1
|
Voermans NC, Dittrich ATM, Liguori S, Panicucci C, Moretti A, Weber DR, Ward LM. 274th ENMC international workshop: recommendations for optimizing bone strength in neuromuscular disorders. Hoofddorp, The Netherlands, 19-21 January 2024. Neuromuscul Disord 2024; 43:1-13. [PMID: 39173540 DOI: 10.1016/j.nmd.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
The 274th ENMC workshop for optimizing bone strength in neuromuscular disorders (NMDs) was held on January 19-21, 2024. The group of participants included experts in the fields of bone health and neuromuscular medicine along with the patient voice. Bone strength represents a crucial aspect of the management of pediatric and adult patients with NMDs. Bone strength may be compromised due to different pathophysiologic mechanisms, including disrupted bone-muscle "cross-talk", loss of biomechanical loading, nutritional insufficiency, inadequate weight-bearing physical activity, muscle weakness and/or immobility, and drug treatment. While for Duchenne muscular dystrophy recommendations for evaluation and treatment of bone strength have been published, evidence on bone strength in other hereditary and acquired NMDs is scarce. Enhanced knowledge is needed to understand the development and maintenance of bone strength in patients with NMDs. This workshop aimed to develop a strategy to improve bone strength and thus prevent fractures in patients with NMDs.
Collapse
Affiliation(s)
- Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Anne T M Dittrich
- Department of Pediatrics, Radboud University Medical Center, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - David R Weber
- Division of Endocrinology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
2
|
Mashangva F, Oswalia J, Singh S, Arya R. Potential small effector molecules restoring cellular defects due to sialic acid biosynthetic enzyme deficiency: Pathological relevance to GNE myopathy. Biochem Pharmacol 2024; 223:116199. [PMID: 38604256 DOI: 10.1016/j.bcp.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of β1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM‑GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM‑GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM‑GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM‑GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM‑GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.
Collapse
Affiliation(s)
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shagun Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
4
|
Yavas A, van Putten M, Aartsma-Rus A. Antisense Oligonucleotide-Mediated Downregulation of IGFBPs Enhances IGF-1 Signaling. J Neuromuscul Dis 2024; 11:299-314. [PMID: 38189760 DOI: 10.3233/jnd-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.
Collapse
Affiliation(s)
- Alper Yavas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Aguayo JS, Shelton JM, Tan W, Rakheja D, Cai C, Shalaby A, Lee J, Iannaccone ST, Xu L, Chen K, Burns DK, Zheng Y. Ectopic PLAG1 induces muscular dystrophy in the mouse. Biochem Biophys Res Commun 2023; 665:159-168. [PMID: 37163936 DOI: 10.1016/j.bbrc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Even though various genetic mutations have been identified in muscular dystrophies (MD), there is still a need to understand the biology of MD in the absence of known mutations. Here we reported a new mouse model of MD driven by ectopic expression of PLAG1. This gene encodes a developmentally regulated transcription factor known to be expressed in developing skeletal muscle, and implicated as an oncogene in certain cancers including rhabdomyosarcoma (RMS), an aggressive soft tissue sarcoma composed of myoblast-like cells. By breeding loxP-STOP-loxP-PLAG1 (LSL-PLAG1) mice into the MCK-Cre line, we achieved ectopic PLAG1 expression in cardiac and skeletal muscle. The Cre/PLAG1 mice died before 6 weeks of age with evidence of cardiomyopathy significantly limiting left ventricle fractional shortening. Histology of skeletal muscle revealed dystrophic features, including myofiber necrosis, fiber size variation, frequent centralized nuclei, fatty infiltration, and fibrosis, all of which mimic human MD pathology. QRT-PCR and Western blot revealed modestly decreased Dmd mRNA and dystrophin protein in the dystrophic muscle, and immunofluorescence staining showed decreased dystrophin along the cell membrane. Repression of Dmd by ectopic PLAG1 was confirmed in dystrophic skeletal muscle and various cell culture models. In vitro studies showed that excess IGF2 expression, a transcriptional target of PLAG1, phenocopied PLAG1-mediated down-regulation of dystrophin. In summary, we developed a new mouse model of a lethal MD due to ectopic expression of PLAG1 in heart and skeletal muscle. Our data support the potential contribution of excess IGF2 in this model. Further studying these mice may provide new insights into the pathogenesis of MD and perhaps lead to new treatment strategies.
Collapse
Affiliation(s)
- Juan Shugert Aguayo
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Tan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ahmed Shalaby
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan T Iannaccone
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Chen
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanbin Zheng
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Toodle V, Lee MH, Bachani M, Ruffin A, Vivekanandhan S, Malik N, Wang T, Johnson TP, Nath A, Steiner JP. Fluconazole Is Neuroprotective via Interactions with the IGF-1 Receptor. Neurotherapeutics 2022; 19:1313-1328. [PMID: 35831747 PMCID: PMC9587198 DOI: 10.1007/s13311-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 10/17/2022] Open
Abstract
There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Valerie Toodle
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Muzna Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - April Ruffin
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sneha Vivekanandhan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Wood CL, van ‘t Hof R, Dillon S, Straub V, Wong SC, Ahmed SF, Farquharson C. Combined growth hormone and insulin-like growth factor-1 rescues growth retardation in glucocorticoid-treated mdxmice but does not prevent osteopenia. J Endocrinol 2022; 253:63-74. [PMID: 35191394 PMCID: PMC9010817 DOI: 10.1530/joe-21-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Short stature and osteoporosis are common in Duchenne muscular dystrophy (DMD) and its pathophysiology may include an abnormality of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis, which is further exacerbated by long-term glucocorticoid (GC) treatment. Hence, an agent that has anabolic properties and may improve linear growth would be beneficial in this setting and therefore requires further exploration. A 5-week-old x-linked muscular dystrophy (mdx) mice were used as a model of DMD. They were treated with prednisolone ± GH + IGF-1 for 4 weeks and then compared to control mdx mice to allow the study of both growth and skeletal structure. GC reduced cortical bone area, bone fraction, tissue area and volume and cortical bone volume, as assessed by micro computed tomography (CT) In addition, GC caused somatic and skeletal growth retardation but improved grip strength. The addition of GH + IGF-1 therapy rescued the somatic growth retardation and induced additional improvements in grip strength (16.9% increase, P < 0.05 compared to control). There was no improvement in bone microarchitecture (assessed by micro-CT and static histomorphometry) or biomechanical properties (assessed by three-point bending). Serum bone turnover markers (Serum procollagen 1 intact N-terminal propeptide (P1NP), alpha C-terminal telopeptide (αCTX)) also remained unaffected. Further work is needed to maximise these gains before proceeding to clinical trials in boys with DMD.
Collapse
Affiliation(s)
- Claire L Wood
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Correspondence should be addressed to C Wood or C Farquharson: or
| | - Rob van ‘t Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Scott Dillon
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sze C Wong
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, UK
| | - Colin Farquharson
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to C Wood or C Farquharson: or
| |
Collapse
|
9
|
Ru L, Wang Y, Yan M. Efficacy and safety of glucocorticoids in the treatment of progressive muscular dystrophy in children: a systematic review and meta-analysis. Transl Pediatr 2021; 10:3046-3057. [PMID: 34976770 PMCID: PMC8649594 DOI: 10.21037/tp-21-461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hormonal drug therapy has been widely used in clinical practice for the treatment of progressive muscular dystrophy (PMD). Glucocorticoids, as a common drug in the clinical treatment of PMD, have been reported in several clinical studies. METHODS Chinese and English databases were respectively searched using "randomized controlled trials", "Duchenne-type myotonic dystrophy", "glucocorticoids", Prednisone", "Prednisolone", and "Methylprednisolone", and "Defibrotide" were used as search terms. The meta-analysis was performed using the RevMan 5.3 and Stata 13 software provided by the Cochrane system. RESULTS this study included five randomized controlled trials, all of which described the correct randomization method. There were four detailed descriptions of hidden distribution schemes. There were four literatures using blind method. Heterogeneity analysis showed that there was some heterogeneity between the results of the mean prognostic muscle strength, walking time of 9 meters, and 4 flights of stairs climbing between the glucocorticoid-treated group (the experimental group) and the placebo group (the control group). There were no significant differences between the experimental group and the control group in average muscle strength level, walking time of 9 meters and climbing time of 4 flights of stairs (MD =1.77; 95% CI: -0.95 to 4.48; P=0.20>0.05), (MD =-12.27; 95% CI: -35.94 to 11.40; P=0.31>0.01), (MD =-3.09; 95% CI: -11.16 to 4.99; P=0.45>0.05). In addition, glucocorticoid treatment significantly increased creatine kinase level in patients with PMD (MD =-0.28, 95% CI: -0.57 to 0.00; P=0.05). In terms of the incidence of adverse reactions, glucocorticoid treatment significantly increased the prognostic probability of acne, rapid hair growth, and emotional irritability in PMD patients (OR =2.40; 95% CI: 1.09 to 5.27; P=0.03<0.05), (OR =3.05; 95% CI: 1.55 to 5.99; P=0.001<0.05), (OR =4.04; 95% CI: 1.82 to 10.63; P=0.001<0.05). There was no significant difference in the incidence of prognostic depression between the experimental group and the control group (OR =5.11; 95% CI: 0.80 to 32.79; P=0.09>0.05). DISCUSSION The results suggest that glucocorticoids have a significant effect on PMD patients, but to a certain extent they increase the incidence of adverse reactions in patients after treatment. However, due to the lack of complete clinical data in some ongoing studies, our conclusions may not be fully representative.
Collapse
Affiliation(s)
- Liang Ru
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yanan Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mei Yan
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
Lee SC, Hsiao JK, Yang YC, Haung JC, Tien LY, Li DE, Tsai SM. Insulin-like growth factor-1 positively associated with bone formation markers and creatine kinase in adults with general physical activity. J Clin Lab Anal 2021; 35:e23799. [PMID: 34143515 PMCID: PMC8373336 DOI: 10.1002/jcla.23799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The Insulin-like growth factor-1 (IGF-1) is primarily synthesized by hepatocytes in a growth hormone (GH)-dependent manner, it is also produced by bone and muscle. The effects of exercise on the associations between IGF-1 levels and bone turnover markers (BTM) were found in the previous studies. However, the associations between the levels of IGF-1 and BTM, liver function tests, and skeletal muscle markers in adults with general physical activity were not clear. METHODS Ninety-four participants were recruited from healthy survey. Blood samples were collected to analyze the levels of IGF-1, total protein (TP), albumin (Alb), total bilirubin (T-Bil), direct bilirubin (D-Bil), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bone alkaline phosphatase (BALP), lactate dehydrogenase (LDH), creatine kinase (CK), creatinine (CRTN), and glucose. Urine samples were collected to analyze the CRTN and deoxypyridinoline (Dpd) levels. RESULTS The positively significant associations were found between the IGF-1 levels and the levels of ALP, BALP, and CK, respectively. No significant associations were found between the IGF-1 levels and the levels of TP, Alb, A/G, T-Bil, D-Bil, AST, ALT, LDH, glucose, urinary CRTN, urinary Dpd, and Dpd/CRTN ratios, respectively. CONCLUSION The serum IGF-1 levels associated with the levels of skeletal muscle and bone formation markers (BFM), not the bone resorption markers under general physical activity in the healthy adults. The physician needs to consider the effects of bone formation and skeletal muscle markers on the IGF-1 levels in the management of IGF-1-related disorders.
Collapse
Affiliation(s)
- Su-Chen Lee
- Department of Laboratory Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jen-Kuei Hsiao
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Yang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jung-Chih Haung
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Ying Tien
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Dai-En Li
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Meng Tsai
- Department of Public Health and Environmental Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
GH/IGF-1 Abnormalities and Muscle Impairment: From Basic Research to Clinical Practice. Int J Mol Sci 2021; 22:ijms22010415. [PMID: 33401779 PMCID: PMC7795003 DOI: 10.3390/ijms22010415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
The impairment of skeletal muscle function is one of the most debilitating least understood co-morbidity that accompanies acromegaly (ACRO). Despite being one of the major determinants of these patients’ poor quality of life, there is limited evidence related to the underlying mechanisms and treatment options. Although growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels are associated, albeit not indisputable, with the presence and severity of ACRO myopathies the precise effects attributed to increased GH or IGF-1 levels are still unclear. Yet, cell lines and animal models can help us bridge these gaps. This review aims to describe the evidence regarding the role of GH and IGF-1 in muscle anabolism, from the basic to the clinical setting with special emphasis on ACRO. We also pinpoint future perspectives and research lines that should be considered for improving our knowledge in the field.
Collapse
|