1
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
2
|
Cho J, Suh HP, Pak C, Hong JP. Electrophysiological Signal Validation of Regenerative Peripheral Nerve Interface at Nerve Ending: A Preliminary Rat Model Experiment. J Reconstr Microsurg 2024. [PMID: 39362642 DOI: 10.1055/a-2434-4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND As the number of extremity amputations continues to rise, so does the demand for prosthetics. Emphasizing the importance of a nerve interface that effectively amplifies and transmits physiological signals through peripheral nerve surgery is crucial for achieving intuitive control. The regenerative peripheral nerve interface (RPNI) is recognized for its potential to provide this technical support. Through animal experiment, we aimed to confirm the actual occurrence of signal amplification. METHODS Rats were divided into three experimental groups: control, common peroneal nerve transection, and RPNI. Nerve surgeries were performed for each group, and electromyography (EMG) and nerve conduction studies (NCS) were conducted at the initial surgery, as well as at 2, 4, and 8 weeks postoperatively. RESULTS All implemented RPNIs exhibited viability and displayed adequate vascularity with the proper color. Clear differences in latency and amplitude were observed before and after 8 weeks of surgery in all groups (p < 0.05). Notably, the RPNI group demonstrated a significantly increased amplitude compared with the control group after 8 weeks (p = 0.031). Latency increased in all groups 8 weeks after surgery. The RPNI group exhibited relatively clear signs of denervation with abnormal spontaneous activities (ASAs) during EMG. CONCLUSION This study is one of few preclinical studies that demonstrate the electrophysiological effects of RPNI and validate the neural signals. It serves as a foundational step for future research in human-machine interaction and nerve interfaces.
Collapse
Affiliation(s)
- Jeongmok Cho
- Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyunsuk Peter Suh
- Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Changsik Pak
- Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joon Pio Hong
- Department of Plastic and Reconstructive Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
3
|
Lu JCY, Huang YH, Chen ACY, Chuang DCC. Using the Neuromuscular Junction Cellular Response to Predict Functional Recovery after Nerve Grafting in a Mouse Experimental Model. Plast Reconstr Surg 2024; 154:551-561. [PMID: 37734111 DOI: 10.1097/prs.0000000000011074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND Functional recovery following peripheral nerve injury worsens with increasing time of denervation before repair. Denervated muscle undergoes progressive atrophy that limits the extent to which motor endplates can be reinnervated. The aims of this study were to assess nerve injuries reconstructed at different time points and to identify various neural and muscle-based markers to predict functional outcome, including an in-depth look at the neuromuscular junction (NMJ). METHODS Adult wild-type C57BL/6J mice underwent surgery on the sciatic nerve and were divided into 5 groups: (1) nerve cut and repaired, (2) acute (nerve cut and immediately repaired with a 1-cm autograft), (3) subacute (nerve grafted 2 weeks after injury), (4) delayed (nerve grafted 4 weeks after injury), (5) nerve cut and capped. Functional recovery was measured by treadmill and electrodiagnostic tests. Nerves were harvested for histologic evaluation, and leg muscles, for histologic evaluation and NMJ immunofluorescent staining of motor endplate innervation and terminal Schwann cells (tSCs). RESULTS The delayed graft group performed worst in nearly all parameters. The subacute graft group shared more similarities with the acute group, especially the tSC response (subacute, 48%; acute, 51%) and motor endplate innervation pattern (subacute, 75%; acute, 72%). The only parameters to elucidate differences were muscle weight and motor endplate fragmentation. Traditional axon count failed to capture differences among the 3 groups. CONCLUSION The tSC activity and NMJ innervation pattern can be used as predictive markers of functional recovery that capture differences among acute, subacute, and delayed nerve injuries. CLINICAL RELEVANCE STATEMENT The tSC activity at the NMJ displayed by immunohistochemical methods can accurately reflect target muscle innervation over time. This can be used as a predictor of reinnervation when timing of nerve reconstruction is delayed, which can be a critically needed tool in clinical scenarios.
Collapse
Affiliation(s)
- Johnny Chuieng-Yi Lu
- From the Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; and Chang Gung University
| | - Yu-Han Huang
- From the Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; and Chang Gung University
| | - Angela Chien-Yu Chen
- From the Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; and Chang Gung University
| | - David Chwei-Chin Chuang
- From the Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital; and Chang Gung University
| |
Collapse
|
4
|
Lysak A, Farnebo S, Geuna S, Dahlin LB. Muscle preservation in proximal nerve injuries: a current update. J Hand Surg Eur Vol 2024; 49:773-782. [PMID: 38819009 DOI: 10.1177/17531934231216646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.
Collapse
Affiliation(s)
- Andrii Lysak
- Institute of Traumatology and Orthopedics of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Lars B Dahlin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
5
|
Cho Y, Jeong HH, Shin H, Pak CJ, Cho J, Kim Y, Kim D, Kim T, Kim H, Kim S, Kwon S, Hong JP, Suh HP, Lee S. Hybrid Bionic Nerve Interface for Application in Bionic Limbs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303728. [PMID: 37840396 PMCID: PMC10724394 DOI: 10.1002/advs.202303728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Intuitive and perceptual neuroprosthetic systems require a high degree of neural control and a variety of sensory feedback, but reliable neural interfaces for long-term use that maintain their functionality are limited. Here, a novel hybrid bionic interface is presented, fabricated by integrating a biological interface (regenerative peripheral nerve interface (RPNI)) and a peripheral neural interface to enhance the neural interface performance between a nerve and bionic limbs. This interface utilizes a shape memory polymer buckle that can be easily implanted on a severed nerve and make contact with both the nerve and the muscle graft after RPNI formation. It is demonstrated that this interface can simultaneously record different signal information via the RPNI and the nerve, as well as stimulate them separately, inducing different responses. Furthermore, it is shown that this interface can record naturally evoked signals from a walking rabbit and use them to control a robotic leg. The long-term functionality and biocompatibility of this interface in rabbits are evaluated for up to 29 weeks, confirming its promising potential for enhancing prosthetic control.
Collapse
Affiliation(s)
- Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Hyung Hwa Jeong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Heejae Shin
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Changsik John Pak
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Jeongmok Cho
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Yongwoo Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Donggeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Taehyeon Kim
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hoijun Kim
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| | - Soonchul Kwon
- Graduate School of Smart ConvergenceKwangwoon UniversitySeoul01897South Korea
| | - Joon Pio Hong
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Hyunsuk Peter Suh
- Department of Plastic and Reconstructive SurgeryAsan Medical Center, University of Ulsan College of Medicine05505SeoulSouth Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42899South Korea
| |
Collapse
|
6
|
Guzman SD, Abu-Mahfouz A, Davis CS, Ruiz LP, Macpherson PC, Brooks SV. Decoding muscle-resident Schwann cell dynamics during neuromuscular junction remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561193. [PMID: 38370853 PMCID: PMC10871306 DOI: 10.1101/2023.10.06.561193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding neuromuscular junction (NMJ) repair mechanisms is essential for addressing degenerative neuromuscular conditions. Here, we focus on the role of muscle-resident Schwann cells in NMJ reinnervation. In young Sod1-/- mice, a model of progressive NMJ degeneration, we identified a clear NMJ 'regenerative window' that allowed us to define regulators of reinnervation and crossing Sod1-/- mice with S100GFP-tg mice permitted visualization and analysis of Schwann cells. High-resolution imaging and single-cell RNA sequencing provide a detailed analysis of Schwann cell number, morphology, and transcriptome revealing multiple subtypes, including a previously unrecognized terminal Schwann cell (tSC) population expressing a synapse promoting signature. We also discovered a novel SPP1-driven cellular interaction between myelin Schwann cells and tSCs and show that it promotes tSC proliferation and reinnervation following nerve injury in wild type mice. Our findings offer important insights into molecular regulators critical in NMJ reinnervation that are mediated through tSCs to maintain NMJ function.
Collapse
Affiliation(s)
- Steve D Guzman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ahmad Abu-Mahfouz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lloyd P Ruiz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Gao H, Zhao Z, Li J, Guo Z, Zhang F, Wang K, Bai X, Wang Q, Guan Y, Wang Y, Zhang P, Lv N, Zhu H, Li Z. Platelet-rich plasma promotes skeletal muscle regeneration and neuromuscular functional reconstitution in a concentration-dependent manner in a rat laceration model. Biochem Biophys Res Commun 2023; 672:185-192. [PMID: 37354612 DOI: 10.1016/j.bbrc.2023.05.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Abnormal function of injured muscle with innervation loss is a challenge in sports medicine. The difficulty of rehabilitation is regenerating and reconstructing the skeletal muscle tissue and the neuromuscular junction (NMJ). Platelet-rich plasma (PRP) releases various growth factors that may provide an appropriate niche for tissue regeneration. However, the specific mechanism of the PRP's efficacy on muscle healing remains unknown. In this study, we injected PRP with different concentration gradients (800, 1200, 1600 × 109 pl/L) or saline into a rat gastrocnemius laceration model. The results of histopathology and neuromyography show that PRP improved myofibers regeneration, facilitated electrophysiological recovery, and reduced fibrosis in a concentration-dependent manner. Furthermore, we found that PRP promotes the activity of satellite cells by upregulating the expression of the myogenic regulatory factor (MyoD, myogenin). Meanwhile, PRP promotes the regeneration and maturation of acetylcholine receptor (AChR) clusters of the Neuromuscular junction (NMJ) on the regenerative myofibers. Finally, we found that the expression of the Agrin, LRP4, and MuSK was upregulated in the PRP-treated groups, which may contribute to AChR cluster regeneration and functional recovery. The conclusions proposed a hypothesis for PRP treatment's efficacy and mechanism in muscle injuries, indicating promising application prospects.
Collapse
Affiliation(s)
- Huayi Gao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Zhidong Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Ji Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Zheng Guo
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Fei Zhang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ketao Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiaowei Bai
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Qi Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yu Guan
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yaoting Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Pengli Zhang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ningyu Lv
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
8
|
Kawai H, Ito A, Kawaguchi A, Nagai-Tanima M, Nakahara R, Xu S, Kuroki H. Ultrasound therapy for a week promotes regeneration and reduces pro-inflammatory macrophages in a rat sciatic nerve autograft model. Sci Rep 2023; 13:11494. [PMID: 37460651 DOI: 10.1038/s41598-023-38630-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Peripheral nerve injury causes long-term motor dysfunction. Ultrasound (US) therapy is expected to accelerate peripheral nerve regeneration. However, its optimal usage and effects on macrophage phenotypes during peripheral nerve regeneration remain unknown. In this study, we investigated the optimal duration of US therapy and its effects on macrophage phenotype. Twenty-seven rats with autologous sciatic nerve grafting were divided into three groups: two received US therapy (1 MHz frequency, intensity of 140 mW/cm2, 20% duty cycle, 5 min/day) for one (US1) or 4 weeks (US4), and one group received sham stimulation. Immunohistochemistry was performed 3 and 7 days after injury in another set of 12 rats. Eight weeks after the injury, the compound muscle action potential amplitude of the gastrocnemius in the US1 and US4 groups was significantly higher than that in the sham group. The toe-spreading test showed functional recovery, whereas the gait pattern during treadmill walking did not recover. There were no significant differences in motor function, histomorphometry, or muscle weight between groups. Immunohistochemistry showed that US therapy decreased the number of pro-inflammatory macrophages seven days after injury. Therefore, US therapy for both one or 4 weeks can similarly promote reinnervation and reduce proinflammatory macrophages in autograft model rats.
Collapse
Affiliation(s)
- Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Asuka Kawaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Momoko Nagai-Tanima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Hoffman DB, Basten AM, Sorensen JR, Raymond-Pope CJ, Lillquist TJ, Call JA, Corona BT, Greising SM. Response of terminal Schwann cells following volumetric muscle loss injury. Exp Neurol 2023; 365:114431. [PMID: 37142114 PMCID: PMC10227691 DOI: 10.1016/j.expneurol.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.
Collapse
Affiliation(s)
- Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Alec M Basten
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
10
|
Rich KA, Pino MG, Yalvac ME, Fox A, Harris H, Balch MHH, Arnold WD, Kolb SJ. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol Dis 2023; 182:106148. [PMID: 37164288 PMCID: PMC10874102 DOI: 10.1016/j.nbd.2023.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Kinesin family member 5A (KIF5A) is an essential, neuron-specific microtubule-associated motor protein responsible for the anterograde axonal transport of various cellular cargos. Loss of function variants in the N-terminal, microtubule-binding domain are associated with hereditary spastic paraplegia and hereditary motor neuropathy. These variants result in a loss of the ability of the mutant protein to process along microtubules. Contrastingly, gain of function splice-site variants in the C-terminal, cargo-binding domain of KIF5A are associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving death of upper and lower motor neurons, ultimately leading to degradation of the motor unit (MU; an alpha motor neuron and all the myofibers it innervates) and death. These ALS-associated variants result in loss of autoinhibition, increased procession of the mutant protein along microtubules, and altered cargo binding. To study the molecular and cellular consequences of ALS-associated variants in vivo, we introduced the murine homolog of an ALS-associated KIF5A variant into C57BL/6 mice using CRISPR-Cas9 gene editing which produced mutant Kif5a mRNA and protein in neuronal tissues of heterozygous (Kif5a+/c.3005+1G>A; HET) and homozygous (Kif5ac.3005+1G>A/c.3005+1G>A; HOM) mice. HET and HOM mice appeared normal in behavioral and electrophysiological (compound muscle action potential [CMAP] and MU number estimation [MUNE]) outcome measures at one year of age. When subjected to sciatic nerve injury, HET and HOM mice have delayed and incomplete recovery of the MUNE compared to wildtype (WT) mice suggesting an impairment in MU repair. Moreover, aged mutant Kif5a mice (aged two years) had reduced MUNE independent of injury, and exacerbation of the delayed and incomplete recovery after injury compared to aged WT mice. These data suggest that ALS-associated variants may result in an impairment of the MU to respond to biological challenges such as injury and aging, leading to a failure of MU repair and maintenance. In this report, we present the behavioral, electrophysiological and pathological characterization of mice harboring an ALS-associated Kif5a variant to understand the functional consequences of KIF5A C-terminal variants in vivo.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maria H H Balch
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri, MO, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Margotta C, Fabbrizio P, Ceccanti M, Cambieri C, Ruffolo G, D'Agostino J, Trolese MC, Cifelli P, Alfano V, Laurini C, Scaricamazza S, Ferri A, Sorarù G, Palma E, Inghilleri M, Bendotti C, Nardo G. Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflamm Regen 2023; 43:19. [PMID: 36895050 PMCID: PMC9996869 DOI: 10.1186/s41232-023-00270-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease in terms of onset and progression rate. This may account for therapeutic clinical trial failure. Transgenic SOD1G93A mice on C57 or 129Sv background have a slow and fast disease progression rate, mimicking the variability observed in patients. Based on evidence inferring the active influence of skeletal muscle on ALS pathogenesis, we explored whether dysregulation in hindlimb skeletal muscle reflects the phenotypic difference between the two mouse models. METHODS Ex vivo immunohistochemical, biochemical, and biomolecular methodologies, together with in vivo electrophysiology and in vitro approaches on primary cells, were used to afford a comparative and longitudinal analysis of gastrocnemius medialis between fast- and slow-progressing ALS mice. RESULTS We reported that slow-progressing mice counteracted muscle denervation atrophy by increasing acetylcholine receptor clustering, enhancing evoked currents, and preserving compound muscle action potential. This matched with prompt and sustained myogenesis, likely triggered by an early inflammatory response switching the infiltrated macrophages towards a M2 pro-regenerative phenotype. Conversely, upon denervation, fast-progressing mice failed to promptly activate a compensatory muscle response, exhibiting a rapidly progressive deterioration of muscle force. CONCLUSIONS Our findings further pinpoint the pivotal role of skeletal muscle in ALS, providing new insights into underestimated disease mechanisms occurring at the periphery and providing useful (diagnostic, prognostic, and mechanistic) information to facilitate the translation of cost-effective therapeutic strategies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Cassandra Margotta
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Gabriele Ruffolo
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Jessica D'Agostino
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Christian Laurini
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology (IFT-CNR), Rome, Italy
| | - Gianni Sorarù
- Department of Neuroscience, Azienda Ospedaliera di Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Eleonora Palma
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
12
|
Duman A, Azizi E. Hindlimb muscle spindles inform preparatory forelimb coordination prior to landing in toads. J Exp Biol 2023; 226:286710. [PMID: 36576050 PMCID: PMC10086541 DOI: 10.1242/jeb.244629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Animals move across a wide range of surface conditions in real-world environments to acquire resources and avoid predation. To effectively navigate a variety of surfaces, animals rely on several mechanisms including intrinsic mechanical responses, spinal-level central pattern generators, and neural commands that require sensory feedback. Muscle spindle Ia afferents play a critical role in providing sensory feedback and informing motor control strategies across legged vertebrate locomotion, which is apparent in cases where this sensory input is compromised. Here, we tested the hypothesis that spindle Ia afferents from hindlimb muscles are important for coordinating forelimb landing behavior in the cane toad. We performed bilateral sciatic nerve reinnervations to ablate the stretch reflex from distal hindlimb muscles while allowing for motor neuron recovery. We found that toads significantly delayed the onset and reduced the activation duration of their elbow extensor muscle following spindle Ia afferent ablation in the hindlimbs. However, reinnervated toads achieved similar elbow extension at touchdown to that of their pre-surgery state. Our results suggest that while toads likely tuned the activation timing of forelimb muscles in response to losing Ia afferent sensation from the hindlimbs they were likely able to employ compensatory strategies that allowed them to continue landing effectively with reduced sensory information during take-off. These findings indicate muscle spindle Ia afferents may contribute to tuning complex movements involving multiple limbs.
Collapse
Affiliation(s)
- Alex Duman
- Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Emanuel Azizi
- Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Goto K, Ohashi K. Skeletal Muscle Denervation: Sciatic and Tibial Nerve Transection Technique. Methods Mol Biol 2023; 2640:217-225. [PMID: 36995598 DOI: 10.1007/978-1-0716-3036-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The nerve transection model is an established and validated experimental model of skeletal muscle atrophy prepared by denervating the skeletal muscle in rodents. While a number of denervation techniques are available in rats, the development of various transgenic and knockout mice has also led to the wide use of mouse models of nerve transection. Skeletal muscle denervation experiments expand our knowledge of the physiological role of nerval activity and/or neurotrophic factors in the plasticity of skeletal muscle. The denervation of the sciatic or tibial nerve is a common experimental procedure in mice and rats, as these nerves can be resected without great difficulty. An increasing number of reports have recently been published on experiments using a tibial nerve transection technique in mice. In this chapter, we demonstrate and explain the procedures used to transect the sciatic and tibial nerves in mice.
Collapse
Affiliation(s)
- Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan.
| | - Kazuya Ohashi
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi, Japan
| |
Collapse
|
14
|
Gionet-Gonzales MA, Gresham RCH, Griffin KH, Casella A, Wohlgemuth RP, Ramos-Rodriguez DH, Lowen J, Smith LR, Leach JK. Mesenchymal stromal cell spheroids in sulfated alginate enhance muscle regeneration. Acta Biomater 2023; 155:271-281. [PMID: 36328130 DOI: 10.1016/j.actbio.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is critically linked to the potency of the complex mixture of growth factors, cytokines, exosomes, and other biological cues that they secrete. The duration of cell-based approaches is limited by rapid loss of cells upon implantation, motivating the need to prolong cell viability and extend the therapeutic influence of the secretome. We and others demonstrated that the secretome is upregulated when MSCs are formed into spheroids. Although the efficacy of the MSC secretome has been characterized in the literature, no studies have reported the therapeutic benefit of in situ sequestration of the secretome within a wound site using engineered biomaterials. We previously demonstrated the capacity of sulfated alginate hydrogels to sequester components of the MSC secretome for prolonged presentation in vitro, yet the efficacy of this platform has not been evaluated in vivo. In this study, we used sulfated alginate hydrogels loaded with MSC spheroids to aid in the regeneration of a rat muscle crush injury. We hypothesized that the use of sulfated alginate to bind therapeutically relevant growth factors from the MSC spheroid secretome would enhance muscle regeneration by recruiting host cells into the tissue site. The combination of sulfated alginate and MSC spheroids resulted in decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions 2 weeks after injury. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreased fibrosis and increased functional regeneration of muscle. STATEMENT OF SIGNIFICANCE: The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is attributed to the complex diversity of the secretome. Cell-based approaches are limited by rapid cell death, motivating the need to extend the availability of the secretome. We previously demonstrated that sulfated alginate hydrogels sequester components of the MSC secretome for prolonged presentation in vitro, yet no studies have reported the in situ sequestration of the secretome. Herein, we transplanted MSC spheroids in sulfated alginate hydrogels to promote muscle regeneration. MSC spheroids in sulfated alginate decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreasing fibrosis and increasing functional muscle regeneration.
Collapse
Affiliation(s)
| | - Robert C H Gresham
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Katherine H Griffin
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA; School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Alena Casella
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Ross P Wohlgemuth
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA
| | | | - Jeremy Lowen
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Lucas R Smith
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA; Department of Physical Medicine and Rehabilitation, UC Davis Health, Sacramento, CA, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA; Department of Biomedical Engineering, UC Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Keane GC, Pan D, Roh J, Larson EL, Schellhardt L, Hunter DA, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. The Effects of Intraoperative Electrical Stimulation on Regeneration and Recovery After Nerve Isograft Repair in a Rat Model. Hand (N Y) 2022; 17:540-548. [PMID: 32666827 PMCID: PMC9112755 DOI: 10.1177/1558944720939200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Therapeutic electrical stimulation (ES) applied to repaired nerve is a promising treatment option to improve regeneration. However, few studies address the impact of ES following nerve graft reconstruction. The purpose of this study was to determine if ES applied to a nerve repair using nerve isograft in a rodent model could improve nerve regeneration and functional recovery. Methods: Adult rats were randomized to 2 groups: "ES" and "Control." Rats received a tibial nerve transection that was repaired using a tibial nerve isograft (1.0 cm length), where ES was applied immediately after repair in the applicable group. Nerve was harvested 2 weeks postrepair for immunohistochemical analysis of axon growth and macrophage accumulation. Independently, rats were assessed using walking track and grid-walk analysis for up to 21 weeks. Results: At 2 weeks, more robust axon regeneration and greater macrophage accumulation was observed within the isografts for the ES compared to Control groups. Both walking track and grid-walk analysis revealed that return of functional recovery was accelerated by ES. The ES group demonstrated improved functional recovery over time, as well as improved recovery compared to the Control group at 21 weeks. Conclusions: ES improved early axon regeneration into a nerve isograft and was associated with increased macrophage and beneficial M2 macrophage accumulation within the isograft. ES ultimately improved functional recovery compared to isograft repair alone. This study supports the clinical potential of ES to improve the management of nerve injuries requiring a nerve graft repair.
Collapse
Affiliation(s)
| | - Deng Pan
- Washington University in St. Louis, MO, USA
| | - Joseph Roh
- Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | - Matthew D. Wood
- Washington University in St. Louis, MO, USA,Matthew D. Wood, Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University in St. Louis, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Hamad MN, Boroda N, Echenique DB, Dieter RA, Amirouche FML, Gonzalez MH, Kerns JM. Compound Motor Action Potentials During a Modest Nerve Crush. Front Cell Neurosci 2022; 16:798203. [PMID: 35431816 PMCID: PMC9005805 DOI: 10.3389/fncel.2022.798203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Nerve crush injury results in axonotmesis, characterized by disruption of axons and their myelin sheaths with relative sparing of the nerve’s connective tissue. Despite the widespread use of crush injury models, no standardized method for producing these lesions has been established. We characterize a crush model in which a narrow forceps is used to induce a modest and controlled compressive injury. The instantaneous compound motor action potential (CMAP) is monitored in situ and in real-time, allowing the characterization of neuromuscular response during and after injury. The tibial nerves of 11 anesthetized rats were surgically isolated. After the placement of electrodes, CMAPs were elicited and registered using a modular-data-acquisition system. Dumont-#5 micro-forceps were instrumented with a force transducer allowing force measurement via a digital sensor. Baseline CMAPs were recorded prior to crush and continued for the duration of the experiment. Nerve crushing commenced by gradually increasing the force applied to the forceps. At a target decrease in CMAP amplitude of 70%–90%, crushing was halted. CMAPs were continually recorded for 5–20 min after the termination of the crushing event. Nerves were then fixed for histological assessment. The following post-crush mean values from 19 trials were reported: peak CMAP amplitude decreased by 81.6% from baseline, duration of crush was 17 sec, rate of applied force was 0.03 N/sec, and maximal applied force was 0.5 N. A variety of agonal phenomena were evident post-lesion. Following the initial decrease in CMAP, 8 of 19 trials demonstrated a partial and transient recovery, followed by a further decline. Thirteen trials exhibited a CMAP amplitude near zero at the end of the recording. Twelve trials demonstrated a superimposed EMG background response during and after the crush event, with disappearance occurring within 4–8 min. Qualitative histology assessment at the lesion site demonstrated a correspondence between CMAP response and partial sparing of nerve fibers. By using a targeted decline in CMAP amplitude as the endpoint, researchers may be able to produce controlled, brief, and reproducible crush injuries. This model can also be used to test interventions aimed at enhancing subsequent regeneration and behavioral recovery.
Collapse
Affiliation(s)
- Mohammed Nazmy Hamad
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Nickolas Boroda
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | | | - Raymond A. Dieter
- Hines Veterans Affairs Hospital Research Service, Hines, IL, United States
| | - Farid M. L. Amirouche
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Mark H. Gonzalez
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - James M. Kerns
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
- *Correspondence: James M. Kerns
| |
Collapse
|
17
|
Song L, Guo Q, Guo J, Xu X, Xu K, Li Y, Yang T, Gu X, Cao R, Cui S. Brachial plexus bridging with specific extracellular matrix modified chitosan/silk scaffold: a new expand of tissue engineered nerve graft. J Neural Eng 2022; 19. [PMID: 35259733 DOI: 10.1088/1741-2552/ac5b95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Brachial plexus injuries result in serious dysfunction and are currently treated using autologous nerve graft (autograft) transplantation. With the development of tissue engineering, tissue engineered nerve grafts (TENGs) have emerged as promising alternatives to autografts but have not yet been widely applied to the treatment of brachial plexus injuries. Herein, we developed a TENG modified with extracellular matrix (ECM) generated by skin-derived precursor Schwann cells (SKP-SCs) and expand its application in upper brachial plexus defects in rats. APPROACH SKP-SCs were co-cultured with chitosan neural conduits or silk fibres and subjected to decellularization treatment. Ten bundles of silk fibres (five fibres per bundle) were placed into a conduit to obtain the TENG, which was used to bridge an 8 mm gap in the upper brachial plexus. The efficacy of this treatment was examined for TENG-, autograft- and scaffold-treated groups at several times after surgery using immunochemical staining, behavioural tests, electrophysiological measurements, and electron microscopy. MAIN RESULTS Histological analysis conducted two weeks after surgery showed that compared to scaffold bridging, TENG treatment enhanced the growth of regenerating axons. Behavioural tests conducted four weeks after surgery showed that TENG-treated rats performed similarly to autograft-treated ones, with a significant improvement observed in both cases compared with the scaffold treatment group. Electrophysiological and retrograde tracing characterisations revealed that the target muscles were reinnervated in both TENG and autograft groups, while transmission electron microscopy and immunohistochemical staining showed the occurrence of the superior myelination of regenerated axons in these groups. SIGNIFICANCE Treatment with the developed TENG allows the effective bridging of proximal nerve defects in the upper extremities, and the obtained results provide a theoretical basis for clinical transformation to expand the application scope of TENGs.
Collapse
Affiliation(s)
- Lili Song
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Qi Guo
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Jin Guo
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Xiong Xu
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Ke Xu
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Yueying Li
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Tuo Yang
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| | - Xiaosong Gu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Neuroregeneration, Nantong University, Nantong, PR China., Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong., Changchun, Jilin, 130031, CHINA
| | - Rangjuan Cao
- China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, 130031, CHINA
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China., Changchun, Jilin, 130031, CHINA
| |
Collapse
|
18
|
Huang X, Jiang J, Xu J. Denervation-Related Neuromuscular Junction Changes: From Degeneration to Regeneration. Front Mol Neurosci 2022; 14:810919. [PMID: 35282655 PMCID: PMC8908450 DOI: 10.3389/fnmol.2021.810919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular junctions (NMJs) are the key interface between terminal nerves and targeted muscle, which undergo degeneration during denervation periods. Denervation-related NMJs changes limits the recovery level of nerve repair strategies. Insights into mechanisms behind neuromuscular junction degeneration and regeneration, following denervation and reinnervation, are of clinical value. Developing some therapies to maintain or protect structures and functions of NMJs may contribute to a better prognosis. Here, we reviewed previous studies of NMJs focusing on the morphological, functional, and molecular changes after denervation, and if those changes can be reversed after reinnervation. Also, we reviewed about the present probable strategies that have been applied clinically or could still be studied in targeting the neuromuscular junction protection or regeneration improvement.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- *Correspondence: Junjian Jiang,
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Jianguang Xu,
| |
Collapse
|
19
|
Ito A, Araya Y, Kawai H, Kuroki H. Ultrasound Stimulation Inhibits Morphological Degeneration of Motor Endplates in the Denervated Skeletal Muscle of Rats. Neurosci Insights 2022; 17:26331055221138508. [PMID: 36420426 PMCID: PMC9677316 DOI: 10.1177/26331055221138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Recovery of motor function after peripheral nerve injury requires treatment of
the neuromuscular junction (NMJ), as well as the injured nerve and skeletal
muscle. The purpose of this study was to examine the effects of ultrasound (US)
stimulation on NMJ degeneration after denervation using a rat model of peroneal
nerve transection. Twelve-week-old male Wistar rats were randomly assigned to 3
groups: US stimulation, sham stimulation, and intact. US or sham stimulation was
performed on the left tibialis anterior (TA) muscle starting the day after
peroneal nerve transection for 5 minutes daily under anesthesia. Four weeks
later, the number and morphology of the motor endplates were analyzed to assess
NMJ in the TA muscle. The endplates were classified as normal, partially
fragmented, or fully fragmented for morphometric analysis. In addition, the
number of terminal Schwann cells (tSCs) per endplate and percentage of endplates
with tSCs (tSC retention percentage) were calculated to evaluate the effect of
tSCs on NMJs. Our results showed that endplates degenerated 4 weeks after
transection, with a decrease in the normal type and an increase in the fully
fragmented type in both the US and sham groups compared to the intact group.
Furthermore, the US group showed significant suppression of the normal type
decrease and a fully fragmented type increase compared to the sham group. These
results suggest that US stimulation inhibits endplate degeneration in denervated
TA muscles. In contrast, the number of endplates and tSC and tSC retention
percentages were not significantly different between the US and sham groups.
Further investigations are required to determine the molecular mechanisms by
which US stimulation suppresses degeneration.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Araya
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
21
|
Sorensen JR, Hoffman DB, Corona BT, Greising SM. Secondary denervation is a chronic pathophysiologic sequela of volumetric muscle loss. J Appl Physiol (1985) 2021; 130:1614-1625. [PMID: 33830817 DOI: 10.1152/japplphysiol.00049.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of muscle tissue that results in long-term functional impairments. Despite the loss of myofibers, there remains an unexplained significant decline in muscle function. VML injury likely extends beyond the defect area, causing negative secondary outcomes to the neuromuscular system, including the neuromuscular junctions (NMJs), yet the extent to which VML induces denervation is unclear. This study systematically examined NMJs surrounding the VML injury, hypothesizing that the sequela of VML includes denervation. The VML injury removed ∼20% of the tibialis anterior (TA) muscle in adult male inbred Lewis rats (n = 43), the noninjured leg served as an intra-animal control. Muscles were harvested up to 48 days post-VML. Synaptic terminals were identified immunohistochemically, and quantitative confocal microscopy evaluated 2,613 individual NMJ. Significant denervation was apparent by 21 and 48 days post-VML. Initially, denervation increased ∼10% within 3 days of injury; with time, denervation further increased to ∼22% and 32% by 21 and 48 days post-VML, respectively, suggesting significant secondary denervation. The appearance of terminal axon sprouting and polyinnervation were observed as early as 7 days post-VML, increasing in number and complexity throughout 48 days. There was no evidence of VML-induced NMJ size alteration, which may be beneficial for interventions aimed at restoring muscle function. This work recognizes VML-induced secondary denervation and poor remodeling of the NMJ as part of the sequela of VML injury; moreover, secondary denervation is a possible contributing factor to the chronic functional impairments and potentially an overlooked treatment target.NEW & NOTEWORTHY This work advances our understanding of the pathophysiologic complexity of volumetric muscle loss injury. Specifically, we identified secondary denervation in the muscle remaining after volumetric muscle loss injuries as a novel aspect of the injury sequela. Denervation increased chronically, in parallel with the appearance of irregular morphological characteristics and destabilization of the neuromuscular junction, which is expected to further confound chronic functional impairments.
Collapse
Affiliation(s)
- Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
22
|
Straka T, Schröder C, Roos A, Kollipara L, Sickmann A, Williams MPI, Hafner M, Khan MM, Rudolf R. Regulatory Function of Sympathetic Innervation on the Endo/Lysosomal Trafficking of Acetylcholine Receptor. Front Physiol 2021; 12:626707. [PMID: 33776791 PMCID: PMC7991846 DOI: 10.3389/fphys.2021.626707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.
Collapse
Affiliation(s)
- Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Rios R, Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. Macrophage roles in peripheral nervous system injury and pathology: Allies in neuromuscular junction recovery. Mol Cell Neurosci 2021; 111:103590. [PMID: 33422671 DOI: 10.1016/j.mcn.2021.103590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.
Collapse
Affiliation(s)
- Rachel Rios
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
24
|
Lee B, Cho Y. Experimental Model Systems for Understanding Human Axonal Injury Responses. Int J Mol Sci 2021; 22:E474. [PMID: 33418850 PMCID: PMC7824864 DOI: 10.3390/ijms22020474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro. Here, we collate the key experimental models that revealed the important mechanisms regulating axon regeneration and degeneration in different systems. We also discuss the advantages of experimenting with the rodent model, considering the application of these findings in understanding human diseases and for developing therapeutic methods.
Collapse
Affiliation(s)
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
25
|
Lu CY, Santosa KB, Jablonka-Shariff A, Vannucci B, Fuchs A, Turnbull I, Pan D, Wood MD, Snyder-Warwick AK. Macrophage-Derived Vascular Endothelial Growth Factor-A Is Integral to Neuromuscular Junction Reinnervation after Nerve Injury. J Neurosci 2020; 40:9602-9616. [PMID: 33158964 PMCID: PMC7726545 DOI: 10.1523/jneurosci.1736-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023] Open
Abstract
Functional recovery in the end target muscle is a determinant of outcome after peripheral nerve injury. The neuromuscular junction (NMJ) provides the interface between nerve and muscle and includes non-myelinating terminal Schwann cells (tSCs). After nerve injury, tSCs extend cytoplasmic processes between NMJs to guide axon growth and NMJ reinnervation. The mechanisms related to NMJ reinnervation are not known. We used multiple mouse models to investigate the mechanisms of NMJ reinnervation in both sexes, specifically whether macrophage-derived vascular endothelial growth factor-A (Vegf-A) is crucial to establishing NMJ reinnervation at the end target muscle. Both macrophage number and Vegf-A expression increased in end target muscles after nerve injury and repair. In mice with impaired recruitment of macrophages and monocytes (Ccr2-/- mice), the absence of CD68+ cells (macrophages) in the muscle resulted in diminished muscle function. Using a Vegf-receptor 2 (VegfR2) inhibitor (cabozantinib; CBZ) via oral gavage in wild-type (WT) mice resulted in reduced tSC cytoplasmic process extension and decreased NMJ reinnervation compared with saline controls. Mice with Vegf-A conditionally knocked out in macrophages (Vegf-Afl/fl; LysMCre mice) demonstrated a more prolonged detrimental effect on NMJ reinnervation and worse functional muscle recovery. Together, these results show that contributions of the immune system are integral for NMJ reinnervation and functional muscle recovery after nerve injury.SIGNIFICANCE STATEMENT This work demonstrates beneficial contributions of a macrophage-mediated response for neuromuscular junction (NMJ) reinnervation following nerve injury and repair. Macrophage recruitment occurred at the NMJ, distant from the nerve injury site, to support functional recovery at the muscle. We have shown hindered terminal Schwann cell (tSC) injury response and NMJ recovery with inhibition of: (1) macrophage recruitment after injury; (2) vascular endothelial growth factor receptor 2 (VegfR2) signaling; and (3) Vegf secretion from macrophages. We conclude that macrophage-derived Vegf is a key component of NMJ recovery after injury. Determining the mechanisms active at the end target muscle after motor nerve injury reveals new therapeutic targets that may translate to improve motor recovery following nerve injury.
Collapse
Affiliation(s)
- Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
- Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Guishan District 33305, Taiwan
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109-4217
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Bianca Vannucci
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Anja Fuchs
- Division of General Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Isaiah Turnbull
- Division of General Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| |
Collapse
|
26
|
Lu JQ, Tarnopolsky MA. Mitochondrial neuropathy and neurogenic features in mitochondrial myopathy. Mitochondrion 2020; 56:52-61. [PMID: 33220502 DOI: 10.1016/j.mito.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases (MIDs) involve multiple organs including peripheral nerves and skeletal muscle. Mitochondrial neuropathy (MN) and mitochondrial myopathy (MM) are commonly associated and linked at the neuromuscular junction (NMJ). Herein we review MN in connection with neurogenic features of MM, and pathological evidence for the involvement of the peripheral nerve and NMJ in MID patients traditionally assumed to have predominantly MM. MN is not uncommon, but still likely under-reported, and muscle biopsies of MM commonly exhibit neurogenic features. Pathological examination remains the gold standard to assess the nerve and muscle changes in patients with MIDs. Ultrastructural studies by electron microscopy are often necessary to fully characterize the pathology of mitochondrial cytopathy in MN and MM.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Department of Pathology and Molecular Medicine/Neuropathology, McMaster University, Hamilton, Ontario, Canada.
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, Ontario, Canada; Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Pan D, Sayanagi J, Acevedo-Cintrón JA, Schellhardt L, Snyder-Warwick AK, Mackinnon SE, Wood MD. Liposomes embedded within fibrin gels facilitate localized macrophage manipulations within nerve. J Neurosci Methods 2020; 348:108981. [PMID: 33075327 DOI: 10.1016/j.jneumeth.2020.108981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Understanding the role of macrophages at discrete spatial locations during nerve regeneration after injury is important. But, methodologies that systemically manipulate macrophages can obscure their roles within discrete spatial locations within nerve. NEW METHOD Liposomes were embedded within fibrin gels to construct a delivery system that facilitated macrophage-specific manipulations at a sole spatial region, as macrophages accumulated within the fibrin. Clodronate liposomes were characterized for their toxicity to specific cells composing nerve in vitro, then tested for macrophage-specific depletion in vivo. This delivery system using clodronate liposomes was used to repair a mouse sciatic nerve gap to evaluate its efficacy and effects. RESULT Clodronate liposomes showed specific toxicity to macrophages without affecting dorsal root ganglia (DRG)-derived neurons, endothelial cells, or Schwann cells in culture. The delivery system demonstrated sustained release of liposomes for more than 7 days while still retaining liposomes within the fibrin. In vivo, the delivery system demonstrated macrophages were targeted by liposomes, and the use of clodronate liposomes minimized macrophage accumulation within fibrin, while not affecting macrophage accumulation within DRG. Nerve regeneration across the nerve gap repaired using this delivery system was associated with decreased angiogenesis, Schwann cell accumulation, axon growth, and reinnervation of affected muscle. COMPARISON WITH EXISTING METHODS This delivery system allowed specific perturbation of macrophages locally in nerve. This method could be applicable across species without the need for genetic manipulations or systemic pharmaceuticals. CONCLUSION Liposomes embedded within fibrin gels locally target macrophages at the site of nerve injury, which enables greater precision in conclusions regarding their roles in nerve.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesús A Acevedo-Cintrón
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Kouyoumdjian JA, Ronchi LG, de Faria FO. Jitter evaluation in denervation and reinnervation in 32 cases of chronic radiculopathy. Clin Neurophysiol Pract 2020; 5:165-172. [PMID: 32939421 PMCID: PMC7479254 DOI: 10.1016/j.cnp.2020.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To measure the jitter parameters in muscles with denervation/reinnervation in 32 chronic radiculopathy cases. METHODS Measurements were done in chronic denervated muscles by voluntary and electrical activation using a concentric needle electrode. RESULTS Mean jitter was abnormal in 87.5% (mean 49.2 µs) and 81.25% (mean 36.8 µs), for voluntary and electrical activation. In muscles with fibrillation potentials (FPs), the mean jitter was abnormal in all cases, and impulse blocking was frequent (53.4-92.3%). In muscles without FPs, the mean jitter was abnormal in 78.9% for voluntary activation and 68.4% for electrical activation. No correlation was found between jitter and motor unit action potential amplitude. CONCLUSION The muscles with FPs were associated with the immature spread of acetylcholine receptors (AChRs) throughout the muscle membrane. Conversely, the neuromuscular junctions (NMJs) assemble may be repressed by the already reinnervated muscles. For those, higher jitter may be due to the persistence of atrophic fibers expressing neonatal myosin heavy chain (MHC) and immaturity of NMJ composting instead of the overspread of immature AChRs. SIGNIFICANCE Jitter measurement must be avoided in chronic denervated muscles, regardless of FPs' presence. The activity of reinnervated muscle could maintain neonatal MHC and repress new NMJs development.
Collapse
Affiliation(s)
- Joao Aris Kouyoumdjian
- Faculdade Estadual Medicina Sao Jose do Rio Preto (FAMERP), Laboratorio Investigacao Neuromuscular (LIN), Associate-Professor of Neurology, 15090-000 Sao Jose do Rio Preto, Sao Paulo, Brazil
| | - Luis Guilherme Ronchi
- Fellows in Neuromuscular Diseases and Eletrectromyography, Faculdade Estadual Medicina Sao Jose do Rio Preto (FAMERP), 15090-000 Sao Jose do Rio Preto, Sao Paulo, Brazil
| | - Felipe Oliveira de Faria
- Fellows in Neuromuscular Diseases and Eletrectromyography, Faculdade Estadual Medicina Sao Jose do Rio Preto (FAMERP), 15090-000 Sao Jose do Rio Preto, Sao Paulo, Brazil
| |
Collapse
|
29
|
Gordon JC, Holt NC, Biewener A, Daley MA. Tuning of feedforward control enables stable muscle force-length dynamics after loss of autogenic proprioceptive feedback. eLife 2020; 9:53908. [PMID: 32573432 PMCID: PMC7334023 DOI: 10.7554/elife.53908] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Animals must integrate feedforward, feedback and intrinsic mechanical control mechanisms to maintain stable locomotion. Recent studies of guinea fowl (Numida meleagris) revealed that the distal leg muscles rapidly modulate force and work output to minimize perturbations in uneven terrain. Here we probe the role of reflexes in the rapid perturbation responses of muscle by studying the effects of proprioceptive loss. We induced bilateral loss of autogenic proprioception in the lateral gastrocnemius muscle (LG) using self-reinnervation. We compared in vivo muscle dynamics and ankle kinematics in birds with reinnervated and intact LG. Reinnervated and intact LG exhibit similar steady state mechanical function and similar work modulation in response to obstacle encounters. Reinnervated LG exhibits 23ms earlier steady-state activation, consistent with feedforward tuning of activation phase to compensate for lost proprioception. Modulation of activity duration is impaired in rLG, confirming the role of reflex feedback in regulating force duration in intact muscle.
Collapse
Affiliation(s)
- Joanne C Gordon
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Natalie C Holt
- Evolution, Ecology & Organismal Biology, University of California, Riverside, Riverside, United States
| | - Andrew Biewener
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Cambridge, United States
| | - Monica A Daley
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.,Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
30
|
Pan D, Acevedo-Cintrón JA, Sayanagi J, Snyder-Warwick AK, Mackinnon SE, Wood MD. The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration. Exp Neurol 2020; 331:113363. [PMID: 32450192 DOI: 10.1016/j.expneurol.2020.113363] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
Acellular nerve allografts (ANAs) are increasingly used to repair nerve gaps following injuries. However, these nerve scaffolds have yet to surpass the regenerative capabilities of cellular nerve autografts; improved understanding of their regenerative mechanisms could improve design. Due to their acellular nature, both angiogenesis and diverse cell recruitment is necessary to repopulate these scaffolds to promote functional regeneration. We determined the contribution of angiogenesis to initial cellular repopulation of ANAs used to repair nerve gaps, as well as the signaling that drives a significant portion of this angiogenesis. Wild-type (WT) mice with nerve gaps repaired using ANAs that were treated with an inhibitor of VEGF receptor signaling severely impaired angiogenesis within ANAs, as well as hampered cell repopulation and axon extension into ANAs. Similarly, systemic depletion of hematogenous-derived macrophages, but not neutrophils, in these mice models severely impeded angiogenesis and subsequent nerve regeneration across ANAs suggesting hematogenous-derived macrophages were major contributors to angiogenesis within ANAs. This finding was reinforced using CCR2 knockout (KO) models. As macrophages represented the majority of CCR2 expressing cells, a CCR2 deficiency impaired angiogenesis and subsequent nerve regeneration across ANAs. Furthermore, an essential role for CCL2 during nerve regeneration across ANAs was identified, as nerves repaired using ANAs had reduced angiogenesis and subsequent nerve regeneration in CCL2 KO vs WT mice. Our data demonstrate the CCL2/CCR2 axis is important for macrophage recruitment, which promotes angiogenesis, cell repopulation, and subsequent nerve regeneration and recovery across ANAs used to repair nerve gaps.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesús A Acevedo-Cintrón
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK. Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 2019; 68:1182-1200. [PMID: 31873966 DOI: 10.1002/glia.23769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Katherine Campbell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.,Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|