1
|
Trias E, Ibarburu S, Barreto-Núñez R, Varela V, Moura IC, Dubreuil P, Hermine O, Beckman JS, Barbeito L. Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS. JCI Insight 2017; 2:95934. [PMID: 29046475 PMCID: PMC5846907 DOI: 10.1172/jci.insight.95934] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Evidence indicates that neuroinflammation contributes to motor neuron degeneration in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease leading to progressive muscular paralysis. However, it remains elusive whether inflammatory cells can interact with degenerating distal motor axons, influencing the progressive denervation of neuromuscular junctions (NMJs). By analyzing the muscle extensor digitorum longus (EDL) following paralysis onset in the SOD1G93A rat model, we have observed a massive infiltration and degranulation of mast cells, starting after paralysis onset and correlating with progressive NMJ denervation. Remarkably, mast cells accumulated around degenerating motor axons and NMJs, and were also associated with macrophages. Mast cell accumulation and degranulation in paralytic EDL muscle was prevented by systemic treatment over 15 days with masitinib, a tyrosine kinase inhibitor currently in clinical trials for ALS exhibiting pharmacological activity affecting mast cells and microglia. Masitinib-induced mast cell reduction resulted in a 35% decrease in NMJ denervation and reduced motor deficits as compared with vehicle-treated rats. Masitinib also normalized macrophage infiltration, as well as regressive changes in Schwann cells and capillary networks observed in advanced paralysis. These findings provide evidence for mast cell contribution to distal axonopathy and paralysis progression in ALS, a mechanism that can be therapeutically targeted by masitinib.
Collapse
Affiliation(s)
| | | | | | | | - Ivan C. Moura
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
| | - Patrice Dubreuil
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
- AB Science, Paris, France
- Signaling, Hematopoiesis and Mechanism of Oncogenesis, Cancer Research Center of Marseille (CRCM), Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University UM105, CNRS UMR7258, Marseille, France
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
- AB Science, Paris, France
- Department of Hematology, Necker Hospital, Paris, France
- Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | - Joseph S. Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
2
|
Graves MC, Fiala M, Dinglasan LAV, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. ACTA ACUST UNITED AC 2009; 5:213-9. [PMID: 15799549 DOI: 10.1080/14660820410020286] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies have shown inflammatory markers in affected neural tissues of amyotrophic lateral sclerosis (ALS) patients. We examined immunocytochemically spinal cord tissues of six patients with ALS, two with corticospinal tract degeneration secondary to cerebral infarcts and three control subjects without neuropathologic abnormalities. ALS spinal cords had dense macrophage infiltration (one log greater than control spinal cords) involving the white and gray matter, with heaviest infiltration of lateral and ventral columns and, in one patient, prefrontal gyrus and the occipital lobes of the brain. Macrophages in ALS spinal cord showed strong expression of cyclooxygenase-2 (COX-2) (one log greater than control tissues) and inducible nitric oxide synthase. In the gray matter, macrophages surrounded and appeared to phagocytize neurons (NeuN-positive) that appeared to be dying. Vessels showed damage to the tight junction protein ZO-1 in relation to perivascular CD40 receptor-positive macrophages and CD40 ligand-positive T lymphocytes. ALS spinal cords, but not control cords, were sparsely infiltrated with mast cells. In control cases with corticospinal tract degeneration following hemispheric cerebral infarction, macrophage infiltration of the white matter was COX-2-negative and restricted to lateral and anterior corticospinal tracts. Our data suggest that inflammation in ALS spinal cord and cortex is based on innate immune responses by macrophages and mast cells and adaptive immune responses by T cells.
Collapse
Affiliation(s)
- Michael C Graves
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Although characterized by a variety of symptoms, chronic widespread pain is the primary complaint bringing most patients with fibromyalgia syndrome (FMS) into the clinic. The etiology of this painful condition is unknown, and any possible relationship between pain and the many other symptoms of FMS is unclear. This article focuses on the unique characteristics of nociception in patients with FMS. The intent is to present criteria that should be considered in the search for biological events that contribute to FMS pain. Based on this approach, examples are proposed of factors that fulfill some criteria and may, therefore, deserve further study for their possible role in pain associated with FMS.
Collapse
Affiliation(s)
- A A Larson
- Department of Veterinary Pathobiology, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA.
| | | |
Collapse
|
4
|
Sánchez-Mejorada G, Merchant-Larios H, Alonso-deFlorida F, Morales LB. Probability of mast cells to mediate anaphylaxis in skeletal muscle. Bull Math Biol 1994; 56:147-60. [PMID: 8111317 DOI: 10.1007/bf02458293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Are there enough mast cells in denervated skeletal muscle to account for autopharmacological mediation of the antigen potentials (APs) elicited by microtaps? Through rough qualitative estimations, some authors have suggested a positive answer to this question. However, in view of measurements performed in this investigation of both the density of mast cells and the diffusion coefficient of antigens, the probability of such mediated effects was found to be relatively low: P = 0.016 for egg albumin and P = 0.004 for ferritin. Therefore, most APs induced by microtaps should be attributed to the direct effect of antigen over the sensitized muscle fibers. Yet, both the density of mast cells found in this work and the known amount of histamine they are capable of releasing when challenged with antigen, support the hypothesis regarding the involvement of these cells when antigen is massively superfused so as to induce Schultz-Dale reactions in muscle strips. Under this circumstance, the direct and mediated mechanisms may coexist.
Collapse
Affiliation(s)
- G Sánchez-Mejorada
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, DF
| | | | | | | |
Collapse
|