1
|
Lin H, Xing J, Ma X, Nakanishi R, Kondo H, Fujita M, Sutoh K, Maeshige N, Fujino H. Dietary RNA from Torula Yeast Prevents Capillary Regression in Atrophied Skeletal Muscle in Rats. Life (Basel) 2024; 14:1616. [PMID: 39768324 PMCID: PMC11679692 DOI: 10.3390/life14121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic neuromuscular inactivity induces capillary regression within skeletal muscle. The objective of this study was to investigate the potential effects of dietary nucleic acids in counteracting the capillary reduction linked to chronic neuromuscular inactivity in the soleus muscle. The study utilized four distinct groups of female Wistar rats: a control group (CON), a hindlimb-unloading group (HU), an HU group supplemented with DNA (HU + DNA), and an HU group supplemented with RNA (HU + RNA). For a duration of two weeks, rats in the HU + DNA and HU + RNA groups were administered 1500 mg/kg of DNA or RNA orally on a daily basis. Two weeks of hindlimb unloading was concomitant with a reduction in the absolute weight of the soleus muscle and the capillary-to-fiber (C/F) ratio. This was associated with changes due to disuse, including increased accumulation of reactive oxygen species (ROS) and reduced levels of superoxide dismutase (SOD-2), along with elevated levels of thrombospondin-1 (TSP-1), an anti-angiogenic factor. Administering DNA at a medium concentration in the diet did not effectively prevent the reduction in the ratio between capillaries and fibers. In contrast, the equivalent concentration of RNA successfully averted the regression of capillaries during the unloading phase. Additionally, reactive oxygen species (ROS), superoxide dismutase-2 (SOD-2), and thrombospondin-1 (TSP-1) protein were kept at the same levels as in the control. The aforementioned findings reveal that RNA is more effective than DNA in preventing capillary regression triggered by muscle atrophy.
Collapse
Affiliation(s)
- Hao Lin
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Jihao Xing
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Mica Fujita
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| |
Collapse
|
2
|
Tanaka M, Kanazashi M, Tsumori T, Fujino H. Prazosin improves insulin-induced anabolic signaling by protecting capillary regression in the soleus muscle of hindlimb-unloaded rats. J Diabetes Metab Disord 2024; 23:1989-1999. [PMID: 39610479 PMCID: PMC11599836 DOI: 10.1007/s40200-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 11/30/2024]
Abstract
Purpose Reduced capillary number in skeletal muscle due to disuse can hinder the delivery of insulin and amino acid delivery to muscle cells, diminishing insulin activity and muscle protein synthesis, ultimately contributing to anabolic resistance. However, it remains unknown whether mitigating capillary regression during inactivity improves anabolic resistance. This study aimed to investigate the effect of increasing capillary number through the administration of prazosin, which can increase blood flow and prevent capillary regression, on anabolic resistance in skeletal muscle induced by disuse. Methods Male Sprague Dawley rats were divided into control and hindlimb unloading (HU) groups, with half of each group receiving prazosin (50 mg/L) in their drinking water for 2 weeks. Histological analysis of the soleus muscles was conducted to measure the capillary-to-fiber (C/F) ratio, while western blotting was performed to measure the activation of the Akt/mTORC1 muscle protein synthesis pathway before and after insulin stimulation. Results The C/F ratios were significantly lower in the HU and HU + Prz groups than in the control group but were significantly higher in the HU + Prz group than in the HU group. Following insulin stimulation, the phosphorylation levels of Akt, p70S6K, and S6RP increased in all groups, with a significantly greater increase observed in the HU + Prz group compared to the HU group, indicating improved molecular signaling related to muscle protein synthesis. Conclusion Administration of prazosin during hindlimb unloading mitigated capillary regression and enhanced insulin-stimulated muscle protein synthesis response. These findings suggest that enhancing capillary number may reduce the anabolic resistance caused by muscle disuse. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01454-y.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913 Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Toshiko Tsumori
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima, 723-0053 Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, 654-0142 Hyogo Japan
| |
Collapse
|
3
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle. J Muscle Res Cell Motil 2024; 45:263-273. [PMID: 39085712 DOI: 10.1007/s10974-024-09680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan.
| | - Hiroyo Kondo
- Department of Nutrition, Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi, 491- 0938, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| |
Collapse
|
4
|
McIntosh MC, Michel JM, Godwin JS, Plotkin DL, Anglin DA, Mattingly ML, Agyin-Birikorang A, Kontos NJ, Baweja HS, Stock MS, Mobley CB, Roberts MD. Leg immobilization and subsequent recovery resistance training affect skeletal muscle angiogenesis related markers in young healthy adults regardless of prior resistance training experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625075. [PMID: 39651155 PMCID: PMC11623531 DOI: 10.1101/2024.11.24.625075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We recently reported that resistance trained (T, n=10) and untrained (UT, n=11) young adults experience vastus lateralis (VL) muscle atrophy following two weeks of disuse, and 8 weeks of recovery resistance training (RT) promotes VL hypertrophy in both participant cohorts. However, angiogenesis targets and muscle capillary number were not examined and currently no human studies that have sought to determine if disuse followed by recovery RT affects these outcomes. Thus, we examined whether disuse and/or recovery RT affected these outcomes. All participants underwent two weeks of left leg immobilization using locking leg braces and crutches followed by eight weeks (3d/week) of knee extensor focused progressive RT. VL biopsies were obtained at baseline (PRE), immediately after disuse (MID), and after RT (POST). Western blotting was used to assay angiogenesis markers and immunohistochemistry was performed in 16/21 participants to determine type I and II muscle fiber capillary number. Significant main effects of time (p<0.05) were observed for protein levels of VEGF (MID 0.100). Although disuse and recovery RT affect skeletal muscle angiogenesis-related protein targets, prior training history does not differentially affect these outcomes. NEW AND NOTEWORTHY This is the first study to examine how limb immobilization and recovery resistance training affect molecular outcomes related to angiogenesis in younger adults with or without a prior training history. Regardless of resistance training history, the molecular responses are largely similar between participant cohorts and is suggestive of a reduced (pre-mid) and increased (mid-post) angiogenic response, with disuse and subsequent recovery resistance training.
Collapse
|
5
|
Vanhoutte D, Schips TG, Minerath RA, Huo J, Kavuri NSS, Prasad V, Lin SC, Bround MJ, Sargent MA, Adams CM, Molkentin JD. Thbs1 regulates skeletal muscle mass in a TGFβ-Smad2/3-ATF4-dependent manner. Cell Rep 2024; 43:114149. [PMID: 38678560 PMCID: PMC11217783 DOI: 10.1016/j.celrep.2024.114149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor β (TGFβ)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFβ-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFβ-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFβ-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.
Collapse
Affiliation(s)
- Davy Vanhoutte
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tobias G Schips
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel A Minerath
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jiuzhou Huo
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Naga Swathi Sree Kavuri
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Suh-Chin Lin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael J Bround
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher M Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Nakanishi R, Hashimoto N, Takuwa M, Xing J, Uemura M, un Nisa B, Tanaka M, Hirabayashi T, Tanaka M, Fujino H. High Concentrations of Nucleotides Prevent Capillary Regression during Hindlimb Unloading by Inhibiting Oxidative Stress and Enhancing Mitochondrial Metabolism of Soleus Muscles in Rats. Acta Histochem Cytochem 2023; 56:95-104. [PMID: 38318105 PMCID: PMC10838627 DOI: 10.1267/ahc.23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 02/07/2024] Open
Abstract
Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Kobe International University, 9–1–6, Koyocho-naka, Higashinada-ku, Kobe, Hyogo 658–0032, Japan
| | - Nagisa Hashimoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Miho Takuwa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Jihao Xing
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Kansai University of Welfare Sciences, 3–11–1, Asahigaoka, Kashihara, Osaka, 582–0026, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, 3-2-18, Daiku Kita-ku, Okayama, Okayama, 700-0913, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Rehabilitation, Osaka Health Science University, 1-9-27, Tenma Kita-ku, Osaka, 530-0043, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| |
Collapse
|
7
|
Kanazashi M, Tanaka M. Acute effect of electrical stimulation on muscle protein synthesis and break-down in the soleus muscle of hindlimb unloaded rats. Biomed Res 2023; 44:209-218. [PMID: 37779033 DOI: 10.2220/biomedres.44.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Electrical stimulation (ES) is effective for disuse-induced muscle atrophy. However, the acute effect of ES on muscle protein synthesis (MPS) and muscle protein breakdown (MPB) remains unclear. We investigated the effect of a single-session ES treatment on mTORC1 signaling, MPS, and MPB in the soleus muscle of 2-week hindlimb unloaded rats. Sprague Dawley rats (n = 12 male) were randomly divided into control (CON) and hindlimb unloaded (HU) groups. After 2 weeks, the right soleus muscle was percutaneously stimulated and underwent supramaximal isometric contractions. The left soleus muscle served as an internal control. We collected soleus muscle samples 6 h after ES. Two weeks of HU decreased p70S6K and S6rp activation, downstream factors for mTORC1 signaling, and SUnSET method-assessed MPS, but increased the LC3-II/I ratio, an indicator of autophagy. ES on disused muscle successfully activated mTORC1 signaling but did not affect MPS. Contrary, ES decreased ubiquitinated proteins expression and LC3B-II/I ratio. HU might affect mTORC1 activation and MPS differently in response to acute ES possibly due to excessive ROS production caused by ES. Our findings suggest that ES applied to disused skeletal muscles may suppress MPB, but its effect on MPS appears to be attenuated.
Collapse
Affiliation(s)
- Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional Uni- versity, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama 700-0913, Japan
| |
Collapse
|