1
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
2
|
Fraser MO, Smith PP, Sullivan MP, Bjorling DE, Campeau L, Andersson KE, Yoshiyama M. Best practices for cystometric evaluation of lower urinary tract function in muriform rodents. Neurourol Urodyn 2020; 39:1868-1884. [PMID: 32511810 DOI: 10.1002/nau.24415] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
AIMS Rodent cystometry has provided valuable insights into the impact of the disease, injury, and aging on the cellular and molecular pathways, neurologic processes, and biomechanics of lower urinary tract function. The purpose of this white paper is to highlight the benefits and shortcomings of different experimental methods and strategies and to provide guidance on the proper interpretation of results. METHODS Literature search, selection of articles, and conclusions based on discussions among a panel of workers in the field. RESULTS A range of cystometric tests and techniques used to explore biological phenomena relevant to the lower urinary tract are described, the advantages and disadvantages of various experimental conditions are discussed, and guidance on the practical aspects of experimental execution and proper interpretation of results are provided. CONCLUSIONS Cystometric evaluation of rodents comprises an extensive collection of functional tests that can be performed under a variety of experimental conditions. Decisions regarding which approaches to choose should be determined by the specific questions to be addressed and implementation of the test should follow standardized procedures.
Collapse
Affiliation(s)
- Matthew O Fraser
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina.,Department of Research and Development, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Phillip P Smith
- Division of Urology, Department of Surgery, University of Connecticut Medical Center, Farmington, Connecticut
| | - Maryrose P Sullivan
- Division of Urology, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Research and Development, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lysanne Campeau
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mitsuharu Yoshiyama
- Department of Urology, University of Yamanashi Graduate School of Medicine, Chuo, Yamanashi, Japan
| |
Collapse
|
4
|
Praveen Rajneesh C, Yang LY, Chen SC, Hsieh TH, Chin HY, Peng CW. Cystometric Measurements in Rats with an Experimentally Induced Traumatic Brain Injury and Voiding Dysfunction: A Time-Course Study. Brain Sci 2019; 9:brainsci9110325. [PMID: 31739594 PMCID: PMC6895874 DOI: 10.3390/brainsci9110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injuries (TBIs) are a serious public health issue worldwide with increased mortality as well as severe disabilities and injuries caused by falls and road accidents. Unfortunately, there is no approved therapy for TBIs, and bladder dysfunction is a striking symptom. Accordingly, we attempted to analyze bladder dysfunction and voiding efficiency in rats with a TBI at different time-course intervals. Time-dependent analyses were scheduled from the next day until four weeks after a TBI. Experimental animals were grouped and analyzed under the above conditions. Cystometric measurements were used for this analysis and were further elaborated as external urethral sphincter electromyographic (EUS-EMG) activity and cystometrogram (CMG) measurements. Moreover, magnetic resonance imaging (MRI) studies were conducted to investigate secondary injury progression in TBI rats, and results were compared to normal control (NC) rats. Results of EUS-EMG revealed that the burst period, active period, and silent period in TBI rats were drastically reduced compared to NC rats, but they increased later and reached a stagnant phase. Likewise, in CMG measurements, bladder function, the voided volume, and voiding efficiency decreased immediately after the TBI, and other parameters like the volume threshold, inter-contraction interval, and residual volume drastically increased. Later, those levels changed, and all observed results were compared to NC rats. MRI results revealed the prevalence of cerebral edema and the progression of secondary injury. All of the above-stated results of the experiments were extensively substantiated. Thus, these innovative findings of our study model will surely pave the way for new therapeutic interventions for TBI treatment and prominently highlight their applications in the field of neuroscience in the future.
Collapse
Affiliation(s)
- Chellappan Praveen Rajneesh
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei-11031, Taiwan
| | - Ling-Yu Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei-11031, Taiwan
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei-11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei-11031, Taiwan
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan-33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou-33305, Taiwan
| | - Hung-Yen Chin
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei-11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei-11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei-11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei-11031, Taiwan
- Correspondence: ; Tel./Fax: +886-2-2736-1661 (ext. 3070)
| |
Collapse
|
5
|
Albayram O, MacIver B, Mathai J, Verstegen A, Baxley S, Qiu C, Bell C, Caldarone BJ, Zhou XZ, Lu KP, Zeidel M. Traumatic Brain Injury-related voiding dysfunction in mice is caused by damage to rostral pathways, altering inputs to the reflex pathways. Sci Rep 2019; 9:8646. [PMID: 31201348 PMCID: PMC6570649 DOI: 10.1038/s41598-019-45234-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Brain degeneration, including that caused by traumatic brain injury (TBI) often leads to severe bladder dysfunction, including incontinence and lower urinary tract symptoms; with the causes remaining unknown. Male C57BL/6J mice underwent repetitive moderate brain injury (rmdTBI) or sham injury, then mice received either cis P-tau monoclonal antibody (cis mAb), which prevents brain degeneration in TBI mice, or control (IgG). Void spot assays revealed age-dependent incontinence in IgG controls 8 months after injury, while cis mAb treated or sham mice showed no dysfunction. No obvious bladder pathology occurred in any group. Urodynamic cystometry in conscious mice revealed overactive bladder, reduced maximal voiding pressures and incontinence in IgG control, but not sham or cis mAb treated mice. Hyperphosphorylated tau deposition and neural tangle-like pathology occurred in cortical and hippocampal regions only of IgG control mice accompanied with post-traumatic neuroinflammation and was not seen in midbrain and hindbrain regions associated with bladder filling and voiding reflex arcs. In this model of brain degeneration bladder dysfunction results from rostral, and not hindbrain damage, indicating that rostral brain inputs are required for normal bladder functioning. Detailed analysis of the functioning of neural circuits controlling bladder function in TBI should lead to insights into how brain degeneration leads to bladder dysfunction, as well as novel strategies to treat these disorders.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Bryce MacIver
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - John Mathai
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anne Verstegen
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sean Baxley
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Chenxi Qiu
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Carter Bell
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiao Zhen Zhou
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Kun Ping Lu
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Mark Zeidel
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
9
|
Monjotin N, Farrié M, Vergnolle N, Le Grand B, Gillespie J, Junquero D. Bladder telemetry: A new approach to evaluate micturition behavior under physiological and inflammatory conditions. Neurourol Urodyn 2016; 36:308-315. [PMID: 26879122 DOI: 10.1002/nau.22970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
AIMS To establish a new approach to cystometry using telemetry in conscious rats and to use this technique to determine the role of conscious decision making processes with respect to the initiation of voiding in physiological, inflammatory, and painful conditions. METHODS The pressure transducer of a telemetric transmitter was implanted in the dome of the urinary bladder. After a recovery period of at least 1 month, several investigations of urodynamic parameters were performed after diuresis activation by a pulse of furosemide. The model was characterized by tolterodine and mirabegron under physiological conditions and same animals were reused to evaluate the modification of the voiding pattern under bladder inflammation induced by cyclophosphamide. RESULTS The quality of traces and measurement of parameters recorded telemetrically were comparable to those with conventional cystometry. Furosemide induced a reproducible transient increase of urine production and a series of voids that persisted for 60 min. Tolterodine reduced the amplitude of micturition contractions although mirabegron was devoid of any effect. Seven hours after injection of CYP, voiding frequency increased significantly and the micturition amplitude contraction was not altered. However, the mean volume voided during individual micturitions and the total voided volume decreased. During a second exposure to furosemide 24H after CYP injection, the micturition pattern returned to control, however, the micturition volume was still lower than in control. CONCLUSION This telemetric model appears to be as accurate as previously described in conscious conventional cystometry, and allows the repeated evaluation of compounds which may modulate the voiding patterns. Neurourol. Urodynam. 36:308-315, 2017. © 2016 The Authors. Neurourology and Urodynamics published by Wiley Periodicals, Inc.
Collapse
|