1
|
Rink-Notzon S, Reuscher J, Wollny L, Sarikcioglu L, Bilmen S, Manthou M, Gordon T, Angelov DN. Appropriate dosage, timing, and site of intramuscular injections of brain-derived neurotrophic factor (BDNF) promote motor recovery after facial nerve injury in rats. Muscle Nerve 2024; 69:490-497. [PMID: 38328996 DOI: 10.1002/mus.28051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION/AIMS Daily intramuscular injections of fibroblast growth factor 2 (FGF2) but not of brain-derived neurotrophic factor (BDNF) significantly improve whisking behavior and mono-innervation of the rat levator labii superioris (LLS) muscle 56 days after buccal nerve transection and suture (buccal-buccal anastomosis, BBA). We explored the dose-response of BDNF, FGF2, and insulin growth factor 2 (IGF2) on the same parameters, asking whether higher doses of BDNF would promote recovery. METHODS After BBA, growth factors were injected (30 μL volume) daily into the LLS muscle over 14, 28, or 56 days. At 56 days, video-based motion analysis of vibrissal whisking was performed and the extent of mono- and poly-reinnervation of the reinnervated neuromuscular junctions (NMJs) of the muscle determined with immunostaining of the nerve with β-tubulin and histochemical staining of the endplates with Alexa Fluor 488-conjugated α-bungarotoxin. RESULTS The dose-response curve demonstrated significantly higher whisking amplitudes and corresponding increased mono-innervation of the NMJ in the reinnervated LLS muscle at concentrations of 20-30 μg/mL BDNF administered daily for 14-28 days after BBA surgery. In contrast, high doses of IGF2 and FGF2, or doses of 20 and 40 μg/mL of BDNF administered for 14-56 days had no effect on either whisking behavior or in reducing poly-reinnervation of endplates in the muscle. DISCUSSION These data suggest that the re-establishment of mono-innervation of whiskerpad muscles and the improved motor function by injections of BDNF into the paralyzed vibrissal musculature after facial nerve injury have translation potential and promote clinical application.
Collapse
Affiliation(s)
- Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Jannika Reuscher
- Department of Anatomy II, University of Cologne, Cologne, Germany
| | - Laura Wollny
- Department of Anatomy II, University of Cologne, Cologne, Germany
| | | | - Süreyya Bilmen
- Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Effect of Massage Therapy in Regulating Wnt/β-Catenin Pathway on Retarding Denervated Muscle Atrophy in Rabbits. J Manipulative Physiol Ther 2022. [DOI: 10.1016/j.jmpt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Li J, Yao Y, Wang Y, Xu J, Zhao D, Liu M, Shi S, Lin Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202513. [PMID: 35483031 DOI: 10.1002/adma.202202513] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury (PNI) is currently recognized as one of the most significant public health issues and affects the general well-being of millions of individuals worldwide. Despite advances in nerve tissue engineering, nerve repair still cannot guarantee complete functional recovery. In the present study, an innovative approach is adopted to establish a multifunctional tetrahedral framework nucleic acids (tFNAs) system, denoted as MiDs, which can integrate the powerful programmability, permeability, and structural stability of tFNAs, with the nerve regeneration potential of microRNA-22 to enhance the communication between Schwann cells (SCs) and macrophages for more effective functional rehabilitation of peripheral nerves. Relevant results demonstrate that MiDs can amplify the ability of SCs to recruit macrophages and facilitate their polarization into the pro-healing M2 phenotype to reconstruct the post-injury microenvironment. Furthermore, MiDs can initiate the adaptive intracellular reprogramming of SCs within a short period to further promote axon regeneration and remyelination. MiDs represent a new possibility for enhancing nerve repair and may have critical clinical applications in the future.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jiangshan Xu
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
5
|
Huang X, Jiang J, Xu J. Denervation-Related Neuromuscular Junction Changes: From Degeneration to Regeneration. Front Mol Neurosci 2022; 14:810919. [PMID: 35282655 PMCID: PMC8908450 DOI: 10.3389/fnmol.2021.810919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular junctions (NMJs) are the key interface between terminal nerves and targeted muscle, which undergo degeneration during denervation periods. Denervation-related NMJs changes limits the recovery level of nerve repair strategies. Insights into mechanisms behind neuromuscular junction degeneration and regeneration, following denervation and reinnervation, are of clinical value. Developing some therapies to maintain or protect structures and functions of NMJs may contribute to a better prognosis. Here, we reviewed previous studies of NMJs focusing on the morphological, functional, and molecular changes after denervation, and if those changes can be reversed after reinnervation. Also, we reviewed about the present probable strategies that have been applied clinically or could still be studied in targeting the neuromuscular junction protection or regeneration improvement.
Collapse
Affiliation(s)
- Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- *Correspondence: Junjian Jiang,
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Jianguang Xu,
| |
Collapse
|
6
|
Rudell JC, McLoon LK. Effect of Fibroblast Growth Factor 2 on Extraocular Muscle Structure and Function. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34293078 PMCID: PMC8300058 DOI: 10.1167/iovs.62.9.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the fibroblast growth factor (FGF) receptor can result in strabismus, but little is known about how FGFs affect extraocular muscle structure and function. These were assessed after short-term and long-term exposure to exogenously applied FGF2 to determine the effect of enhanced signaling. Methods One superior rectus muscle of adult rabbits received either a series of three injections of 500 ng, 1 µg, or 5 µg FGF2 and examined after 1 week, or received sustained treatment with FGF2 and examined after 1, 2, or 3 months. Muscles were assessed for alterations in force generation, myofiber size, and satellite cell number after each treatment. Results One week after the 5 µg FGF2 injections, treated muscles showed significantly increased force generation compared with naïve controls, which correlated with increased myofiber cross-sectional areas and Pax7-positive satellite cells. In contrast, 3 months of sustained FGF2 treatment resulted in decreased force generation, which correlated with decreased myofiber size and decreased satellite cells compared with naïve control and the untreated contralateral side. Conclusions FGF2 had distinctly different effects when short-term and long-term treatments were compared. The decreased size and ability to generate force correlated with decreased myofiber areas seen in individuals with Apert syndrome, where there is sustained activation of FGF signaling. Knowing more about signaling pathways critical for extraocular muscle function, development, and disease will pave the way for improved treatment options for strabismus patients with FGF abnormalities in craniofacial disease, which also may be applicable to other strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Sasaki R, Watanabe Y, Yamato M, Okamoto T. Tissue-engineered nerve guides with mesenchymal stem cells in the facial nerve regeneration. Neurochem Int 2021; 148:105062. [PMID: 34004239 DOI: 10.1016/j.neuint.2021.105062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Nerve guides with mesenchymal stem cells have been investigated in the rat facial nerve defect model to promote peripheral nerve regeneration and shorten recovery time to improve patients' quality of life. A 7-mm facial nerve gap experimental rat model is frequently employed in facial nerve regeneration studies. Facial nerve regeneration with nerve guides is evaluated by (1) assessing myelinated fiber counts using toluidine blue staining, (2) immunohistological analysis, (3) determining the g-ratio (axon diameter/total outer diameter) of regenerated nerve on transmission electron microscopic images, (4) retrograde nerve tracing in the facial nucleus, (5) electrophysiological evaluations using compound muscle action potential, and (6) functional evaluations using rat facial palsy scores. Dental pulp and adipose-derived stem cells, easily harvested using a minimally invasive procedure, possess characteristics of mesenchymal tissue lineages and can differentiate into Schwann-like cells. Cultured dental pulp-derived cells can produce neurotrophic factors, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. These neurotrophic factors promote peripheral nerve regeneration and afford protection against facial motor neuron death. Moreover, artificial nerve guides can maneuver axonal regrowth, and dental pulp-derived cells and adipose-derived Schwann cells may supply neurotrophic factors, promoting axonal regeneration. In the present review, the authors discuss facial nerve regeneration using nerve guides with mesenchymal stem cells.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yorikatsu Watanabe
- Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshihiro Okamoto
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|