1
|
Yu R, Shi R, He Z, Zhang T, Li S, Lv Q, Sha S, Yang C, Hou J, Tan Z. Thermodynamic Phase Transition of Three-Dimensional Solid Additives Guiding Molecular Assembly for Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308367. [PMID: 37581342 DOI: 10.1002/anie.202308367] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives.
Collapse
Affiliation(s)
- Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuang Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihao Sha
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chunhe Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Xu X, Jing W, Meng H, Guo Y, Yu L, Li R, Peng Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208997. [PMID: 36650665 DOI: 10.1002/adma.202208997] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Constructing tandem and multi-blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single-junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology-optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double-bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance. Two efficient donor-acceptor pairs, D18-Cl:BTP-eC9 and PM6:L8-BO, are sequentially deposited to form the D18-Cl:BTP-eC9/PM6:L8-BO double-BHJ active layer. In these double-BHJ OSCs, light absorption is significantly improved, and optimal morphology is also retained without requiring a more complicated morphology optimization involved in quaternary blends. Compared to the quaternary blend devices, energy loss (Eloss ) is also reduced by rationally matching each donor with an appropriate acceptor. Consequently, the power conversion efficiency (PCE) is improved from 18.25% for D18-Cl:BTP-eC9 and 18.69% for PM6:L8-BO based binary blend OSCs to 19.61% for the double-BHJ OSCs. In contrast, a D18-Cl:PM6:L8-BO:BTP-eC9 quaternary blend of OSCs exhibited a dramatically reduced PCE of 15.83%. These results demonstrate that a double-BHJ strategy, with a relatively simple processing procedure, can potentially enhance the device performance of OSCs and lead to more widespread use.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwen Jing
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huifeng Meng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Zhou M, Liao C, Duan Y, Xu X, Yu L, Li R, Peng Q. 19.10% Efficiency and 80.5% Fill Factor Layer-by-Layer Organic Solar Cells Realized by 4-Bis(2-Thienyl)Pyrrole-2,5-Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208279. [PMID: 36411949 DOI: 10.1002/adma.202208279] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The morphology plays a key role in determining the charge generation and collection process, thus impacting the performances of organic solar cells (OSCs). The limited selection pool of additives to optimize the morphology of OSCs, especially for the emerging layer-by-layer (LbL) OSCs, impeding the improvements of photovoltaic performances. Herein, a new method of using conjugated polymers as the additives to optimize the morphology for improving the photovoltaic performances of LbL-OSCs is reported. Four polymers of PH, PS, PF, and PCl are developed with different side chains. These polymers exhibit poor performances as donor materials and additives in the BHJ devices, due to the unsuitable energy level alignment and unfavorable molecular interactions. By contrast, they can be served as efficient additives to optimize the PM6 fibril matrix for facilitating the penetration of BTP-eC9 and forming an intertwined D/A bicontinuous network with a vertical segregation. Such morphology is optimized by side chain engineering, which enables the progressive improvement of the charge separation and collection. As a result, adding a small amount of PCl as the additive, the optimized morphology contributes to a champion PCE of 19.10% with a high FF of 80.5%.
Collapse
Affiliation(s)
- Mingwei Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Zha H, Fang J, Yan L, Yang Y, Ma C. Research Progress of Thermal Failure Mechanism and Ternary Blending to Improve Thermal Stability of Organic Solar Cells. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Oseni SO, Osifeko OL, Boyo AO, Mola GT. Tri‐metallic quantum dot under the influence of solvent additive for improved performance of polymer solar cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.53293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Saheed O. Oseni
- Department of Physics Lagos State University Lagos Nigeria
- School of Chemistry & Physics University of KwaZulu‐Natal Scottsville South Africa
| | | | | | - Genene Tessema Mola
- School of Chemistry & Physics University of KwaZulu‐Natal Scottsville South Africa
| |
Collapse
|
6
|
Xu X, Li Y, Peng Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107476. [PMID: 34796991 DOI: 10.1002/adma.202107476] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ternary blend organic solar cells (TB-OSCs) incorporating multiple donor and/or acceptor materials into the active layer have emerged as a promising strategy to simultaneously improve the overall device parameters for realizing higher performances than binary devices. Whereas introducing multiple materials also results in a more complicated morphology than their binary blend counterparts. Understanding the morphology is crucially important for further improving the device performance of TB-OSC. This review introduces the solubility and miscibility parameters that affect the morphology of ternary blends. Then, this review summarizes the recent processes of morphology study on ternary blends from the aspects of molecular crystallinity, molecular packing orientation, domain size and purity, directly observation of morphology, vertical phase separation as well as morphological stability. Finally, summary and prospects of TB-OSCs are concluded.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Li
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Wang K, Guo Q, Nie Z, Wang H, Gao J, Zhang J, Yu L, Guo X, Zhang M. Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. Int J Mol Sci 2022; 23:10079. [PMID: 36077476 PMCID: PMC9456090 DOI: 10.3390/ijms231710079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
We designed and synthesized an asymmetric non-fullerene small molecule acceptor (NF-SMA) IDT-TNIC with an A-D-π-A structure, based on an indacenodithiophene (IDT) central core, with a unidirectional non-fused alkylthio-thiophene (T) π-bridge, and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (NIC) extended terminal groups. IDT-TNIC molecules still maintain a good coplanar structure, which benefits from the non-covalent conformational locks (NCL) between O···S and S···S. The asymmetric structure increases the molecular dipole moment, and the extended terminal group broadens the absorption of the material, resulting in an excellent photovoltaic performance of IDT-TNIC. The photovoltaic device, based on PBDB-T:IDT-TNIC, exhibits an energetic PCE of 11.32% with a high Voc of 0.87 V, high Jsc of 19.85 mA cm-2, and a low energy loss of 0.57 eV. More importantly, IDT-TNICs with asymmetric structures show a superior property compared to symmetric IDT-Ns. The results demonstrate that it is an effectual strategy to enhance the properties of asymmetric A-D-π-A-based NF-SMAs with non-fused NCL π-bridges and extended terminal groups.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zengkun Nie
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Huiyan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jingshun Gao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Linfeng Yu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Meng X, Xing Z, Hu X, Chen Y. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2803-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Xia H, Zhang Y, Deng W, Liu K, Xia X, Su CJ, Jeng US, Zhang M, Huang J, Huang J, Yan C, Wong WY, Lu X, Zhu W, Li G. Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fine-Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107659. [PMID: 34997631 DOI: 10.1002/adma.202107659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The large non-radiative recombination is the main factor that limits state-of-the-art organic solar cells (OSCs). In this work, two novel structurally similar oligomers (named 5BDTBDD and 5BDDBDT) with D-A-D-A-D and A-D-A-D-A configuration are synthesized for high-performance ternary OSCs with low energy loss. As third components, these PM6 analogue oligomers effectively suppress the non-radiative recombination in OSCs. Although the highest occupied molecular orbital (HOMO) levels of 5BDTBDD and 5BDDBDT are higher than that of PM6, the oligomers enabled ultra-high electroluminescence quantum efficiency (EQEEL ) of 0.05% and improved VOC , indicating suppressing non-radiative recombination overweighs the common belief of deeper HOMO requirement in third component selection. Moreover, the different compatibility of 5BDTBDD and 5BDDBDT with PM6 and BTP-BO4Cl fine-tunes the active layer morphology with synergistic effects. The ternary devices based on PM6:5BDTBDD:BTPBO4Cl and PM6:5BDDBDT:BTP-BO4Cl achieve a significantly improved PCEs of 17.54% and 17.32%, representing the state-of-the art OSCs processed by green solvent of o-xylene. The strategy using novel oligomer as third component also has very wide composition tolerance in ternary OSCs. This is the first work that demonstrates novel structurally compatible D-A type oligomers are effective third components, and provides new understanding of synergetic energy loss mechanisms towards high performance OSCs.
Collapse
Affiliation(s)
- Hao Xia
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ying Zhang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wanyuan Deng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kuan Liu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Miao Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Jiaming Huang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jingwei Huang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Cenqi Yan
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| |
Collapse
|
10
|
Gao X, Tao X, Xu Y, Song X, Wang H, Yu R, Ye J, Tao Y. A simple single-thiophene derivative assists efficient as-cast ternary organic solar cells through Förster resonance energy transfer. NEW J CHEM 2022. [DOI: 10.1039/d2nj01906j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blending the single-thiophene derivative TTZD contributes to improved photovoltaic performance through utilizing an efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huabin Wang
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jian Ye
- Duolun Technology Corporation Ltd, 1555 Tianyin Avenue, Nanjing, 211100, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
11
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
12
|
Yu P, Li Y, Zhen Y, Dong H, Hu W. Tailoring the strength and number of halogen bonds toward room temperature phosphorescent micro‐cocrystals. NANO SELECT 2021. [DOI: 10.1002/nano.202000303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Panpan Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Collaborative Innovation Center of Chemical Science and Engineering School of Sciences Tianjin University Tianjin China
- Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing China
| | - Yang Li
- Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing China
- Normal College Shenyang University Shenyang China
| | - Yonggang Zhen
- Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Huanli Dong
- Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Collaborative Innovation Center of Chemical Science and Engineering School of Sciences Tianjin University Tianjin China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou China
| |
Collapse
|
13
|
Liu F, Zhou L, Liu W, Zhou Z, Yue Q, Zheng W, Sun R, Liu W, Xu S, Fan H, Feng L, Yi Y, Zhang W, Zhu X. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100830. [PMID: 34048104 DOI: 10.1002/adma.202100830] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The trade-off between the open-circuit voltage (Voc ) and short-circuit current density (Jsc ) has become the core of current organic photovoltaic research, and realizing the minimum energy offsets that can guarantee effective charge generation is strongly desired for high-performance systems. Herein, a high-performance ternary solar cell with a power conversion efficiency of over 18% using a large-bandgap polymer donor, PM6, and a small-bandgap alloy acceptor containing two structurally similar nonfullerene acceptors (Y6 and AQx-3) is reported. This system can take full advantage of solar irradiation and forms a favorable morphology. By varying the ratio of the two acceptors, delicate regulation of the energy levels of the alloy acceptor is achieved, thereby affecting the charge dynamics in the devices. The optimal ternary device exhibits more efficient hole transfer and exciton separation than the PM6:AQx-3-based system and reduced energy loss compared with the PM6:Y6-based system, contributing to better performance. Such a "two-in-one" alloy strategy, which synergizes two highly compatible acceptors, provides a promising path for boosting the photovoltaic performance of devices.
Collapse
Affiliation(s)
- Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenrui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zichun Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qihui Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenyu Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ri Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wuyue Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Zhang Z, Wang Y, Sun C, Liu Z, Wang H, Xue L, Zhang Z. Recent progress in small‐molecule donors for non‐fullerene all‐small‐molecule organic solar cells. NANO SELECT 2021. [DOI: 10.1002/nano.202100181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ze Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yaokun Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Chenkai Sun
- College of Chemistry and Molecular Engineering Zhengzhou University Henan 450001 China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Lingwei Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhi‐Guo Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
15
|
Zhao J, Xu X, Yu L, Li R, Li Y, Peng Q. Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and Structural Isomerization Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25214-25223. [PMID: 34014088 DOI: 10.1021/acsami.1c06299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two novel nonfused-ring electron acceptors (N-FREAs) namely DTP-out-F and DTP-in-F, containing 2,5-difluorophenylene central core flanked with DTP blocks and end-capped with IC-2F terminals were designed and synthesized. The C-H···F noncovalent interactions between F atom of 2,5-difluorophenylene and H-3 and H-6 from DTP moiety (for DTP-in-F and DTP-out-F, respectively) locked the molecular conformation within a planar geometry. Benefiting from asymmetric nature of DTP block, the two different connection positions (2- or 7-position) of DTP to 2,5-difluorophenylene afforded the structural isomers of DTP-in-F and DTP-out-F, which affected the overall properties of these N-FREAs, especially the molecular packing behaviors. The more preferred J-aggregation and face-on packing of DTP-in-F shifted the absorption to slightly longer wavelength and provided a polymer-like extended crystal transport channels for improving the charge transport. Therefore, the power conversion efficiency (PCE) was significantly improved from 3.97% of DTP-out-F-based devices to 10.66% of DTP-in-F-based devices. These results reveal the great potential of isomerization strategy to develop high-performance N-FREAs.
Collapse
Affiliation(s)
- Jun Zhao
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, New York 11973, United States
| | - Ying Li
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Peng
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
16
|
Liang N, Meng D, Wang Z. Giant Rylene Imide-Based Electron Acceptors for Organic Photovoltaics. Acc Chem Res 2021; 54:961-975. [PMID: 33395252 DOI: 10.1021/acs.accounts.0c00677] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusRylene imides are oligo(peri-naphthalene)s bearing one or two six-membered carboxylic imide rings. Their flexible reaction sites and unique photoelectronic properties have afforded active research for applications in photovoltaic devices, light-emitting diodes, and fluorescent sensors. Over the past few decades, synthetic flexibility along with the evolution of molecular design principles for novel aromatic imides has rendered these intriguing dyes considerably valuable, especially for organic photovoltaics (OPVs).During the course of molecular evolution, the most difficult criterion to meet is how to modulate the intra- and intermolecular interactions to alter the aggregation behavior of rylene imides as well as their compatibility with donor materials, with the prerequisite that the appropriate molecular energy level is maintained. In the meantime, our group has focused on the precise synthesis of π-extended rylene imide electron acceptors (RIAs) to rationally alter the molecular chemical and electronic structure, packing arrangement, and photoelectronic properties. These powerful molecular design strategies include the construction of a fully conjugated rigid multichromophoric architecture and successful integration of heteroatoms. Herein, these multichromophoric oligomers are precisely defined as giant rylene imides. Importantly, these strategies provide a vast space for progress in RIAs and present a more comprehensive structure-performance relationship network that can be distinguished from other electron acceptor systems. In particular, the successful acquisition of these fused superhelical architectures provides a meaningful reference for the pluralistic development of OPVs, such as triplet organic solar cells and polarized-light photovoltaic detectors. Meanwhile, the introduction of heteroatoms into the rylene conjugated skeleton provides donor/acceptor interfaces with enhanced electronic interactions and thereby suppresses the polaron-pair binding energy. Nonetheless, much remains to be implemented to broaden the absorption capability of rylene imides as well as to realize full utilization of these meaningful chiral isomers with a wide and strong UV-vis spectroscopic response.In this Account, we provide an overview of our novel approaches toward a supermolecular framework and of the reformed molecular design principle for rylene imide-based electron acceptors since 2012. We begin with a discussion of the rapidly emerging synthesis strategies for giant rylene imides. Then several typical examples with remarkable photovoltaic properties and unique working mechanisms are selected, aimed at providing an in-depth discussion of structure-property-performance relationships. The remaining challenges and newly emerging research information for giant rylene imide-based electron acceptors are further put forward. It is our aspiration that this Account will trigger intensive research interest in these pluralist rylene-based electron acceptors, thereby further accelerating the profound sustainable development of organic solar cells.
Collapse
Affiliation(s)
- Ningning Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Dong Meng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Xu X, Yu L, Peng Q. Recent Advances in Wide Bandgap Polymer Donors and Their Applications in Organic Solar Cells. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Liyang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|