1
|
Is Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues? BIOLOGY 2022; 11:biology11071063. [PMID: 36101441 PMCID: PMC9312804 DOI: 10.3390/biology11071063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/06/2022]
Abstract
Simple Summary The activity of brain-derived neurotrophic factor (BDF) in the central nervous system has been well-studied, but its physiological role in other organs has not been clearly defined. This review summarizes the current findings on the functionality of BDNF in various peripheral tissues and discusses several unresolved questions in the field. Abstract Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central nervous system. In addition to its well-known activities in promoting neuronal survival, neuron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues, including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly through the regulation of mitochondrial dynamics in the various tissues. This article reviews the autocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved questions about BDNF’s function.
Collapse
|
2
|
Lai N, Fealy CE, Kummitha CM, Cabras S, Kirwan JP, Hoppel CL. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki). Front Physiol 2020; 11:677. [PMID: 32612543 PMCID: PMC7308651 DOI: 10.3389/fphys.2020.00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Aim Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. Methods Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. Results CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). Conclusion With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chinna M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Silvia Cabras
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 2015; 112:E2854. [PMID: 25941416 DOI: 10.1073/pnas.1505398112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
5
|
Lehmann D, Zierz S. Normal protein content but abnormally inhibited enzyme activity in muscle carnitine palmitoyltransferase II deficiency. J Neurol Sci 2014; 339:183-8. [PMID: 24602495 DOI: 10.1016/j.jns.2014.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022]
Abstract
The biochemical consequences of the disease causing mutations of muscle carnitine palmitoyltransferase II (CPT II) deficiency are still enigmatic. Therefore, CPT II was characterized in muscle biopsies of nine patients with genetically proven muscle CPT II deficiency. Total CPT activity (CPT I+CPT II) of patients was not significantly different from that of controls. Remaining activities upon inhibition by malonyl-CoA and Triton X-100 were significantly reduced in patients. Immunohistochemically CPT II protein was predominantly expressed in type-I-fibers with the same intensity in patients as in controls. Western blot showed the same CPT II staining intensity ratio in patients and controls. CPT I and CPT II protein concentrations estimated by ELISA were not significantly different in patients and in controls. Citrate synthase activity in patients was significantly increased. Total CPT activity significantly correlated with both CPT I and CPT II protein concentrations in patients and controls. This implies (i) that normal total CPT activity in patients with muscle CPT II deficiency is not due to compensatory increase of CPT I activity and that (ii) the mutant CPT II is enzymatically active. The data further support the notion that in muscle CPT II deficiency enzyme activity and protein content are not reduced, but rather abnormally inhibited when fatty acid metabolism is stressed.
Collapse
Affiliation(s)
- Diana Lehmann
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097 Halle/Saale, Germany.
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097 Halle/Saale, Germany
| |
Collapse
|
6
|
Saha AK, Laybutt DR, Dean D, Vavvas D, Sebokova E, Ellis B, Klimes I, Kraegen EW, Shafrir E, Ruderman NB. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E1030-7. [PMID: 10362615 DOI: 10.1152/ajpendo.1999.276.6.e1030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In liver, insulin and glucose acutely increase the concentration of malonyl-CoA by dephosphorylating and activating acetyl-CoA carboxylase (ACC). In contrast, in incubated rat skeletal muscle, they appear to act by increasing the cytosolic concentration of citrate, an allosteric activator of ACC, as reflected by increases in the whole cell concentrations of citrate and malate [Saha, A. K., D. Vavvas, T. G. Kurowski, A. Apazidis, L. A. Witters, E. Shafrir, and N. B. Ruderman. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E641-E648, 1997]. We report here that sustained increases in plasma insulin and glucose may also increase the concentration of malonyl-CoA in rat skeletal muscle in vivo by this mechanism. Thus 70 and 125% increases in malonyl-CoA induced in skeletal muscle by infusions of glucose for 1 and 4 days, respectively, and a twofold increase in its concentration during a 90-min euglycemic-hyperinsulinemic clamp were all associated with significant increases in the sum of whole cell concentrations of citrate and/or malate. Similar correlations were observed in muscle of the hyperinsulinemic fa/fa rat, in denervated muscle, and in muscle of rats infused with insulin for 5 h. In muscle of 48-h-starved rats 3 and 24 h after refeeding, increases in malonyl-CoA were not accompanied by consistent increases in the concentrations of malate or citrate. However, they were associated with a decrease in the whole cell concentration of long-chain fatty acyl-CoA (LCFA-CoA), an allosteric inhibitor of ACC. The results suggest that increases in the concentration of malonyl-CoA, caused in rat muscle in vivo by sustained increases in plasma insulin and glucose or denervation, may be due to increases in the cytosolic concentration of citrate. In contrast, during refeeding after starvation, the increase in malonyl-CoA in muscle is probably due to another mechanism.
Collapse
Affiliation(s)
- A K Saha
- Diabetes and Metabolism Unit, Evans Department of Medicine and Department of Physiology, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zierz S, Neumann-Schmidt S, Jerusalem F. Inhibition of carnitine palmitoyltransferase in normal human skeletal muscle and in muscle of patients with carnitine palmitoyltransferase deficiency by long- and short-chain acylcarnitine and acyl-coenzyme A. THE CLINICAL INVESTIGATOR 1993; 71:763-9. [PMID: 8305830 DOI: 10.1007/bf00190315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inhibition of total carnitine palmitoyltransferase (CPT) by short- and long-chain acylcarnitine and acyl-coenzyme A (acyl-CoA) was studied in muscle homogenates of normal controls and of five new patients with CPT deficiency using the isotope forward assay. Acetylcarnitine inhibited neither normal CPT activity nor the CPT of patients. D,L-Palmitoylcarnitine almost completely inhibited CPT in patients but only 55% of normal activity. In controls the CPT fraction sensitive to inhibition by palmitoylcarnitine appeared to be identical with the fraction sensitive to inhibition by malonyl-CoA and succinyl-CoA, which probably represents CPT II. The abnormal inhibition of CPT by palmitoylcarnitine was more likely due to product inhibition than to a detergent effect. Acetyl-CoA concentrations up to 0.4 mM and palmitoyl-CoA above optimal substrate concentrations up to 0.3 mM both inhibited normal CPT by about 25%, whereas the CPT of patients was significantly more inhibited by both substances than was normal CPT. The inhibition by acetyl-CoA was probably due to the structural relationship with malonyl-CoA and succinyl-CoA. The abnormal inhibition of CPT in patients by palmitoyl-CoA was due either to an abnormal substrate inhibition or to a detergent effect on CPT II similar to that of Triton X-100. The data indicate that in CPT deficiency total CPT activity is normal under optimal assay conditions. CPT II, however, is abnormally inhibited by fatty acid metabolites that accumulate during fasting.
Collapse
Affiliation(s)
- S Zierz
- Neurologische Universitätsklinik Bonn
| | | | | |
Collapse
|
8
|
Spriet LL, Dyck DJ, Cederblad G, Hultman E. Effects of fat availability on acetyl-CoA and acetylcarnitine metabolism in rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C653-9. [PMID: 1415515 DOI: 10.1152/ajpcell.1992.263.3.c653] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to examine the effects of stimulation and fat availability on the contents of acetyl coenzyme A (acetyl-CoA), free CoA (CoASH), acetylcarnitine, and free carnitine in the oxidative fiber types of rat skeletal muscle. Hindlimb muscles were perfused with no exogenous free fatty acids (FFA) or high FFA (0.93 +/- 0.03 mM) for 10 min at rest and during isometric, tetanic stimulation. Soleus (SOL) and red gastrocnemius (RG) muscles were sampled prior to perfusion and following rest perfusion and 1 and 5 min of stimulation. The SOL muscle contains predominantly slow oxidative (SO) fibers and the RG contains 56% fast oxidative-glycolytic (FOG) and 35% SO fibers. O2 uptake and tetanic tension production were similar in the fat-free and high FFA treatments. Rest perfusion with high FFA increased acetyl-CoA from 14.6 +/- 1.0 to 20.1 +/- 2.5 nmol/g dry muscle (dm) and acetylcarnitine from 0.12 +/- 0.01 to 0.78 +/- 0.18 mumol/g dm in the RG, while fat-free perfusion had no effect. The SOL results were similar as high FFA increased acetyl-CoA from 7.7 +/- 1.0 to 14.2 +/- 3.1 nmol/g dm and acetylcarnitine from 0.14 +/- 0.02 to 0.49 +/- 0.09 mumol/g dm. Stimulation increased acetyl-CoA and acetylcarnitine to values above rest in SOL and RG in both treatments and removed all fat-free and high-fat differences. The decreases in CoASH and free carnitine were reciprocal to the increases in acetyl-CoA and acetylcarnitine at all time points in both muscles such that total CoA and carnitine were constant.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L L Spriet
- School of Human Biology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Peroxisomal and mitochondrial palmitate oxidation in rat cardiac and skeletal muscles: Effects of diabetes, fasting and fat consumption. Nutr Res 1992. [DOI: 10.1016/s0271-5317(05)80497-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Schroedl NA, Funanage VL, Bacon CR, Smith SM, Hartzell CR. Hemin increases aerobic capacity of cultured regenerating skeletal myotubes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:C519-25. [PMID: 3177625 DOI: 10.1152/ajpcell.1988.255.4.c519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regeneration of damaged, mature muscle occurs by differentiation of satellite cells. In culture, satellite cell myoblasts proliferate, align, and fuse to form cross-striated, contracting myotubes. The biochemical changes and the factors that regulate differentiation in satellite cells have not been investigated previously. We report here that no significant differences in glucose uptake rate or glucose oxidation rate were observed between regenerating myoblasts and myotubes, whereas the aerobic oxidation of palmitic acid increased 7.3-fold between these differentiation states. Specific activities of enzymes of critical importance in aerobic metabolism or in production of ATP were increased 2- to 3.5-fold during fusion. Addition of 20 microM hemin to regenerating muscle cultures potentiated the aerobic capacity as evidenced by a 23.6% increase in palmitate oxidation rate. Hemin also increased the specific activities of all nonheme enzymes investigated with the exception of phosphofructokinase. This augmentation of aerobic metabolism together with the time frame of active muscle differentiation suggests a complex role for hemin in myogenesis.
Collapse
Affiliation(s)
- N A Schroedl
- Research Department, Alfred I. duPont Institute, Wilmington, Delaware 19899
| | | | | | | | | |
Collapse
|
11
|
Zierz S, Engel AG. Different sites of inhibition of carnitine palmitoyltransferase by malonyl-CoA, and by acetyl-CoA and CoA, in human skeletal muscle. Biochem J 1987; 245:205-9. [PMID: 3663146 PMCID: PMC1148100 DOI: 10.1042/bj2450205] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The inhibition of carnitine palmitoyltransferase (CPT, EC 2.3.1.21) by malonyl-CoA, acetyl-CoA and free CoA was studied in sonicated skeletal-muscle homogenates from normal human subjects and from five patients with a mutant CPT [Zierz & Engel (1985) Eur. J. Biochem. 149, 207-214]. (1) Malonyl-CoA, acetyl-CoA and CoA were competitive inhibitors of CPT with palmitoyl-CoA. (2) Acetyl-CoA and CoA inhibited normal and mutant CPT to the same degree, whereas malonyl-CoA inhibited mutant CPT more than normal CPT. (3) Triton X-100 abolished the inhibition of normal CPT by malonyl-CoA, but not by acetyl-CoA or CoA. Triton X-100 by itself caused loss of activity of the mutant CPT. (4) In the concentration range 0.1-0.4 mM, the inhibitory effects of any two of the three inhibitors were synergistic. (5) The inhibitory constants (Ki) for acetyl-CoA and CoA were close to 45 microM. The Ki for malonyl-CoA was 200-fold lower, or 0.22 microM. Addition of 40 microM-acetyl-CoA or CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. Addition of 20 microM-CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. (6) The findings indicate that acetyl-CoA and CoA can inhibit CPT at the catalytic site or a nearby site which is different from that at which malonyl-CoA inhibits CPT. (7) The fact that small changes in the concentration of acetyl-CoA and CoA can antagonize the inhibitory effect of malonyl-CoA suggests that these compounds could modulate the inhibition of CPT by malonyl-CoA.
Collapse
Affiliation(s)
- S Zierz
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
12
|
Veerkamp JH, van Moerkerk TB, Glatz JF, Zuurveld JG, Jacobs AE, Wagenmakers AJ. 14CO2 production is no adequate measure of [14C]fatty acid oxidation. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1986; 35:248-59. [PMID: 3087394 DOI: 10.1016/0885-4505(86)90080-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Palmitate oxidation was comparatively assayed in various cell-free and cellular systems by 14CO2 production and by the sum of 14CO2 and 14C-labeled acid-soluble products. The 14CO2 production rate was dependent on incubation time and amount of tissue in contrast to the total oxidation rate. The 14CO2 contribution to the oxidation rate of [1-14C]palmitate varied with homogenates from 1% with rat liver to 28% with rat kidney and amounted to only 2-4% with human muscles. With cellular systems the 14CO2 contribution varied between 20% in human fibroblasts and 70% in rat muscles and myocytes. Addition of cofactors increased the oxidation rate, but decreased the 14CO2 contribution. Various conditions appeared also to influence to a different extent the 14CO2 production and the total oxidation rate with rat tissue homogenates and with rat muscle mitochondria. Incorporation of radioactivity from [1-14C]palmitate into protein was not detectable in cell-free systems and only 2-3% of the sum of 14CO2 and 14C-labeled acid-soluble products in cellular systems. Assay of 14CO2 and 14C-labeled acid-soluble products is a much more accurate and sensitive estimation of fatty acid oxidation than assay of only 14CO2.
Collapse
|
13
|
Carroll JE, Norris BJ, Villadiego A, Wheeler SD. Brominated vegetable oil myopathy: inhibition at multiple sites. Muscle Nerve 1984; 7:642-6. [PMID: 6242313 DOI: 10.1002/mus.880070808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle lipid storage was induced by feeding rats brominated vegetable oil (BVO). The defect was examined by measuring radioactive substrate oxidation, intermediates of fatty acid oxidation, and activities of oxidative enzymes. One- and U-[14C] palmitate and 1-[14C] pyruvate oxidation were reduced in muscle after four doses of BVO. Inhibition of U-[14C] palmitate oxidation occurred after two doses. Short chain acylcoenzyme A(CoA) derivatives accumulated in the muscle. Several enzymes of beta-oxidation were significantly reduced, with the greatest reduction in 3-ketoacyl-CoA thiolase. The inhibition probably affected multiple sites of CoA and CoA-derivative metabolism.
Collapse
|