiology. It is now clear that in chronic models of diabetes mellitus there exists a unique form of neurodegeneration with a range of protein, mRNA and microRNA alterations to consider. How to reconcile these molecular and structural alterations with metabolic mechanisms is a challenge. In sensory neurons alone, a primary target of DPN, both central perikaryal cytoplasmic and nuclear changes and altered distal sensory axon terminal plasticity may be involved. SUMMARY In this review, the current therapeutic status of DPN is described with greater emphasis on some new but selected thoughts on its neurobiology. New mechanistic understanding will be essential to developing precision therapeutics for DPN.
Collapse
|
13
|
Borire AA, Issar T, Kwai NC, Visser LH, Simon NG, Poynten AM, Kiernan MC, Krishnan AV. Sonographic assessment of nerve blood flow in diabetic neuropathy. Diabet Med 2020; 37:343-349. [PMID: 31338857 DOI: 10.1111/dme.14085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
AIMS To undertake sonographic assessment of nerve blood flow in people with Type 2 diabetes and correlate the findings with neuropathy severity scores and electrophysiological measurements. METHODS Median and tibial nerve ultrasound scans were undertaken in 75 people with diabetes and 30 aged-matched controls without diabetes, using a high-resolution linear probe at non-entrapment sites. Nerve blood flow was quantified using power Doppler techniques to obtain the vessel score and the maximum perfusion intensity. Neuropathy severity was assessed using a total neuropathy score. RESULTS Diabetic nerves had higher rates of nerve blood flow detection (28%) compared to the control group (P < 0.0001). Significant correlations were found between nerve blood flow measurements and nerve size (P <0.001), reported sensory symptoms (P < 0.05) and neuropathy severity scores (P < 0.001). The cohort with diabetes had significantly larger median (8.5 ± 0.3 mm2 vs 7.2 ± 0.1 mm2 ; P < 0.05) and tibial nerves (18.0 ± 0.9 mm2 vs 12.8 ± 0.5 mm2 ; P < 0.05) compared with controls. CONCLUSION Peripheral nerve hypervascularity is detectable by ultrasonography in moderate to severe diabetic neuropathy with prominent sensory dysfunction.
Collapse
Affiliation(s)
- A A Borire
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - T Issar
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - N C Kwai
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - L H Visser
- St Elisabeth Ziekenhuis, Tilburg, Netherlands
| | - N G Simon
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - A M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Randwick, Australia
| | - M C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - A V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Vasudevan S, Vo J, Shafer B, Nam AS, Vakoc BJ, Hammer DX. Toward optical coherence tomography angiography-based biomarkers to assess the safety of peripheral nerve electrostimulation. J Neural Eng 2019; 16:036024. [PMID: 30917357 PMCID: PMC6583899 DOI: 10.1088/1741-2552/ab1405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Peripheral nerves serve as a link between the central nervous system and its targets. Altering peripheral nerve activity through targeted electrical stimulation is being investigated as a therapy for modulating end organ function. To support rapid advancement in the field, novel approaches to predict and prevent nerve injury resulting from electrical stimulation must be developed to overcome the limitations of traditional histological methods. The present study aims to develop an optical imaging-based approach for real-time assessment of peripheral nerve injury associated with electrical stimulation. APPROACH We developed an optical coherence tomography (OCT) angiography system and a 3D printed stimulating nerve stabilizer (sNS) to assess the real-time microvascular and blood flow changes associated with electrical stimulation of peripheral nerves. We then compared the microvascular changes with established nerve function analysis and immunohistochemistry to correlate changes with nerve injury. MAIN RESULTS Electrical stimulation of peripheral nerves has a direct influence on vessel diameter and capillary flow. The stimulation used in this study did not alter motor function significantly, but a delayed onset of mechanical allodynia at lower thresholds was observed using a sensory function test. Immunohistochemical analysis pointed to an increased number of macrophages within nerve fascicles and axon sprouting potentially related to nerve injury. SIGNIFICANCE This study is the first to demonstrate the ability to image peripheral nerve microvasculature changes during electrical stimulation. This expands the knowledge in the field and can be used to develop potential biomarkers to predict nerve injury resulting from electrical stimulation.
Collapse
Affiliation(s)
- Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jesse Vo
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Benjamin Shafer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Ahhyun S Nam
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|