1
|
Zeng XX, Wu Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01163-0. [PMID: 38761327 DOI: 10.1007/s12033-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China.
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Changzhou, 213022, Jiangsu Province, People's Republic of China.
| | - Yuyan Wu
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China
| |
Collapse
|
2
|
Apodaca G. Defining the molecular fingerprint of bladder and kidney fibroblasts. Am J Physiol Renal Physiol 2023; 325:F826-F856. [PMID: 37823192 PMCID: PMC10886799 DOI: 10.1152/ajprenal.00284.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Fibroblasts are integral to the organization and function of all organs and play critical roles in pathologies such as fibrosis; however, we have limited understanding of the fibroblasts that populate the bladder and kidney. In this review, I describe how transcriptomics is leading to a revolution in our understanding of fibroblast biology by defining the molecular fingerprint (i.e., transcriptome) of universal and specialized fibroblast types, revealing gene signatures that allows one to resolve fibroblasts from other mesenchymal cell types, and providing a new comprehension of the fibroblast lineage. In the kidney, transcriptomics is giving us new insights into the molecular fingerprint of kidney fibroblasts, including those for cortical fibroblasts, medullary fibroblasts, and erythropoietin (EPO)-producing Norn fibroblasts, as well as new information about the gene signatures of kidney myofibroblasts and the transition of kidney fibroblasts into myofibroblasts. Transcriptomics has also revealed that the major cell type in the bladder interstitium is the fibroblast, and that multiple fibroblast types, each with their own molecular fingerprint, are found in the bladder wall. Interleaved throughout is a discussion of how transcriptomics can drive our future understanding of fibroblast identification, diversity, function, and their roles in bladder and kidney biology and physiology in health and in disease states.
Collapse
Affiliation(s)
- Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Zhao M, Ding N, Wang H, Zu S, Liu H, Wen J, Liu J, Ge N, Wang W, Zhang X. Activation of TRPA1 in Bladder Suburothelial Myofibroblasts Counteracts TGF-β1-Induced Fibrotic Changes. Int J Mol Sci 2023; 24:ijms24119501. [PMID: 37298451 DOI: 10.3390/ijms24119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The activation of the transient receptor potential ankyrin 1 (TRPA1) channel has anti-fibrotic effects in the lung and intestine. Suburothelial myofibroblasts (subu-MyoFBs), a specialized subset of fibroblasts in the bladder, are known to express TRPA1. However, the role of the TRPA1 in the development of bladder fibrosis remains elusive. In this study, we use the transforming growth factor-β1 (TGF-β1) to induce fibrotic changes in subu-MyoFBs and assess the consequences of TRPA1 activation utilizing RT-qPCR, western blotting, and immunocytochemistry. TGF-β1 stimulation increased α-SMA, collagen type I alpha 1 chain(col1A1), collagen type III (col III), and fibronectin expression, while simultaneously suppressing TRPA1 in cultured human subu-MyoFBs. The activation of TRPA1, with its specific agonist allylisothiocyanate (AITC), inhibited TGF-β1-induced fibrotic changes, and part of these inhibition effects could be reversed by the TRPA1 antagonist, HC030031, or by reducing TRPA1 expression via RNA interference. Furthermore, AITC reduced spinal cord injury-induced fibrotic bladder changes in a rat model. The increased expression of TGF-β1, α-SMA, col1A1 and col III, and fibronectin, and the downregulation of TRPA1, were also detected in the mucosa of fibrotic human bladders. These findings suggest that TRPA1 plays a pivotal role in bladder fibrosis, and the negative cross talk between TRPA1 and TGF-β1 signaling may represent one of the mechanisms underlying fibrotic bladder lesions.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Haoyu Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
4
|
Burley A, Rullan A, Wilkins A. A review of the biology and therapeutic implications of cancer-associated fibroblasts (CAFs) in muscle-invasive bladder cancer. Front Oncol 2022; 12:1000888. [PMID: 36313650 PMCID: PMC9608345 DOI: 10.3389/fonc.2022.1000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 10/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a fundamental role in the development of cancers and their response to therapy. In recent years, CAFs have returned to the spotlight as researchers work to unpick the mechanisms by which they impact tumour evolution and therapy responses. However, study of CAFs has largely been restricted to a select number of common cancers, whereas research into CAF biology in bladder cancer has been relatively neglected. In this review, we explore the basics of CAF biology including the numerous potential cellular origins of CAFs, alongside mechanisms of CAF activation and their diverse functionality. We find CAFs play an important role in the progression of bladder cancer with significant implications on tumour cell signaling, epithelial to mesenchymal transition and the capacity to modify components of the immune system. In addition, we highlight some of the landmark papers describing CAF heterogeneity and find trends in the literature to suggest that the iCAF and myCAF subtypes defined in bladder cancer share common characteristics with CAF subtypes described in other settings such as breast and pancreatic cancer. Moreover, based on findings in other common cancers we identify key therapeutic challenges associated with CAFs, such as the lack of specific CAF markers, the paucity of research into bladder-specific CAFs and their relationship with therapies such as radiotherapy. Of relevance, we describe a variety of strategies used to target CAFs in several common cancers, paying particular attention to TGFβ signaling as a prominent regulator of CAF activation. In doing so, we find parallels with bladder cancer that suggest CAF targeting may advance therapeutic options in this setting and improve the current poor survival outcomes in bladder cancer which sadly remain largely unchanged over recent decades.
Collapse
Affiliation(s)
- Amy Burley
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
| | - Antonio Rullan
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, Royal Marsden National Health Service (NHS) Hospital Trust, London, United Kingdom
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
- Department of Radiotherapy, Royal Marsden National Health Service (NHS) Hospital Trust, London, United Kingdom
| |
Collapse
|
5
|
Andersson KE, Behr-Roussel D, Denys P, Giuliano F. Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation. Med Sci (Basel) 2022; 10:50. [PMID: 36135835 PMCID: PMC9504433 DOI: 10.3390/medsci10030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin acts on sensory nerves via vanilloid receptors. TRPV1 has been extensively studied with respect to functional lower urinary tract (LUT) conditions in rodents and humans. We aimed to (1) provide background information on capsaicin and TRPV1 and its mechanisms of action and basis for clinical use, (2) review the use of acute intravesical capsaicin instillation (AICI) in rodents to mimic various LUT disorders in which capsaicin sensitive C-fibers are involved and (3) discuss future innovative treatments. A comprehensive search of the major literature databases until June 2022 was conducted. Both capsaicin-sensitive and resistant unmyelinated bladder afferent C-fibers are involved in non-neurogenic overactive bladder/detrusor overactivity (OAB/DO). AICI is a suitable model to study afferent hyperactivity mimicking human OAB. Capsaicin-sensitive C-fibers are also involved in neurogenic DO (NDO) and potential targets for NDO treatment. AICI has been successfully tested for NDO treatment in humans. Capsaicin-sensitive bladder afferents are targets for NDO treatment. TRPV1-immunoreactive nerve fibers are involved in the pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS). The AICI experimental model appears relevant for the preclinical study of treatments targeting bladder afferents for refractory IC/BPS. The activity of capsaicin-sensitive bladder afferents is increased in experimental bladder outlet obstruction (BOO). The AICI model may also be relevant for bladder disorders resulting from C-fiber hyperexcitabilities related to BOO. In conclusion, there is a rationale for the selective blockade of TRPV1 channels for various bladder disorders. The AICI model is clinically relevant for the investigation of pathophysiological conditions in which bladder C-fiber afferents are overexcited and for assessing innovative treatments for bladder disorders based on their pathophysiology.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Division of Clinical Chemistry and Pharmacology, Lund University, 22242 Lund, Sweden
| | | | - Pierre Denys
- Neuro-Uro-Andrology R.Poincare Academic Hospital, AP-HP, 104 bvd R. Poincare, 92380 Garches, France
- Faculty of Medicine, U1179 Inserm/Versailles Saint Quentin University, Paris Saclay, 78180 Montigny-le-Bretonneux, France
| | - Francois Giuliano
- Faculty of Medicine, U1179 Inserm/Versailles Saint Quentin University, Paris Saclay, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
6
|
Clayton DR, Ruiz WG, Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. Studies of ultrastructure, gene expression, and marker analysis reveal that mouse bladder PDGFRA + interstitial cells are fibroblasts. Am J Physiol Renal Physiol 2022; 323:F299-F321. [PMID: 35834272 PMCID: PMC9394772 DOI: 10.1152/ajprenal.00135.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are crucial to normal and abnormal organ and tissue biology, yet we lack basic insights into the fibroblasts that populate the bladder wall. Candidates may include bladder interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells), which express the fibroblast-associated marker PDGFRA along with VIM and CD34 but whose form and function remain enigmatic. By applying the latest insights in fibroblast transcriptomics, coupled with studies of gene expression, ultrastructure, and marker analysis, we observe the following: 1) that mouse bladder PDGFRA+ cells exhibit all of the ultrastructural hallmarks of fibroblasts including spindle shape, lack of basement membrane, abundant endoplasmic reticulum and Golgi, and formation of homotypic cell-cell contacts (but not heterotypic ones); 2) that they express multiple canonical fibroblast markers (including Col1a2, CD34, LY6A, and PDGFRA) along with the universal fibroblast genes Col15a1 and Pi16 but they do not express Kit; and 3) that PDGFRA+ fibroblasts include suburothelial ones (which express ACTA2, CAR3, LY6A, MYH10, TNC, VIM, Col1a2, and Col15a1), outer lamina propria ones (which express CD34, LY6A, PI16, VIM, Col1a2, Col15a1, and Pi16), intermuscular ones (which express CD34, VIM, Col1a2, Col15a1, and Pi16), and serosal ones (which express CD34, PI16, VIM, Col1a2, Col15a1, and Pi16). Collectively, our study revealed that the ultrastructure of PDFRA+ interstitial cells combined with their expression of multiple canonical and universal fibroblast-associated gene products indicates that they are fibroblasts. We further propose that there are four regionally distinct populations of fibroblasts in the bladder wall, which likely contribute to bladder function and dysfunction.NEW & NOTEWORTHY We currently lack basic insights into the fibroblasts that populate the bladder wall. By exploring the ultrastructure of mouse bladder connective tissue cells, combined with analyses of their gene and protein expression, our study revealed that PDGRA+ interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells) are fibroblasts and that the bladder wall contains multiple, regionally distinct populations of these cells.
Collapse
Affiliation(s)
- Dennis R Clayton
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marianela G Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Phelps C, Chess-Williams R, Moro C. The Dependence of Urinary Bladder Responses on Extracellular Calcium Varies Between Muscarinic, Histamine, 5-HT (Serotonin), Neurokinin, Prostaglandin, and Angiotensin Receptor Activation. Front Physiol 2022; 13:841181. [PMID: 35431993 PMCID: PMC9008219 DOI: 10.3389/fphys.2022.841181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
With many common bladder diseases arising due to abnormal contractions, a greater understanding of the receptor systems involved may aid the development of future treatments. The aim of this study was to identify any difference in the involvement of extracellular calcium (Ca2+) across prominent contractile-mediating receptors within cells lining the bladder. Strips of porcine urothelium and lamina propria were isolated from the urinary bladder dome and mounted in isolated tissue baths containing Krebs-bicarbonate solution, perfused with carbogen gas at 37°C. Tissue contractions, as well as changes to the frequency and amplitude of spontaneous activity were recorded after the addition of muscarinic, histamine, 5-hydroxytryptamine, neurokinin-A, prostaglandin E2, and angiotensin II receptor agonists in the absence and presence of 1 µM nifedipine or nominally zero Ca2+ solution. The absence of extracellular Ca2+ influx after immersion into nominally zero Ca2+ solution, or the addition of nifedipine, significantly inhibited the contractile responses (p < 0.05 for all) after stimulation with carbachol (1 µM), histamine (100 µM), 5-hydroxytryptamine (100 µM), neurokinin-A (300 nM), prostaglandin E2 (10 µM), and angiotensin II (100 nM). On average, Ca2+ influx from extracellular sources was responsible for between 20–50% of receptor-mediated contractions. This suggests that although the specific requirement of Ca2+ on contractile responses varies depending on the receptor, extracellular Ca2+ plays a key role in mediating G protein-coupled receptor contractions of the urothelium and lamina propria.
Collapse
|
8
|
Zhao M, Chen Z, Liu L, Ding N, Wen J, Liu J, Wang W, Ge N, Zu S, Song W, Chen G, Zhang X. Functional Expression of Transient Receptor Potential and Piezo1 Channels in Cultured Interstitial Cells of Human-Bladder Lamina Propria. Front Physiol 2022; 12:762847. [PMID: 35069237 PMCID: PMC8774296 DOI: 10.3389/fphys.2021.762847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
The interstitial cells in bladder lamina propria (LP-ICs) are believed to be involved in sensing/afferent signaling in bladder mucosa. Transient receptor potential (TRP) cation channels act as mechano- or chemo-sensors and may underlie some of the sensing function of bladder LP-ICs. We aimed to investigate the molecular and functional expression of TRP channels implicated in bladder sensory function and Piezo1/Piezo2 channels in cultured LP-ICs of the human bladder. Bladder tissues were obtained from patients undergoing cystectomy. LP-ICs were isolated and cultured, and used for real-time reverse transcription-quantitative polymerase chain reaction, immunocytochemistry, and calcium-imaging experiments. At the mRNA level, TRPA1, TRPV2, and Piezo1 were expressed most abundantly. Immunocytochemical staining showed protein expression of TRPA1, TRPV1, TRPV2, TRPV4, TRPM8, as well as Piezo1 and Piezo2. Calcium imaging using channel agonists/antagonists provided evidence for functional expression of TRPA1, TRPV2, TRPV4, Piezo1, but not of TRPV1 or TRPM8. Activation of these channels with their agonist resulted in release of adenosine triphosphate (ATP) from LP-ICs. Inhibition of TRPV2, TRPV4 and Piezo1 blocked the stretch induced intracellular Ca2+ increase. Whereas inhibition of TRPA1 blocked H2O2 evoked response in LP-ICs. Our results suggest LP-ICs of the bladder can perceive stretch or chemical stimuli via activation of TRPV2, TRPV4, Piezo1 and TRPA1 channels. LP-ICs may work together with urothelial cells for perception and transduction of mechanical or chemical signals in human-bladder mucosa.
Collapse
Affiliation(s)
- MengMeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Ding
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WenZhen Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Ge
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Song
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoqing Chen
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Murugapoopathy V, Cammisotto PG, Mossa AH, Campeau L, Gupta IR. Osr1 Is Required for Mesenchymal Derivatives That Produce Collagen in the Bladder. Int J Mol Sci 2021; 22:ijms222212387. [PMID: 34830270 PMCID: PMC8619163 DOI: 10.3390/ijms222212387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix of the bladder consists mostly of type I and III collagen, which are required during loading. During bladder injury, there is an accumulation of collagen that impairs bladder function. Little is known about the genes that regulate production of collagens in the bladder. We demonstrate that the transcription factor Odd-skipped related 1 (Osr1) is expressed in the bladder mesenchyme and epithelium at the onset of development. As development proceeds, Osr1 is mainly expressed in mesenchymal progenitors and their derivatives. We hypothesized that Osr1 regulates mesenchymal cell differentiation and production of collagens in the bladder. To test this hypothesis, we examined newborn and adult mice heterozygous for Osr1, Osr1+/−. The bladders of newborn Osr1+/− mice had a decrease in collagen I by western blot analysis and a global decrease in collagens using Sirius red staining. There was also a decrease in the cellularity of the lamina propria, where most collagen is synthesized. This was not due to decreased proliferation or increased apoptosis in this cell population. Surprisingly, the bladders of adult Osr1+/− mice had an increase in collagen that was associated with abnormal bladder function; they also had a decrease in bladder capacity and voided more frequently. The results suggest that Osr1 is important for the differentiation of mesenchymal cells that give rise to collagen-producing cells.
Collapse
Affiliation(s)
| | - Philippe G. Cammisotto
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
| | - Abubakr H. Mossa
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
| | - Lysanne Campeau
- Lady Davis Research Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (P.G.C.); (A.H.M.); (L.C.)
- Division of Urology, Department of Surgery, Jewish General Hospital, McGill University, Montreal, QCH3T 1E2, Canada
| | - Indra R. Gupta
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada;
- Research Institute of the McGill University Health Center, Montreal, QC H3H 2R9, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
10
|
Sensations Reported During Urodynamic Bladder Filling in Spinal Cord Injury Patients Give Additional Important Information. Int Neurourol J 2021; 26:S30-37. [PMID: 33831297 PMCID: PMC8896780 DOI: 10.5213/inj.2142026.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose To study sensations reported during filling cystometry in patients with different levels and completeness of spinal cord lesion (SCL). Methods A retrospective cohort study. Patient age and sex, cause of SCL, American Spinal Injury Association Impairment Scale (AIS), and lower urinary tract -related sensations in daily life were gathered. Filling cystometry (video-urodynamics) was performed following ICS good urodynamic practice guidelines. Beside bladder filling sensations (first sensation of bladder filling, first desire to void, strong desire to void), other sensations as detrusor overactivity related sensation and pain were noted. Results 170 patients were included, age 45 ± 17 years, 114 male and 56 female, 92 complete and 78 incomplete SCL. The test was done 6 ± 4 years post SCL. Sensation was reported by 57% of all patients. In complete SCL half (46/92) had sensation, while 36% with incomplete SCL (28/78) reported no sensation. Bladder awareness was not predictable by the AIS. The filling sensations reported were equal to those given in the terminology of ICS. Pain was seldom present 10/170 (6%), Detrusor overactivity contraction was felt by 45/78 ( 58%). Very few patients used sensory information for bladder management at home. Conclusion After SCL, most patients retain the ability to be aware of the LUT, assessable and gradable, during urodynamic testing. Filling sensations were not different from those described in healthy, but the number and sequence of the sensations were altered in the minority. Pain and sensation of unstable contractions gave additional important information. As different sensations relate to different spinal afferent pathways, the sensory evaluation during cystometry provided additional important information on the spinal cord's condition.
Collapse
|
11
|
Urothelium-Specific Deletion of Connexin43 in the Mouse Urinary Bladder Alters Distension-Induced ATP Release and Voiding Behavior. Int J Mol Sci 2021; 22:ijms22041594. [PMID: 33562445 PMCID: PMC7914662 DOI: 10.3390/ijms22041594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
Connexin43 (Cx43), the main gap junction and hemichannel forming protein in the urinary bladder, participates in the regulation of bladder motor and sensory functions and has been reported as an important modulator of day-night variations in functional bladder capacity. However, because Cx43 is expressed throughout the bladder, the actual role played by the detrusor and the urothelial Cx43 is still unknown. For this purpose, we generated urothelium-specific Cx43 knockout (uCx43KO) mice using Cre-LoxP system. We evaluated the day-night micturition pattern and the urothelial Cx43 hemichannel function of the uCx43KO mice by measuring luminal ATP release after bladder distention. In wild-type (WT) mice, distention-induced ATP release was elevated, and functional bladder capacity was decreased in the animals' active phase (nighttime) when Cx43 expression was also high compared to levels measured in the sleep phase (daytime). These day-night differences in urothelial ATP release and functional bladder capacity were attenuated in uCx43KO mice that, in the active phase, displayed lower ATP release and higher functional bladder capacity than WT mice. These findings indicate that urothelial Cx43 mediated ATP signaling and coordination of urothelial activity are essential for proper perception and regulation of responses to bladder distension in the animals' awake, active phase.
Collapse
|
12
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Mechanosensitivity Is a Characteristic Feature of Cultured Suburothelial Interstitial Cells of the Human Bladder. Int J Mol Sci 2020; 21:ijms21155474. [PMID: 32751838 PMCID: PMC7432121 DOI: 10.3390/ijms21155474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder dysfunction is characterized by urgency, frequency (pollakisuria, nocturia), and dysuria and may lead to urinary incontinence. Most of these symptoms can be attributed to disturbed bladder sensitivity. There is growing evidence that, besides the urothelium, suburothelial interstitial cells (suICs) are involved in bladder afferent signal processing. The massive expansion of the bladder during the filling phase implicates mechanical stress delivered to the whole bladder wall. Little is known about the reaction of suICs upon mechanical stress. Therefore, we investigated the effects of mechanical stimulation in cultured human suICs. We used fura-2 calcium imaging as a major physiological readout. We found spontaneous intracellular calcium activity in 75 % of the cultured suICs. Defined local pressure application via a glass micropipette led to local increased calcium activity in all stimulated suICs, spreading over the whole cell. A total of 51% of the neighboring cells in a radius of up to 100 µm from the stimulated cell showed an increased activity. Hypotonic ringer and shear stress also induced calcium transients. We found an 18-times increase in syncytial activity compared to unstimulated controls, resulting in an amplification of the primary calcium signal elicited in single cells by 50%. Our results speak in favor of a high sensitivity of suICs for mechanical stress and support the view of a functional syncytium between suICs, which can amplify and distribute local stimuli. Previous studies of connexin expression in the human bladder suggest that this mechanism could also be relevant in normal and pathological function of the bladder in vivo.
Collapse
|
14
|
Stromberga Z, Chess-Williams R, Moro C. Prostaglandin E2 and F2alpha Modulate Urinary Bladder Urothelium, Lamina Propria and Detrusor Contractility via the FP Receptor. Front Physiol 2020; 11:705. [PMID: 32714206 PMCID: PMC7344237 DOI: 10.3389/fphys.2020.00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Current pharmacological treatment options for many bladder contractile dysfunctions are not suitable for all patients, thereby bringing interest to the investigation of therapies that target a combination of receptors. This study aimed to compare responses of PGE2 on the urinary bladder urothelium with lamina propria (U&LP, also called the bladder mucosa) or detrusor smooth muscle and attempt to identify the receptor subtypes mediating PGE2 contractile responses in these tissues. In the presence of selective EP1 – 4 receptor antagonists, varying concentrations of PGE2 were applied to isolated strips of porcine U&LP and detrusor that were mounted in organ baths filled with Krebs-bicarbonate solution and gassed with carbogen. The addition of PGE2 (1 and 10 μM) and PGF2α (10 μM) to U&LP preparations caused significant increases in the baseline tension and in the spontaneous phasic contractile frequency. In detrusor preparations, significant increases in the baseline tension were observed in response to PGE2 (1 and 10 μM) and PGFα (10 μM), and spontaneous phasic contractions were initiated in 83% of preparations. None of the selective PGE2 receptor antagonists inhibited the increases in baseline tension in both U&LP and detrusor. However, the antagonism of PGF2α receptor showed significantly inhibited contractile responses in both layers of the bladder. This study presents prostaglandin receptor systems as a potential regulator of urinary bladder contractility. The main contractile effects of PGE2 in both U&LP and detrusor are mediated via the FP receptor with no observed contribution from any of the four EP receptors.
Collapse
Affiliation(s)
- Zane Stromberga
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| | - Christian Moro
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
15
|
Mills KA, West EJ, Grundy L, McDermott C, Sellers DJ, Rose’Myer RB, Chess-Williams R. Hypersensitivity of bladder low threshold, wide dynamic range, afferent fibres following treatment with the chemotherapeutic drugs cyclophosphamide and ifosfamide. Arch Toxicol 2020; 94:2785-2797. [DOI: 10.1007/s00204-020-02773-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
|
16
|
Lamina propria: The connective tissue of rat urinary bladder mucosa. Neurourol Urodyn 2019; 38:2093-2103. [DOI: 10.1002/nau.24085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
|
17
|
Comparative immunohistochemical characterization of interstitial cells in the urinary bladder of human, guinea pig and pig. Histochem Cell Biol 2018; 149:491-501. [DOI: 10.1007/s00418-018-1655-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 01/20/2023]
|
18
|
Chai TC, Kudze T. New therapeutic directions to treat underactive bladder. Investig Clin Urol 2017; 58:S99-S106. [PMID: 29279882 PMCID: PMC5740036 DOI: 10.4111/icu.2017.58.s2.s99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022] Open
Abstract
Underactive bladder (UAB) is a term used to describe a constellation of symptoms that is perceived by patients suggesting bladder hypocontractility. Urodynamic measurement that suggest decreased contractility of the bladder is termed detrusor underactivity (DUA). Regulatory approved specific management options with clinically proven ability to increase bladder contractility do not currently exist. While DUA specific treatments presumably will focus on methods to increase efficiency of bladder emptying capability relying on augmenting the motor pathway in the micturition reflex, other approaches include methods to augment the sensory (afferent) contribution to the micturition reflex which could result in increased detrusor contractility. Another method to induce more efficient bladder emptying could be to induce relaxation of the bladder outlet. Using cellular regenerative techniques, the detrusor smooth muscle can be targeted so the result is to increase detrusor smooth muscle function. In this review, we will cover areas of potential new therapies for DUA including: drug therapy, stem cells and regenerative therapies, neuromodulation, and urethral flow assist device. Paralleling development of new therapies, there also needs to be clinical studies performed that address how DUA relates to UAB.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| | - Tambudzai Kudze
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Koh SD, Lee H, Ward SM, Sanders KM. The Mystery of the Interstitial Cells in the Urinary Bladder. Annu Rev Pharmacol Toxicol 2017; 58:603-623. [PMID: 28992432 DOI: 10.1146/annurev-pharmtox-010617-052615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsic mechanisms to restrain smooth muscle excitability are present in the bladder, and premature contractions during filling indicate a pathological phenotype. Some investigators have proposed that c-Kit+ interstitial cells (ICs) are pacemakers and intermediaries in efferent and afferent neural activity, but recent findings suggest these cells have been misidentified and their functions have been misinterpreted. Cells reported to be c-Kit+ cells colabel with vimentin antibodies, but vimentin is not a specific marker for c-Kit+ cells. A recent report shows that c-Kit+ cells in several species coexpress mast cell tryptase, suggesting that they are likely to be mast cells. In fact, most bladder ICs labeled with vimentin antibodies coexpress platelet-derived growth factor receptor α (PDGFRα). Rather than an excitatory phenotype, PDGFRα+ cells convey inhibitory regulation in the detrusor, and inhibitory mechanisms are activated by purines and stretch. PDGFRα+ cells restrain premature development of contractions during bladder filling, and overactive behavior develops when the inhibitory pathways in these cells are blocked. PDGFRα+ cells are also a prominent cell type in the submucosa and lamina propria, but little is known about their function in these locations. Effective pharmacological manipulation of bladder ICs depends on proper identification and further study of the pathways in these cells that affect bladder functions.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| |
Collapse
|
20
|
Guan NN, Gustafsson LE, Svennersten K. Inhibitory Effects of Urothelium-related Factors. Basic Clin Pharmacol Toxicol 2017; 121:220-224. [PMID: 28371382 DOI: 10.1111/bcpt.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/21/2017] [Indexed: 12/01/2022]
Abstract
The urothelium of the bladder has long been recognized as a protective barrier between detrusor and urine. In recent years, it has become more evident that the urothelium plays a role as an active source of mediators. The urothelium can release neurotransmitters and modulators such as acetylcholine, ATP, nitric oxide, prostaglandins and neuropeptides. They exert both excitatory and inhibitory effects in modulating urinary tract motility. In addition, several studies have reported the existence of an urothelium-derived unknown inhibitory factor in the urinary bladder. By the use of a new serial cascade superfusion bioassay on guinea pig ureter, recent studies confirm that the guinea pig bladder urothelium releases a substance with inhibitory bioactivity, which was resistant to treatment with nitric oxide synthase inhibitor and cyclooxygenase inhibitor and to adenosine A1/A2 receptor blockade. Lately, a marked and quickly inactivated novel release of PGD2 from the bladder urothelium was discovered, together with localization of prostaglandin D synthase therein. PGD2 was found to have an inhibitory influence on nerve-induced contractions in guinea pig urinary bladder and on spontaneous contractions in the out-flow region. An altered release of excitatory and inhibitory factors is likely to play an important part in bladder motility disturbances, of which the prostanoids are a notable group. Due to the fact that the bladder is relaxed 99% of the time, not only excitatory mechanisms in the bladder are necessary to study, but also inhibitory mechanisms need considerable attention, which will contribute to the discovery of new targets to treat bladder motility disorders.
Collapse
Affiliation(s)
- Na N Guan
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lars E Gustafsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Karl Svennersten
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Janssen DAW, Schalken JA, Heesakkers JPFA. Urothelium update: how the bladder mucosa measures bladder filling. Acta Physiol (Oxf) 2017; 220:201-217. [PMID: 27804256 DOI: 10.1111/apha.12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
AIM This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. METHODS Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. RESULTS Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. CONCLUSIONS Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling.
Collapse
Affiliation(s)
- D. A. W. Janssen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. A. Schalken
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. P. F. A. Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
22
|
P2Y 6-deficiency increases micturition frequency and attenuates sustained contractility of the urinary bladder in mice. Sci Rep 2017; 7:771. [PMID: 28396595 PMCID: PMC5429706 DOI: 10.1038/s41598-017-00824-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
The role of the P2Y6 receptor in bladder function has recently attracted a great deal of attention in lower urinary tract research. We conducted this study to determine contributions of the P2Y6 receptor in lower urinary tract function of normal phenotypes by comparing P2Y6-deficient mice and wild-type mice. In in vivo experiments, P2Y6-deficient mice had more frequent micturition with smaller bladder capacity compared to wild-type mice; however, there was no difference between these groups in bladder-filling pressure/volume relationships during cystometry under decerebrate, unanaesthetized conditions. Analysis of in vivo bladder contraction revealed significant difference between the 2 groups, with P2Y6-deficient mice presenting markedly shorter bladder contraction duration but no difference in peak contraction pressure. However, analysis of in vitro experiments showed no P2Y6 involvements in contraction and relaxation of bladder muscle strips and in ATP release by mechanical stimulation of primary-cultured urothelial cells. These results suggest that the P2Y6 receptor in the central nervous system, dorsal root ganglion, or both is involved in inhibition of bladder afferent signalling or sensitivity in the pontine micturition centre and that the receptor in the detrusor may be implicated in facilitation to sustain bladder contraction force.
Collapse
|
23
|
Neuhaus J, Schröppel B, Dass M, Zimmermann H, Wolburg H, Fallier‐Becker P, Gevaert T, Burkhardt CJ, Do HM, Stolzenburg J. 3D‐electron microscopic characterization of interstitial cells in the human bladder upper lamina propria. Neurourol Urodyn 2017; 37:89-98. [DOI: 10.1002/nau.23270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jochen Neuhaus
- Department of UrologyResearch Laboratory, University LeipzigLeipzigGermany
| | - Birgit Schröppel
- Natural and Medical Sciences Institute (NMI) at the University of TuebingenReutlingenGermany
| | - Martin Dass
- Carl Zeiss Microscopy GmbH, TrainingApplication and Support Center (TASC) Application Support EMMunichGermany
| | - Hans Zimmermann
- Carl Zeiss Microscopy GmbH, TrainingApplication and Support Center (TASC) Application Support EMMunichGermany
| | - Hartwig Wolburg
- Institute of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Petra Fallier‐Becker
- Institute of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Thomas Gevaert
- Department of Development and RegenerationKU Leuven, Laboratory of Experimental UrologyLeuvenBelgium
| | - Claus J. Burkhardt
- Natural and Medical Sciences Institute (NMI) at the University of TuebingenReutlingenGermany
| | - Hoang Minh Do
- Department of UrologyUniversity Leipzig, University Hospital LeipzigLeipzigGermany
| | - Jens‐Uwe Stolzenburg
- Department of UrologyUniversity Leipzig, University Hospital LeipzigLeipzigGermany
| |
Collapse
|
24
|
Lamarre NS, Bjorling DE. Treatment of painful bladder syndrome/interstitial cystitis with botulinum toxin A: why isn't it effective in all patients? Transl Androl Urol 2016; 4:543-54. [PMID: 26816853 PMCID: PMC4708559 DOI: 10.3978/j.issn.2223-4683.2015.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin A (BTA) is currently used to treat a variety of painful disorders, including painful bladder syndrome/interstitial cystitis (PBS/IC). However, BTA is not consistently effective in all patients. This may be due to the disparity of causes of pain, but this may also relate to the processes by which BTA exerts anti-nociceptive effects. This review discusses mechanisms by which BTA may inhibit pain and studies of the use of BTA in PSB/IC patients. It is doubtful that any single treatment will effectively control pain in PBS/IC patients, and it is highly probable that multiple strategies will be required, both within individual patients and across the population of PBS/IC patients. The purpose of this review is to discuss those mechanisms by which BTA acts, with the intent that alternative strategies exploiting these mechanism, or work through alternative pathways, can be identified to more effectively treat pain in PBS/IC patients in the future.
Collapse
Affiliation(s)
- Neil S Lamarre
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| | - Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
25
|
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Auton Neurosci 2015; 200:49-56. [PMID: 26422993 DOI: 10.1016/j.autneu.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
Abstract
The bladder mucosa is comprised of the multilayered urothelium, lamina propria (LP), microvasculature, and smooth muscle fibers (muscularis mucosae). The muscularis mucosae is not always present in the mucosa, and its presence is related to the thickness of the LP. Since there are no mucus secreting cells, "mucosa" is an imprecise term. Nerve fibers are present in the LP of the mucosa. Efferent nerves mediate mucosal contractions which can be elicited by electrical field stimulation (EFS) and various agonists. The source of mucosal contractility is unknown, but may arise from the muscularis mucosae or myofibroblasts. EFS also increases frequency of mucosal venule contractions. Thus, efferent neural activity has multiple effects on the mucosa. Afferent activity has been measured when the mucosa is stimulated by mechanical and stretch stimuli from the luminal side. Nerve fibers have been shown to penetrate into the urothelium, allowing urothelial cells to interact with nerves. Myofibroblasts are specialized cells within the LP that generate spontaneous electrical activity which then can modulate both afferent and efferent neural activities. Thus mucosal signaling is defined as interactions between bladder autonomic nerves with non-neuronal cells within the mucosa. Mucosal signaling is likely to be involved in clinical functional hypersensory bladder disorders (e.g. overactive bladder, urgency, urgency incontinence, bladder pain syndrome) in which mechanisms are poorly understood despite high prevalence of these conditions. Targeting aberrant mucosal signaling could represent a new approach in treating these disorders.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, United States; Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States.
| | - Andrea Russo
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States
| | - Shan Yu
- Department of Urology, United States
| | - Ming Lu
- Department of Urology, United States
| |
Collapse
|
26
|
de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. HANDBOOK OF CLINICAL NEUROLOGY 2015; 130:61-108. [PMID: 26003239 DOI: 10.1016/b978-0-444-63247-0.00005-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. Neural control of micturition is organized as a hierarchic system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brainstem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brainstem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily during the early postnatal period, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults cause re-emergence of involuntary micturition, leading to urinary incontinence. The mechanisms underlying these pathologic changes are discussed.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Svennersten K, Hallén-Grufman K, de Verdier PJ, Wiklund NP, Poljakovic M. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder. BMC Urol 2015; 15:81. [PMID: 26253104 PMCID: PMC4529706 DOI: 10.1186/s12894-015-0075-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. METHODS Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. RESULTS P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. CONCLUSION The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.
Collapse
Affiliation(s)
- Karl Svennersten
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Katarina Hallén-Grufman
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Petra J de Verdier
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - N Peter Wiklund
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| | - Mirjana Poljakovic
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
28
|
Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. BIOMED RESEARCH INTERNATIONAL 2015; 2015:798768. [PMID: 26229964 PMCID: PMC4502285 DOI: 10.1155/2015/798768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) associated with fibrosis is characterized by the appearance of interstitial myofibroblasts. These cells are responsible for the uncontrolled deposition of the extracellular matrix, which pathologically separate cardiomyocyte bundles. The enhanced fibrosis is thought to contribute to arrhythmias “indirectly” because a collagenous septum is a passive substrate for propagation, resulting in impulse conduction block and/or zigzag conduction. However, the emerging results demonstrate that myofibroblasts in vitro also promote arrhythmogenesis due to direct implications upon cardiomyocyte electrophysiology. This electrical interference may be considered beneficial as it resolves any conduction blocks; however, the passive properties of myofibroblasts might cause a delay in impulse propagation, thus promoting AF due to discontinuous slow conduction. Moreover, low-polarized myofibroblasts reduce, via cell-density dependence, the fast driving inward current for cardiac impulse conduction, therefore resulting in arrhythmogenic uniformly slow propagation. Critically, the subsequent reduction in cardiomyocytes resting membrane potential in vitro significantly increases the likelihood of ectopic activity. Myofibroblast densities and the degree of coupling at cellular border zones also impact upon this likelihood. By considering future in vivo studies, which identify myofibroblasts “per se” as a novel targets for cardiac arrhythmias, this review aims to describe the implications of noncardiomyocyte view in the context of AF.
Collapse
|
29
|
Guan NN, Svennersten K, de Verdier PJ, Wiklund NP, Gustafsson LE. Receptors involved in the modulation of guinea pig urinary bladder motility by prostaglandin D2. Br J Pharmacol 2015; 172:4024-37. [PMID: 25917171 DOI: 10.1111/bph.13174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE We have described a urothelium-dependent release of PGD2 -like activity which had inhibitory effects on the motility of guinea pig urinary bladder. Here, we have pharmacologically characterized the receptors involved and localized the sites of PGD2 formation and of its receptors. EXPERIMENTAL APPROACH In the presence of selective DP and TP receptor antagonists alone or combined, PGD2 was applied to urothelium-denuded diclofenac-treated urinary bladder strips mounted in organ baths. Antibodies against PGD2 synthase and DP1 receptors were used with Western blots and for histochemistry. KEY RESULTS PGD2 inhibited nerve stimulation -induced contractions in strips of guinea pig urinary bladder with estimated pIC50 of 7.55 ± 0.15 (n = 13), an effect blocked by the DP1 receptor antagonist BW-A868C. After blockade of DP1 receptors, PGD2 enhanced the contractions, an effect abolished by the TP receptor antagonist SQ-29548. Histochemistry revealed strong immunoreactivity for PGD synthase in the urothelium/suburothelium with strongest reaction in the suburothelium. Immunoreactive DP1 receptors were found in the smooth muscle of the bladder wall with a dominant localization to smooth muscle membranes. CONCLUSIONS AND IMPLICATIONS In guinea pig urinary bladder, the main effect of PGD2 is an inhibitory action via DP1 receptors localized to the smooth muscle, but an excitatory effect via TP receptors can also be evoked. The urothelium with its suburothelium might signal to the smooth muscle which is rich in PGD2 receptors of the DP1 type. The results are important for our understanding of regulation of bladder motility.
Collapse
Affiliation(s)
- Na N Guan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Svennersten
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Petra J de Verdier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - N Peter Wiklund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Gustafsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Leone Roberti Maggiore U, Cardozo L, Ferrero S, Sileo F, Cola A, Del Deo F, Torella M, Colacurci N, Candiani M, Salvatore S. Mirabegron in the treatment of overactive bladder. Expert Opin Pharmacother 2014; 15:873-87. [PMID: 24646053 DOI: 10.1517/14656566.2014.898752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mirabegron is a selective β3-adrenergic receptor agonist recently developed for the treatment of patients with overactive bladder (OAB), which offers an alternative pharmacological option to the well-established treatment with antimuscarinics (AMs). AREAS COVERED This review offers an explanation of the mechanism of action, of the pharmacokinetics and pharmacodynamics of mirabegron and gives readers a complete overview of Phase II and III studies on the clinical efficacy, tolerability and safety of this agent in the setting of OAB treatment. EXPERT OPINION Both Phase II and III trials have shown that mirabegron is efficacious and safe in treating patients with OAB. Future research should focus on the assessment of mirabegron concentrations in the CNS and on the evaluation of the potential of the combination of mirabegron with AMs. Another field for future research is represented by the investigation of the interaction of mirabegron with CYP2D6 inhibitors. Furthermore, current literature completely lacks studies on the efficacy and safety of mirabegron in the pediatric population and such trials are awaited.
Collapse
|
31
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
32
|
Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 2014; 9:e106269. [PMID: 25170954 PMCID: PMC4149561 DOI: 10.1371/journal.pone.0106269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.
Collapse
|
33
|
Altered detrusor gap junction communications induce storage symptoms in bladder inflammation: a mouse cyclophosphamide-induced model of cystitis. PLoS One 2014; 9:e104216. [PMID: 25099633 PMCID: PMC4123906 DOI: 10.1371/journal.pone.0104216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/11/2014] [Indexed: 11/20/2022] Open
Abstract
Lower urinary tract symptoms (LUTS) include storage, voiding and post-micturition symptoms, featuring many urological diseases. Storage symptoms are the most frequent among these and associated with overactive bladder and non-bacterial bladder inflammation such as interstitial cystitis/bladder pain syndrome (IC/BPS). Gap junction, a key regulator of hyperactive conditions in the bladder, has been reported to be involved in pathological bladder inflammation. Here we report involvement of gap junction in the etiology of storage symptoms in bladder inflammation. In this study, cyclophosphamide-induced cystitis was adapted as a model of bladder inflammation. Cyclophosphamide-treated mice showed typical storage symptoms including increased urinary frequency and reduced bladder capacity, with concurrent up-regulation of connexin 43 (GJA1), one of the major gap junction proteins in the bladder. In isometric tension study, bladder smooth muscle strips taken from the treated mice showed more pronounced spontaneous contraction than controls, which was attenuated by carbenoxolone, a gap junction inhibitor. In voiding behavior studies, the storage symptoms in the treated mice characterized by frequent voiding were alleviated by 18α-glycyrrhetinic acid, another gap junction inhibitor. These results demonstrate that cyclophosphamide-induced mouse model of cystitis shows clinical storage symptoms related with bladder inflammation and that gap junction in the bladder may be a key molecule of these storage symptoms. Therefore, gap junction in the bladder might be an alternative therapeutic target for storage symptoms in bladder inflammation.
Collapse
|
34
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
35
|
Carneiro I, Timóteo MA, Silva I, Vieira C, Baldaia C, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium. Br J Pharmacol 2014; 171:3404-19. [PMID: 24697602 PMCID: PMC4105929 DOI: 10.1111/bph.12711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. EXPERIMENTAL APPROACH We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [(3) H]-ACh overflow experiments. KEY RESULTS Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [(3) H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. CONCLUSIONS AND IMPLICATIONS Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors.
Collapse
Affiliation(s)
- Inês Carneiro
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - M Alexandrina Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Catarina Baldaia
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
- Serviço de Urologia, Centro Hospitalar do Porto (CHP)Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| |
Collapse
|
36
|
Rusu MC, Folescu R, Mănoiu VS, Didilescu AC. Suburothelial interstitial cells. Cells Tissues Organs 2014; 199:59-72. [PMID: 24801000 DOI: 10.1159/000360816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The suburothelium has received renewed interest because of its role in sensing bladder fullness. Various studies evaluated suburothelial myofibroblasts (MFs), interstitial cells (ICs), interstitial Cajal cells (ICCs) or telocytes (TCs), which resulted in inconsistencies in terminology and difficulties in understanding the suburothelial structure. In order to elucidate these issues, the use of electron microscopy seems to be an ideal choice. It was hypothesized that the cell population of the suburothelial band is heterogeneous in an attempt to clarify the above-mentioned inconsistencies. The suburothelial ICs of the bladder were evaluated by immunohistochemistry (IHC) and transmission electron microscopy (TEM). Bladder samples from 6 Wistar rats were used for IHC and TEM studies and human bladder autopsy samples were used for IHC. Desmin labeled only the detrusor muscle, while all the myoid structures of the bladder wall were positive for α-smooth muscle actin (SMA). A distinctive α-SMA-positive suburothelial layer was identified. A layered structure of the immediate suburothelial band was detected using TEM: (1) the inner suburothelial layer consisted of fibroblasts equipped for matrix synthesis; (2) the middle suburothelial layer consisted of smooth muscle cells (SMCs) and myoid ICCs, and (3) the outer suburothelial layer consisted of ICs with TC morphology, building a distinctive network. In conclusion, the suburothelial layer consists of distinctive types of ICs but not MFs. The myoid layer, with SMCs and ICCs, which could be considered identical to the α-SMA-positive cells in the suburothelial band, seems the best-equipped layer for pacemaking and signaling. Noteworthy, the network of ICs also seems suitable for stromal signaling.
Collapse
|
37
|
Shah AP, Mevcha A, Wilby D, Alatsatianos A, Hardman JC, Jacques S, Wilton JC. Continence and micturition: an anatomical basis. Clin Anat 2014; 27:1275-83. [PMID: 24615792 DOI: 10.1002/ca.22388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/02/2014] [Accepted: 02/08/2014] [Indexed: 12/20/2022]
Abstract
Urinary incontinence remains an important clinical problem worldwide, having a significant socio-economic, psychological, and medical burden. Maintaining urinary continence and coordinating micturition are complex processes relying on interaction between somatic and visceral elements, moderated by learned behavior. Urinary viscera and pelvic floor must interact with higher centers to ensure a functionally competent system. This article aims to describe the relevant anatomy and neuronal pathways involved in the maintenance of urinary continence and micturition. Review of relevant literature focusing on pelvic floor and urinary sphincters anatomy, and neuroanatomy of urinary continence and micturition. Data obtained from both live and cadaveric human studies are included. The stretch during bladder filling is believed to cause release of urothelial chemical mediators, which in turn activates afferent nerves and myofibroblasts in the muscosal and submucosal layers respectively, thereby relaying sensation of bladder fullness. The internal urethral sphincter is continuous with detrusor muscle, but its arrangement is variable. The external urethral sphincter blends with fibers of levator ani muscle. Executive decisions about micturition in humans rely on a complex mechanism involving communication between several cerebral centers and primitive sacral spinal reflexes. The pudendal nerve is most commonly damaged in females at the level of sacrospinous ligament. We describe the pelvic anatomy and relevant neuroanatomy involved in maintaining urinary continence and during micturition, subsequently highlighting the anatomical basis of urinary incontinence. Comprehensive anatomical understanding is vital for appropriate medical and surgical management of affected patients, and helps guide development of future therapies.
Collapse
Affiliation(s)
- Adarsh P Shah
- Department of Anatomy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Bahadory F, Moore KH, Liu L, Burcher E. Gene expression of muscarinic, tachykinin, and purinergic receptors in porcine bladder: comparison with cultured cells. Front Pharmacol 2013; 4:148. [PMID: 24348420 PMCID: PMC3842897 DOI: 10.3389/fphar.2013.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/10/2013] [Indexed: 12/04/2022] Open
Abstract
Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5), tachykinin (NK1/NK2), and purinergic (P2X1/P2Y6) receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compared the molecular expression pattern between the fresh tissue layers and their cultured cell counterparts. We also examined responses to agonists for these receptors in cultured cells. Urothelial, suburothelial (myofibroblasts), and smooth muscle cells isolated from pig bladder were cultured (10–14 days) and identified by marker antibodies. Gene (mRNA) expression level was demonstrated by real-time PCR. The receptor expression pattern was very similar between suburothelium and detrusor, and higher than urothelium. The gene expression of all receptors decreased in culture compared with the fresh tissue, although the reduction in cultured urothelial cells appeared less significant compared to suburothelial and detrusor cells. Cultured myofibroblasts and detrusor cells did not contract in response to the agonists acetylcholine, neurokinin A, and β,γ-MeATP, up to concentrations of 0.1 and 1 mM. The significant reduction of M3, NK2, and P2X1 receptors under culture conditions may be associated with the unresponsiveness of cultured suburothelial and detrusor cells to their respective agonists. These results suggest that under culture conditions, bladder cells lose the receptors that are involved in contraction, as this function is no longer required. The study provides further evidence that cultured cells do not necessarily mimic the actions exerted by intact tissues.
Collapse
Affiliation(s)
- Forough Bahadory
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Kate H Moore
- Detrusor Muscle Laboratory, St. George Hospital, University of New South Wales Kogarah, NSW, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Elizabeth Burcher
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
39
|
Timóteo MA, Carneiro I, Silva I, Noronha-Matos JB, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P. ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors. Biochem Pharmacol 2013; 87:371-9. [PMID: 24269631 DOI: 10.1016/j.bcp.2013.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In contrast to the well-known signaling role of urothelial ATP to control bladder function, the hypothesis that uracil nucleotides (UTP and/or UDP) also exert autocrine/paracrine actions only recently gained experimental support. Urothelial cells express UDP-sensitive P2Y6 receptors, yet their role in the control of bladder activity has been mostly neglected. This study was designed to investigate the ability of PSB0474, a stable UDP analogue which exhibits selectivity for P2Y6 receptors, to modulate urodynamic responses in the anaesthetized rat in vivo. Instillation of PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions. PSB0474-induced bladder overactivity was prevented by the selective P2Y6 antagonist, MRS2578. The increase in the VF produced by PSB0474 was also blocked by inhibitors of pannexin-1 hemichannels, (10)Panx or carbenoxolone, when these drugs were applied inside the bladder lumen but not when they were administered intravenously. Reduction of hemichannels pore permeability with H1152 also prevented PSB0474-induced bladder overactivity, but the exocytosis inhibitor, Exo-1, was inactive. PSB0474 increased by 3-fold the urinary ATP content. Implication of hemichannels permeability on PSB0474-induced ATP release was demonstrated by real-time fluorescence video-microscopy measuring the uptake of propidium iodide by intact urothelial cells in the absence and in the presence of MRS2578 or carbenoxolone. Confocal microscopy studies confirmed the co-localization of pannexin-1 and P2Y6 receptors in the rat urothelium. Data indicate that activation of P2Y6 receptors causes bladder overactivity in the anaesthetized rat indirectly by releasing ATP from the urothelium via pannexin-1 hemichannels.
Collapse
Affiliation(s)
- M Alexandrina Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Inês Carneiro
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
40
|
Pannexin 1 involvement in bladder dysfunction in a multiple sclerosis model. Sci Rep 2013; 3:2152. [PMID: 23827947 PMCID: PMC3701900 DOI: 10.1038/srep02152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022] Open
Abstract
Bladder dysfunction is common in Multiple Sclerosis (MS) but little is known of its pathophysiology. We show that mice with experimental autoimmune encephalomyelitis (EAE), a MS model, have micturition dysfunction and altered expression of genes associated with bladder mechanosensory, transduction and signaling systems including pannexin 1 (Panx1) and Gja1 (encoding connexin43, referred to here as Cx43). EAE mice with Panx1 depletion (Panx1−/−) displayed similar neurological deficits but lesser micturition dysfunction compared to Panx1+/+ EAE. Cx43 and IL-1β upregulation in Panx1+/+ EAE bladder mucosa was not observed in Panx1−/− EAE. In urothelial cells, IL-1β stimulation increased Cx43 expression, dye-coupling, and p38 MAPK phosphorylation but not ERK1/2 phosphorylation. SB203580 (p38 MAPK inhibitor) prevented IL-1β-induced Cx43 upregulation. IL-1β also increased IL-1β, IL-1R-1, PANX1 and CASP1 expression. Mefloquine (Panx1 blocker) reduced these IL-1β responses. We propose that Panx1 signaling provides a positive feedback loop for inflammatory responses involved in bladder dysfunction in MS.
Collapse
|
41
|
Osman NI, Chapple CR. Overactive bladder syndrome: Current pathophysiological concepts and therapeutic approaches. Arab J Urol 2013; 11:313-8. [PMID: 26558098 PMCID: PMC4443009 DOI: 10.1016/j.aju.2013.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Objectives The overactive bladder syndrome (OAB) is a highly prevalent and bothersome symptom complex. We review contemporary reports to provide an update of the key aspects of its pathogenesis and the therapeutic approaches. Methods The PUBMED database was searched for relevant publications in the period from 1 January 1985 to 1 May 2013, using the keywords ‘overactive bladder’, ‘anti-muscarinics’, ‘β-3 agonists’, ‘intravesical botulinum toxin’, ‘tibial nerve stimulation and ‘sacral neuromodulation’. Results In all, 33 articles were selected for this review. OAB is very common, affecting 10–20% of the population. It is often bothersome and frequently affects the quality of life. The current definition of OAB remains a source of controversy. Anti-muscarinic agents remain the mainstay of pharmacotherapy. The new β-3 agonists have some efficacy whilst avoiding anti-cholinergic effects, and so might benefit patients who are unable to tolerate anti-muscarinic agents. Intravesical botulinum toxin is recommended for patients in whom oral pharmacotherapy fails, although the optimal parameters in terms of dosing, number of injections and injection site are yet to be fully established. Sacral neuromodulation is another option that has a good response in about half of patients. Conclusions OAB remains an incompletely understood problem that presents a significant management challenge. A range of therapeutic options is now available for clinicians managing this problem.
Collapse
Affiliation(s)
- Nadir I Osman
- Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | | |
Collapse
|
42
|
Silva-Ramos M, Silva I, Oliveira O, Ferreira S, Reis MJ, Oliveira JC, Correia-de-Sá P. Urinary ATP may be a dynamic biomarker of detrusor overactivity in women with overactive bladder syndrome. PLoS One 2013; 8:e64696. [PMID: 23741373 PMCID: PMC3669404 DOI: 10.1371/journal.pone.0064696] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/17/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. METHODS Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. RESULTS The urinary content of ATP, but not of NGF, normalized to patients' urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n = 34) than in healthy controls (n = 30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. CONCLUSION A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62-0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome.
Collapse
Affiliation(s)
- Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
| | - Olga Oliveira
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Sónia Ferreira
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Maria Júlia Reis
- Serviço de Química Clínica - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | | | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
43
|
Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 2013; 304:G823-34. [PMID: 23429582 PMCID: PMC3652001 DOI: 10.1152/ajpgi.00001.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently platelet-derived growth factor-α-positive cells (PDGFRα(+) cells), previously called "fibroblast-like" cells, have been described in the muscle layers of the gastrointestinal tract. These cells form networks and are involved in purinergic motor neurotransduction. Examination of colon from mice with enhanced green fluorescent protein (eGFP) driven from the endogenous Pdgfra (PDGFRα-eGFP mice) revealed a unique population of PDGFRα(+) cells in the mucosal layer of colon. We investigated the phenotype and potential role of these cells, which have not been characterized previously. Expression of PDGFRα and several additional proteins was surveyed in human and murine colonic mucosae by immunolabeling; PDGFRα(+) cells in colonic mucosa were isolated from PDGFRα-eGFP mice, and the gene expression profile was analyzed by quantitative polymerase chain reaction. We found for the first time that PDGFRα was expressed in subepithelial cells (subepithelial PDGFRα(+) cells) forming a pericryptal sheath from the base to the tip of crypts. These cells were in close proximity to the basolateral surface of epithelial cells and distinct from subepithelial myofibroblasts, which were identified by expression of α-smooth muscle actin and smooth muscle myosin. PDGFRα(+) cells also lay in close proximity to varicose processes of nerve fibers. Mouse subepithelial PDGFRα(+) cells expressed Toll-like receptor genes, purinergic receptor genes, 5-hydroxytryptamine (5-HT) 4 receptor gene, and hedgehog signaling genes. Subepithelial PDGFRα(+) cells occupy an important niche in the lamina propria and may function in transduction of sensory and immune signals and in the maintenance of mucosal homeostasis.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jared B. Townsend
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
44
|
Involvement of Connexins 43 and 45 in Functional Mechanism of Human Detrusor Overactivity in Neurogenic Bladder. Urology 2013; 81:1108.e1-6. [DOI: 10.1016/j.urology.2013.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/23/2012] [Accepted: 01/20/2013] [Indexed: 01/20/2023]
|
45
|
TOBU S, NOGUCHI M, HATADA T, MORI KI, MATSUO M, SAKAI H. Upregulation of Angiotensin II Receptor and Connexin 43 in Increased Suburothelial Myofibroblasts in the Rat Inflammatory Bladder. Low Urin Tract Symptoms 2013; 5:90-5. [DOI: 10.1111/j.1757-5672.2012.00167.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Abstract
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria ("mucosa") produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lori Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
47
|
Barcellos LM, Costa WS, Medeiros JL, Rocha BR, Sampaio FJB, Cardoso LEM. Protective effects of l-glutamine on the bladder wall of rats submitted to pelvic radiation. Micron 2013; 47:18-23. [PMID: 23465886 DOI: 10.1016/j.micron.2013.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/24/2012] [Accepted: 01/05/2013] [Indexed: 11/27/2022]
Abstract
Radiotherapy is often used to treat prostate tumors, but the normal bladder is usually adversely affected. Using an animal model of pelvic radiation, we investigated whether glutamine nutritional supplementation can prevent radiation-induced damage to the bladder, especially in its more superficial layers. Male rats aged 3-4 months were divided into groups of 8 animals each: controls, which consisted intact animals; radiated-only rats, which were sacrificed 7 (R7) or 15 (R15) days after a radiation session (10Gy aimed at the pelvico-abdominal region); and radiated rats receiving l-glutamine supplementation (0.65g/kg body weight/day), which were sacrificed 7 (RG7) or 15 (RG15) days after the radiation session. Cells and blood vessels in the vesical lamina propria, as well as the urothelium, were then measured using histological methods. The effects of radiation were evaluated by comparing controls vs. either R7 or R15, while a protective effect of glutamine was assessed by comparing R7 vs. RG7 and R15 vs. RG15. The results showed that, in R7, epithelial thickness, epithelial cell density, and cell density in the lamina propria were not significantly affected. However, density of blood vessels in R7 was reduced by 48% (p<0.05) and this alteration was mostly prevented by glutamine (p<0.02). In R15, density of blood vessels in the lamina propria was not significantly modified. However, epithelial thickness was reduced by 25% (p<0.05) in R15, and this effect was prevented by glutamine (p<0.01). In R15, epithelial cell density was increased by 35% (p<0.02), but glutamine did not protect against this radiation-induced increase. Cell density in the lamina propria was likewise unaffected in R15. Density of mast cells in the lamina propria was markedly reduced in R7 and R15. The density was still reduced in RG7, but a higher density in RG15 suggested a glutamine-mediated recovery. Alpha-actin positive cells in the lamina propria formed a suburothelial layer and were identified as myofibroblasts. Thickness of this layer was increased in R7, but was similar to controls in RG7, while changes in R15 and RG15 were less evident. In conclusion, pelvic radiation leads to significant acute and post-acute alterations in the composition and structural features of the vesical lamina propria and epithelium. Most of these changes, however, can be prevented by glutamine nutritional supplementation. These results emphasize, therefore, the potential use of this aminoacid as a radioprotective drug.
Collapse
Affiliation(s)
- Leilane M Barcellos
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, De Ridder D. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med 2013; 16:2085-93. [PMID: 22151349 PMCID: PMC3822978 DOI: 10.1111/j.1582-4934.2011.01504.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The upper lamina propria (ULP) area of interstitial cells (IC) has been studied extensively in bladder, but is rather unexplored in the rest of the urinary tract. This cell layer is intriguing because of the localization directly underneath the urothelium, the intercellular contacts and the close relationship with nerve endings and capillaries. In this study, we examine the ULP layer of IC in human renal pelvis, ureter and urethra, and we make a comparison with ULP IC in bladder. Tissue was obtained from normal areas in nephrectomy, cystectomy and prostatectomy specimens, and processed for morphology, immunohistochemistry and electron microscopy. A morphological and immunohistochemical phenotype for the ULP IC was assessed and region-dependent differences were looked for. The ULP IC in renal pelvis, ureter and urethra had a similar ultrastructural phenotype, which differed somehow from that of bladder IC, that is, thinner and longer cytoplasmic processes, no peripheral actin filaments and presence of dense core granules and microtubules. Together with their immunohistochemical profile, these features are most compatible with the phenotype of telocytes, a recently discovered group of stromal cells. Based on their global ultrastructural and immunohistochemical phenotype, ULP IC in human bladder should also be classified as telocytes. The most striking immunohistochemical finding was the variable expression of oestrogen receptor (ER) and progesterone receptor (PR). The functional relevance of ULP telocytes in the urinary tract remains to be elucidated, and ER and PR might therefore be promising pharmacological research targets.
Collapse
Affiliation(s)
- Thomas Gevaert
- Department of Urology, KU Leuven, University Hospitals Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Moro C, Tajouri L, Chess-Williams R. Adrenoceptor Function and Expression in Bladder Urothelium and Lamina Propria. Urology 2013. [DOI: 10.1016/j.urology.2012.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol (Oxf) 2013; 207:7-15. [PMID: 23034074 DOI: 10.1111/apha.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/22/2012] [Accepted: 09/10/2012] [Indexed: 01/12/2023]
Abstract
The field of bladder research has been energized by the study of novel interstitial cells (IC) over the last decade. Several subgroups of IC are located within the bladder wall and make structural interactions with nerves and smooth muscle, indicating integration with intercellular communication and key physiological functions. Significant progress has been made in the study of bladder ICs' cellular markers, ion channels and receptor expression, electrical and calcium signalling, yet their specific functions in normal bladder filling and emptying remain elusive. There is increasing evidence that the distribution of IC is altered in bladder pathophysiologies suggesting that changes in IC may be linked with the development of bladder dysfunction. This article summarizes the current state of the art of our knowledge of IC in normal bladder and reviews the literature on IC in dysfunctional bladder.
Collapse
Affiliation(s)
- K. D. McCloskey
- Centre for Cancer Research and Cell Biology; Queen's University Belfast; Belfast; Northern Ireland; UK
| |
Collapse
|